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Abstract 

MRS thermometry has been utilized to measure temperature changes in the brain, which may aid in the diagnosis of brain 

trauma and tumours. However, the temperature calibration of the technique has been shown to be sensitive to non-

temperature based factors, which may provide unique information on the tissue microenvironment if the mechanisms can 

be further understood. The focus of this study was to investigate the effects of varied protein content on the calibration of 

the MRS thermometry at 3T, which has not been thoroughly explored in the literature. The effect of ionic concentration 

and magnetic field strength were also considered. Temperature reference materials were controlled by water circulation 

and freezing organic fixed-point compounds (diphenyl ether and ethylene carbonate) stable to within 0.2°C. The 

temperature was measured throughout the scan time with a fluoro-optic probe, uncertainty of 0.16°C. The probe was 

calibrated at the National Physical Laboratory (NPL) with traceability to the International Temperature Scale 1990 (ITS-

90). MRS thermometry measures were based on single voxel spectroscopy chemical shift differences between water and 

N-acetylaspartate (NAA), ∆(H20-NAA), using a Philips Achieva 3T scanner. Six different phantom solutions with varying 

protein or ionic concentration, simulating potential tissue differences, were investigated within a temperature range of 21-

42°C. Results were compared to a similar study performed at 1.5T to observe the effect of field strengths. Temperature 

calibration curves were plotted to convert ∆(H20-NAA) to apparent temperature. The apparent temperature changed by -0.2°C 

/% of bovine serum albumin (BSA) and a trend of 0.5°C/50mM ionic concentration was observed. Differences in the 

calibration coefficients for the 10% BSA solution were seen in this study at 3 T compared with a study at 1.5 T. MRS 

thermometry may be utilized to measure temperature and the tissue microenvironment, which could provide unique 

unexplored information for brain abnormalities and other pathologies.  

 

 

  



Introduction 

Brain temperature measures are important for monitoring brain trauma [1], stroke [2], hypothermia [3, 4] and tumours [5], 

for both thermal treatment [6] and potential diagnosis. However, conventional probes of core temperature, such as 

tympanic and rectal thermometry, have been shown to be unreliable measures of brain temperature [7, 8]. Invasive 

methods such as implanted brain temperature sensors may be used for special case neurosurgical patients, however this 

technique is otherwise difficult to justify clinically. There are a variety of non-invasive temperature-sensitive MR 

techniques [9]. Whilst most of these are limited to measuring temperature changes, 1H MRS based brain thermometry has 

the advantage that it can be calibrated to measure actual temperature measures [10]. A potential drawback of 1H MRS for 

temperature measurement is that tissue microenvironment may affect the measurement and further understanding of this 

phenomenon is required.   

1H MRS thermometry is based on the measurement of the chemical shift difference between the spectral water peak and 

one or more reference metabolite peaks [10]. The water chemical shift is linearly dependent on temperature, with a 

coefficient of approximately -0.01ppm/°C, which can be used to provide actual temperature measurements using an 

appropriate calibration [11-17]. The uncertainty of the technique has been reported to be ± 0.2°C [18] in phantoms using 

single-voxel MRS at 3T and a set temperature calibration, however it has not been calibrated with demonstrable 

traceability to the International Temperature Scale 1990 (ITS-90) [19]. While the precision of actual temperature 

measurements using MRS is dependent on the error in determining the relative water chemical shift, which itself is 

dependent on the experimental conditions, the main source of error is likely to be due to the accuracy and relevance of the 

calibration used. Variations in the temperature calibration of the chemical shift have been discussed in the literature, 

reducing the confidence in accurate thermometry (Table 1). The reported studies were carried out at different magnetic 

field strengths, using various target materials (e.g., animal and human brain, phantoms) and no demonstrable traceability 

to the ITS-90 [19]. Tissue or sample composition may affect the calibration due to differences in ionic concentration, fast 

proton chemical exchange and magnetic susceptibility, all of which may differentially affect the water and reference 

metabolite chemical shifts. These effects may be dependent on magnetic field strength, providing potential mechanisms 

by which the temperature calibration of the relative water chemical shift may be field strength dependent.  

A recent investigation into the effect of different ionic concentrations, pH  levels and  a single protein concentration on 

MRS temperature calibrations, was performed on a 1.5T clinical scanner by Vescovo et al. [12]. The study found ionic 

strength and protein concentration changed the temperature calibration values, compared to a control solution. The 

equipment for their study was provided by The National Physical Laboratory (NPL), the same equipment has been 

provided for this study.  The NPL is the UK national metrology institute responsible for, among other things, maintaining 

and disseminating the SI units at the highest level, including the temperature scale. The apparatus, used in this study, was 

specifically designed to ensure that the sample has a minimal internal temperature gradient and temperature drift 

throughout the measurement periods.  

In this work, we investigate the effect of different protein and ionic concentrations on the temperature calibration at 3T 

using stable temperature phantoms. These results were then compared with the results of Vescovo et al to investigate the 



magnetic field strength dependence of the calibration. The comparison was made stronger by the use of the same 

experimental apparatus, test solutions and large overlap in the data processing methods. .  

 

 

 

 

Table 1: Literature review of temperature calibrations using ∆(H2O – NAA) . Magnetic field strength (Bo), slope of calibration 
(α), y intercept (β), correlation value (R2), ∆(H2O-NAA) chemical shift at 37°C, and change in temperature from this study’s  

neuronal mimic’s results are shown.   

 

Methods:  

Known temperature phantom references, provided by NPL, were utilized to calibrate MRS thermometry. The temperature 

fixed-point objects  (high purity organic compounds) provided temperature references traceable to ITS-90, stable to < 

0.2°C. A water circulating phantom provided a controllable temperature source, stable to within 0.2°C. The two types of 

phantom consist of two glass spherical compartments, such that the outer sphere fully envelopes the inner one for 

maximum thermal contact. The one used for the fixed-point organic compounds is shown in Figure 1; the one used for 

water circulation is similar but has an inlet and outlet for the circulating water. The inner sphere (internal diameter, 50 

mm) contained the sample solution and the outer sphere (internal diameter, 120 mm) contained the fixed-point 

temperature reference or circulating water at varying stable reference temperatures. Accurate temperature measurement of 

the sample was performed with a fluoro-optic thermometer (Luxtron 790, National Instruments UK & Ireland, Newbury, 

Berkshire, UK), calibrated via a standard platinum resistance thermometer (SPRT) and a stirred temperature controlled 

water bath, with an estimated uncertainty of 0.16°C ( k = 2, 95% confidence).  

 

 

Figure 1: Spherical glass phantom used for controlled temperature circulation and realising the freezing point of the 

organic fixed point compounds, the positions of the optical fibre probe, organic compound  and sample (e.g. NAA 

solution) are shown. 

 

Six pH normalised, pH ~ 7, solutions were studied, using NAA (25mM ) as the reference metabolite (Table 2) , with four 

out of the six solutions identical to those used in Vescovo et al [12] study to allow investigation of the effect of magnetic 

field strength on the calibration curve. A control solution and varied NaCl/KCl concentrations, used to approximate the 

ionic concentration of a neuronal and glial cell [20], facilitated the investigation of the ionic concentration effect on the 

temperature calibration (Table 2). The control solution and three concentrations of the bovine serum albumin (BSA) 

protein (5%,10%, 15% w/V) were also used to investigate the effect of protein concentration on the temperature 

calibration (Table 2).  All chemicals were purchased from Sigma-Aldrich (Gillingham, Dorset, UK). 



 

The two glass sphere phantoms were used to provide a stable temperature environment in the outer sphere, which through 

thermal contact ensures a stable temperature in the sample solution (inner sphere). The fixed-point organic compounds 

were ethylene carbonate and diphenyl ether, freezing at 35.8°C and 26.3°C, respectively. The procedure used to attain a 

stable temperature with the frozen organic compounds has been described in detail previously [12]. In short, the organic 

temperature reference phantoms were heated in a water bath (70°C) for one hour then transferred to a cool water bath 

(20°C) and left to super-cool (1 hour). The super-cooled organic solution was thermally shocked with dry ice, then left for 

30 minutes to ensure the thermally stable semi-solid state was fully achieved. When prepared correctly, the organic 

materials maintained a stable temperature over the scan time (40 minutes) to within 0.1°C. The water circulation phantom 

utilizes a water bath of variable temperature (0-100°C), which is connected into and out of the outer sphere of the glass 

phantom via plastic tubing. Insulation of both the plastic tubing and glass phantom ensured minimal heat loss from the 

bath to the sample temperature occurred.       

 

MRS temperature measurements were taken within the range of 21-42°C, at 5°C increments (water bath settings of 21, 26, 

31, 36, and 41°C) and six MRS measures were taken per temperature point.. After the water bath or fixed point reached 

specific temperature increments a waiting period of 15 minutes was used to allow for temperature stabilisation within the 

sample. The sample solution temperature was accurately measured and monitored throughout the MRI scanning with the 

fluoro-optic thermometer. On average, four temperature points were measured per sample solution, typically three via the 

water circulation and at least one from the organic fixed-point references. Phantoms were placed in the isocentre of the 

scanner and there was at least 15 minutes waiting time, to reduce bulk water motion, before the start of scanning.  

 

Phantoms were scanned with a 3T Phillips Achieva (Phillips Medical Inc., Best, The Netherlands). Six single-voxel 

spectra were recorded at each temperature point using single-voxel point-resolved spectroscopy (PRESS), [TR/TE/NSA = 

2000ms/100ms/32, 15x15x15mm3 volume. 2048 samples], from which the Proton Resonance Frequency (PRF) shift of 

water relative to NAA, ∆(H20-NAA), was measured. The sample volume was placed within the inner sphere, the water and 

NAA voxel overlap was approximately equidistant from the tip of the temperature probe and the glass edge to minimise 

bulk susceptibility effects. No water suppression was used during acquisition.  

 

The spectra were processed offline using jMRUI (Java Magnetic Resonance User Interface). The water peak was fitted 

with the AMARES [21] tool initially to obtain the water PRF. The water peak signal was then artificially suppressed using 

the Hankel-Lanczos singular value decomposition (HLSVD) method [21, 22] to facilitate accurate modelling of the NAA 

peak, which was used as the temperature independent reference (Figure 2). Both the water and NAA peak were modelled 

as single lorentzian lineshapes. The chemical shift was then calculated from the Water-NAA PRF difference, ∆(H20-NAA). 

Mean repeatability measures were calculated using the six ∆(H20-NAA) values at each temperature point and then averaged 

across for the protein and ionic solutions separately. 

 



Figure 2: Example of a HLSVD water suppressed single voxel spectra acquired from the ionic control solution using the 

diphenyl ether phantom (26.3°C). 

 

 

The temperature was measured and monitored during the MRS acquisitions using the fluoro-optic probe, with the tip 

placed immediately adjacent to the MRS sampled volume. The ∆(H20-NAA) values were plotted against temperature and 

linear regression performed on the data. The relationship between the temperature and the water chemical shift relative to 

NAA, ∆(H20-NAA), is given by Equation 1, where T is the temperature and α, β are the coefficients of the slope.  

 

T = α∆(H20-NAA) + β   (1) 
 
This relationship was used to investigate the test solution composition effect on the linear calibration coefficients. The 

mean α, β were derived from Equation 1 and the measured T and ∆(H20-NAA). The variance [σ] of α, β were based on the 

goodness of fit measure, R2. The ∆(H20-NAA) at 37°C was also calculated based on the fitted linear coefficients. The ∆(H20-

NAA) at 37°C for the neuronal cell (∆neuronal) was used to calculate a temperature difference between the solutions. ∆neuronal 

was used in Equation 1 for each temperature calibration curve, providing an apparent temperature value and therefore an 

apparent temperature difference for each solution relative to the neuronal cell solution, ∆Tneuronal. These quantities were 

used to investigate the magnitude of the differences in apparent temperature values that would be implied by the varying 

calibration curves dependent upon the test sample characteristics.  

 

Plots of ∆(H20-NAA) versus ionic concentration and protein concentration, for three temperature points (31, 36, and 41°C) 

were made to show the effect of the test solution concentration on the calibration (Figure 4,6). Ionic concentration was 

calculated by summing the NaCl and KCl concentration within each of the solutions. The mean equilibrated solution 

temperature measures were subtly different for each solution at the same set bath temperature (21, 26, 31, 36, and 41°C). 

This was primarily due to bath water temperature variation and small heat loss differences across experiments through the 

water piping. Therefore, to accurately compare the ionic and protein effects on the ∆(H20-NAA) at the same temperature, a 

linear correction for these small differences was applied. The temperature calibration, Equation 1, was used with the fixed 

slope coefficients of each solution (Table 2) and fixed temperature values (21, 26, 31, 36 or 41°C) to calculate the water 

PRF relative to NAA at the fixed temperature values. Error bars were calculated based on the standard error from the six 

MRS measures at each temperature point.    

 

Plots of ∆(H20-NAA) against temperature for this study compared with results from the literature were created. These plots 

were produced by extrapolating results in each study to allow a convenient visual comparison of the temperature 

calibration curves, (shown in Figure 7).  Five specific chemical shift values (2.63, 2.64, 2.65, 2.66, 2.67 ppm) were used 

in conjunction with calibration coefficients, α, β, for each study to predict the probe temperature.  Error bars calculated 

based on the residual fitting error and attributed to the temperature  measure, where possible. These values were plotted to 

determine the difference between the calibration curves. 



 

Linear regression analysis was used to compare temperature calibration curves, using R2 for goodness of fit, and p<0.05 

was used as the threshold for significance of pearson correlation measures.  

 
 
 
Results 

∆(H20-NAA) measurements of the six pH normalized solutions at a range of temperatures were made. Plots of ∆(H20-NAA) 

versus temperature were constructed and the differences between solutions investigated (Table 2, Figure 3 and 4). Fits of 

the water and NAA peak produced residuals within the noise and the spectral linewidths of the NAA metabolite peak were 

less than 3 Hz. Narrow linewidths and good modelling of the peaks ensured the HLSVD routine works well at removing 

the water signal and reproducible ∆(H20-NAA) values could be obtained. The meanrepeatability of the ∆(H20-NAA) (apparent 

temperature) measurements were 0.00651  ppm (0.65°C) and 0.00554(0.5°C) for the protein and ionic solutions, 

respectively. Test solution temperature measurements were reproducible with a standard deviation of ~ ±0.02° C and ~ 

±0.05 °C for the fixed point and water circulation, respectively, during the MRS measurements.  

 

 

Table 2: Temperature calibration results from the six solutions and the Vescovo et al study. Slope of calibration (α), y 
intercept (β), correlation value (R2), ∆(H20-NAA) at 37°C, and the change in apparent temperature from this study’s 

neuronal solution.    

 

 

There were strong linear correlations between the ∆(H20-NAA) of the six solutions and temperature with high correlation 
coefficients, R2>0.99, (Table 2).  The α, β and ∆(H20-NAA)  at 37°C were sensitive to the concentration of the solution.  

 

 

 

 

 

 

Ionic concentration solutions 

There were ∆(H20-NAA) differences between the three ionic concentration controlled solutions at constant temperature, as 
shown in Figure 3. There was good reproducibility of the measurements, as shown by the small standard deviations, and 
there is reasonable evidence of a linear trend of ∆(H20-NAA) with ionic concentration. Small standard deviation of the 



measurements and high R2 values were found for all three ionic solutions. Table 2 shows that there is a trend of decreasing 
∆(H20-NAA), α, β and apparent temperature with increasing ionic concentration, p=0.09. Figure 3 illustrates this result by the 
data points for the glial ionic concentration solution being shifted to the left along the x-axis compared with the ionic 
control. A plot of ∆(H20-NAA) versus ionic concentration for each temperature point shows this result clearly, Figure 4.  
Assuming the ionic concentration effect on the ∆(H20-NAA)  is linear, then the average slope across temperatures is ~ -
7.5x10-5ppm/mM, (~0.0075°C/mM).  

 

Figure 3: Temperature versus ∆(H20-NAA) plots of the ionic control, neuronal ionic concentration and glial ionic 
concentration solutions.  The trendline shown is based on the ionic control solution.  

 

 

 

Figure 4: Plots of ∆(H20-NAA)  versus ionic concentration at different set temperatures (26, 31, 36, 41°c). Trend-line linear 
analysis results are also shown.  

 

 

Protein concentration solutions 

The slope coefficients, ∆(H20-NAA) at 37°C and ∆T varied across the protein solutions (Table 2). A statistically significant 

trend of increasing chemical shift, increasing α, β and apparent temperature, with increased protein concentration was 

found, p<0.05. The results for the ionic control and three protein solutions are plotted in Figure 5, showing large 

differences between the calibrations. This is highlighted further in the ∆(H20-NAA) versus protein concentration plot (Figure 

6). There were no significant differences between the slopes of ∆(H20-NAA) versus protein concentration for the three 

different temperatures. The mean slope measuring the protein effect on the ∆(H20-NAA)  was found to be ~ 0.002 ppm/protein 

% ( ~-0.2°C/protein %).  

 

 

Figure 5: Temperature versus ∆(H20-NAA) plots of the ionic control, 5%, 10% and 15% protein concentration solutions.  The 
trendlines shown are based on the ionic control and the 15% protein concentration solutions. 

 

 

   

Figure 6: Plots of ∆(H20-NAA) versus protein content at different set temperatures (31, 36, 41°c). Trend-line linear analysis 
results are also shown. 



 

 

Comparison of 1.5T against 3T 

The results for the three ionic solutions and BSA 10% solution from this study (3T) were plotted with the results of the 

corresponding solutions from the Vescovo et al (1.5T) study, Figure 7. Another study, Corbett et al (4.7T), using BSA 

10%   to investigate protein concentration effects on the temperature calibration curve was also observed, but not included 

in the plot as the solution and analysis protocol were different to the other studies. The ionic control and glial ionic 

concentration mimics compared extremely well across the studies using different magnetic field strengths. The neuronal 

solution did not compare as well, however based on this study’s standard error there would be a large overlap between the 

results from each study. The temperature curve for the BSA 10% solution was different in this study compared with the 

Vescovo et al  (~1.5°C) and Corbett et al studies. (~3°C). There would not be a large overlap of these curves based on the 

standard error values measured in this study.   

 

 

Figure 7: Simulated temperature calibration curves based on set chemical shifts and calculated probe temperatures 
using calibration coefficents.  Ionic (a), glial (b), neuronal (c) and BSA 10% (d), from the results of the study here (BBB) 
and Vescovo et al (1.5T, labelled V) are shown.  

 

Discussion:  

The ∆(H2O – NAA) was measured for six different solutions to determine the effects of ionic concentration and protein-

mediated fast-exchange on the water PRF - temperature calibration curve at 3T. As expected, ∆(H20-NAA) strongly correlated 

with temperature with small residuals and reproducible results. The water PRF is affected by electron shielding, which is 

modulated by changes in temperature, since this increases or decreases the mean hydrogen bond length [23]. However, 

changes to the electron shielding, through factors other than temperature, would affect the temperature calibration curve, 

and hence reduce the accuracy of MRS thermometry if such affects are not accounted for. Evaluating the sensitivity of the 

calibration curve to non-temperature related factors is not only important for improving the accuracy and reliability of in 

vivo MRS thermometry, but may also allow novel characterisation of the tissue microenvironment. In this study, the 

sensitivity of the calibration curves to ionic and protein concentration was assessed in vitro (Table 2). These factors vary 

between tissue types and in disease processes, emphasising the importance of taking this into account when interpreting 

in-vivo MRS thermometry. Additional factors relevant to in-vivo measurements, such as tissue microstructure, 

heterogeneity anisotropy and orientation with the magnetic field are also likely to influence the water PRF – temperature 

calibration. Combinations of these factors may, at least in part, explain the variation in calibration coefficients obtained in 

this and previous in vivo and in vitro studies, as listed in Table 1; though lack of traceability to a defined temperature 

reference may also have contributed to the observed variation. However, the influence of these factors on the calibration 

curve, and whether this influence depends on magnetic field strength, have not been systematically investigated. The 



results of this study were compared to a previous study conducted with almost identical test solutions and temperature 

calibration apparatus at 1.5T. Therefore, this study contributes to the existing knowledge base by allowing an assessment 

of the effect of magnetic field strength on the calibration curves, as well as providing a detailed investigation of the 

dependence on the fast-exchange effect at multiple protein concentrations. 

 

Ionic effect 

Ionic concentration changes lengthen or shorten the mean hydrogen bond length through electrostatic effects [23, 24]. 

However, whether this effect is measurable by MRS thermometry has been questioned. There have been reports that the 

ionic concentration does [3, 13] and does not affect the temperature calibration curve, measured via MRS [12]. The results 

in this study show a trend for a decrease in α, β (Table 2) and ∆(H20-NAA) (Figure 3, 4) with increasing ionic concentration. 

A stronger correlation (p<0.01) was found by Vescovo et al, which may be due to a larger ionic concentration range (0-

400mM) measured and the additional solutions investigated (three in this study versus five in Vescovo et al), increasing 

the significance of the result.  Interestingly, the effect of ionic concentration found on the ∆(H20-NAA) at a fixed temperature 

by their study, with a slope of -9.0x10-5ppm/mM, is similar to the results of this study, with a slope of -7.5x10-5ppm/mM 

(Figure 4). Both results suggest the effect of a change in ionic concentration on the apparent temperature would be ~ -

0.008 °C/mM. A study using Na23 imaging reported ionic differences of ~ 8mM between basal ganglia and white matter, ~ 

38mM between healthy brain and astrocytoma brain tumours [25]. This would imply apparent temperature differences of 

approximately 0.06°C and 0.30°C for basal ganglia versus white matter and healthy versus tumour tissue respectively, 

based solely on ionic concentration differences if the same calibration were used. Therefore, the effect of ionic 

concentration variations on measurements of the apparent temperature is likely to be small for healthy brain, but may be 

considerable for apparent temperature measurements in tumours and other pathologies.  

Protein-mediated fast-exchange effect 

Solutions with varying protein content were used to investigate the effects of fast chemical exchange on the water PRF.  

It has been shown that increased protein content increases the ∆(H20-NAA), demonstrated in Figures 5 and 6. Assuming the 

protein effect is linear, the graphs show similar slopes at the set temperatures, 31°C, 36°C and 41°C. The α and β changes 

with protein content were found to be linear, (R2>0.99), which suggests the protein effect on the ∆(H20-NAA)  is 

approximately linear within the range of concentrations tested.  

 

A number of MRS thermometry studies have investigated the effect of protein concentration on the calibration curve [16], 

shown in Table 1.  The α and β values found in this study are comparable to the Vescovo et al results but not the Corbett 

et al results, which may be partly due to the high ionic concentration (150mM) in their protein solutions compared to the 

solutions reported here (ionic concentration of 0 mM) and differences in postprocessing methods. The ∆(H20-NAA) change, at 

a set temperature, with protein concentration was investigated for each experiment with the results from this study shown 

in Figure 6. The protein effect on the ∆(H20-NAA) independent of temperature was found to be approximately 0.002 



ppm/protein%, which compares well to that found by Vescovo et al of 0.0025 ppm/protein%, although Vescovo’s result 

was only based on two data points compared to four in this study.  Protein concentrations in healthy brain can vary by up 

to 5% [26]. According to the results of this and Vescovo’s study such a variation in protein concentration would 

correspond to a difference in the apparent temperature of approximately 1°C if the same calibration were used. However, 

fast exchange effects are not based solely on protein concentration as tissue microstructure, anisotropy and water content 

are also potentially important factors and should be considered for in-vivo measurements. Grey matter and white matter 

have similar protein content (∼ 1% difference) but have different water content [27], 70% versus 80%, potentially leading 

to ∆(H20-NAA) differences. MRS thermometry measures may also have to consider micro-magnetic susceptibility affects 

based on orientation with the field, which will vary with protein content and tissue structure [28]. Therefore, caution needs 

to be taken when assessing brain temperature measurements of differing tissues using MRS thermometry.    

 

Field Strength 

Although magnetic field strength does not directly affect the relative water PRF, there are possible indirect effects of the 

magnetic field strength on the temperature calibration curve related to the factors investigated in this work. These effects 

have been suspected to contribute to variations in the calibration coefficients reported in the literature by studies using a 

wide range of magnetic field strengths.  Effects of water moving through a static magnetic field [29], salt mobilization 

[30] and proton relaxation rate [31] all disrupt the hydrogen bonding and increase with field strength. Magnetic 

susceptibility effects also increase with magnetic field strength and may affect the relative water PRF through microscopic 

differences between the environments of the water and reference molecules [28].      

The temperature calibration curves for the ionic solutions showed  small differences between this study at 3T and that of 

Vescovo et al at 1.5T, although this does not rule out significant effects at higher field strengths or in more complex 

microenvironments. A MRSI based MR thermometry study investigating field strength effects, 1.5T versus 3T, also 

showed no magnetic field affects were observed on the temperature calibration curve using an ionic concentration solution 

of 56mM [32]. In contrast, the calibration curves with varying protein concentration presented here, did show different 

mean results compared with those of Vescovo et al at 1.5T, (see Figure 7 d). The BSA solution in Vescovo et al’s study 

contained a higher concentration of phosphate buffer, which may have influenced the comparison. However, in their 

work, no significant differences were found between two ionic solutions with differing phosphate buffer concentrations 

(20mM versus 10mM), which suggests that this cannot account for the differences in the protein calibration curves found 

at 3T, compared with 1.5T .  In Corbett et al’s study at 4.7T, the solution contained ionic salts (150mM KCl), which based 

on our glial cell results, could actually explain an increase in apparent temperature of ~1.5°C, at a given specific value of 

∆(H20-NAA). However, the combination of ionic and protein concentration effects on the temperature calibration curve has 

yet to be investigated and therefore may not yield a linear response, investigating this is future work.  Therefore, taking 

these differences into account, a magnetic field increase across studies from 1.5T to 3T and 4.7T seems to reduce the 

∆(H20-NAA) at a given temperature. This implies that magnetic susceptibility effects may be a contributing factor to the 

observation [28]. Measurements were taken using different scanners with slightly different parameters, likely differences 



in field homogeneity and small differences in  post-processing methods (first order phase correction, residual baseline 

treatment, etc), potentially resulting in a systematic bias that may have contributed to some of the differences observed 

between the studies. However, this is a plausible finding, which should be taken into account, when comparing 

temperature measurements at different field strengths using MRS thermometry.  

 

   

Conclusion 

MRS thermometry calibration curves were dependent on protein content and sensitive to ionic strength when measured on 

a 3T scanner. This is an important finding in the light of known protein and tissue structure differences in healthy and 

diseased human brain, with specific implications for the assessment of MRS temperature measures in different brain 

tumour types. The comparison between MRS temperature calibrations at 3T and 1.5T, using consistent experimental 

apparatus, showed that the effect of protein concentration may vary with magnetic field strength, while the ionic effect 

may not. These findings warrant further investigation into the dependence of protein contents and microstructure on MRS 

temperature calibrations in more tissue-like materials. The ∆(H20-NAA) value is not only a probe for temperature measures 

but a measure of tissue microenvironment as well.     
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 Τ = α∆+β 
Calibration Βο (Τ) α β R2 ∆ at 37°C 

Pig brain in vivo (Weis et al. [4]) 1.5 -82.70 (7.49) 258.67(20.17) 0.797 2.6804 
Rat brain in vivo (Zhu et al. [13]) 11.7 -103.8(1.9) 313.7(5.1) 0.990 2.6657 
Rabbit brain in vivo (Kuroda et al. [14]) 3 -103 310.4 0.932 2.6544 
Dog brain in vivo (Corbett et al. [2]) 1.5 -82.33(6.58) 255.94(1.30) 0.710 2.6593 
Piglet brain in vivo (Cady et al. [10]) 7 -94.0(3.7) 286.9(10.1)  2.6585 
Piglet brain in vivo (Cady et al. [15]) 3 -92.2  282 0.97  
Water, NAA (20mM), Ion and buffer 
concentrations not given (Kuroda et al. [14]) 

3 -103 313 1.00 2.6796 

Water, NAA (10mM), Ion and buffer 
concentrations not given. Ph=7.1. (Cady et al. 
[10]) 

7 -97.6(0.6) 293.1 (1.6)  2.6240 

Water, NAA (20mM), KCl (150mM), MgCl2 
(1.5mM), 6.6 or 9.9mM lactate, pH 7.1 (Corbett 
et al. [16]) 

4.7 -97.26(0.59) 293.28(0.37) 0.998 2.6350 

As above but BSA 8% (Corbett et al. [16]) 4.7 -97.82(0.57) 295.24(0.34) 0.999 2.6400 
As above but BSA 10% (Corbett et al. [16]) 4.7 -98.38(0.53) 296.42(0.30) 0.999 2.6369 
Water, NAA(50mM), pH buffer TSPS(3mM, pH 
7.2), K2HPO4 (72mM), KH2PO4 (28mM), sodium 
for-mate (NaFor HCOONa, 200mM), NaN3 (1 
g/L)    (Covaciu et al [17]) 

1.5 -97.13 (0.73) 296.07 (2.06) 0.999 2.667 

Ionic control: Water, NAA (25mM), phosphate 
buffer (20mM, pH ~7) (Vescovo et al. [12]) 

1.5 -99.7(0.8) 301.60(2.2) 0.999 2.6540 

Neuronal cell: Water, NAA (25mM), KCl 
(83mM), NaCl (26mM), phosphate buffer 
(10mM, pH ~7) (Vescovo et al. [12]) 

1.5 -100.85(1.50) 303.56(4.0) 0.999 2.6431 

Glial cell: Water, NAA (25mM), KCl (136mM), 
NaCl (20mM), phosphate buffer (10mM, pH ~7) 
(Vescovo et al. [12]) 

1.5 -100.60(0.5) 302.30(1.3) 0.999 2.6372 

BSA 10%: Water, NAA (25mM), phosphate 
buffer (20mM, pH ~7) (Vescovo et al.[12]) 

1.5 -105.81 320.25  2.6770 

 

Table 1: Literature review of temperature calibrations using NAA as a water chemical shift reference. Magnetic field 
strength (Bo), slope of calibration (α), y intercept (β), correlation value (R2) and ∆(H2O-NAA) chemical shift at 37°C are 

shown.  Where available, variation based on the error in the fit are shown in the parentheses. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Temperature calibration results from the six solutions and the Vescovo et al. study. Slope of calibration (α), y 
intercept (β), correlation value (R2), ∆(H20-NAA) chemical shift at 37°C, and the change in apparent temperature from this 

study’s  neuronal solution.   Variation based on the error of the fit are shown in the parentheses.  

  

 
Τ = α∆(H20-NAA) +β 

  
Phantom solution α β R2 

∆(H20-NAA)  ppm 
at 37°C ∆ Tneuronal 

Ionic control 
(water, NAA 25mM, 

phosphate buffer 10mM) 
-106.20 (2.33) 318.65 (3.81) 0.992 2.652 (0.006) -0.30 (0.64) 

Neuronal cell ionic 
concentration 

(KCL83mM, NaCl 26mM, NAA 
25mM, phosphate buffer 10mM) 

-105.41 (2.15) 316.26 (3.53) 0.993 2.649 (0.006) 0.00 (0.64) 

Glial cell ionic concentration 
(KCL 136mM, NaCl 20mM, NAA 
25mM, phosphate buffer 10mM) 

-101.72 (1.59) 305.16 (2.61) 0.997 2.636 (0.004) 0.90 (0.41) 

Protein 5% 
(water, NAA 25mM, 

phosphate buffer 10mM, BSA 5% 
W/V) 

-94.65 (1.40) 289.13 (2.31) 0.999 2.664 (0.003) -1.37 (0.30) 

Protein 10% 
(As above, BSA 10% W/V) -104.13 (1.54) 314.57 (2.55) 0.998 2.666 (0.004) -1.70 (0.37) 

Protein 15% 
(As above, BSA 15% W/V) -113.20 (1.56) 340.82 (2.57) 0.999 2.684 (0.003) -3.92 (0.35) 

Vescovo – ionic control 
(water, NAA 25mM, 

phosphate buffer 20mM) 
-99.70(0.80) 301.60(2.2) 0.999 2.654 (0.003) -0.50 (0.26) 

Vescovo - Neuronal cell 
(KCL83mM, NaCl 26mM, NAA 
25mM, phosphate buffer 10mM -100.85(1.50) 303.56(4.0) 0.999 2.643 (0.003) 0.65 (0.27) 

Vescovo- Glial cell 
KCL 136mM, NaCl 20mM, NAA 
25mM, phosphate buffer 10mM -100.60(0.50) 302.30(1.30) 0.999 2.637 (0.003) 1.27 (0.27) 

Vescovo - BSA 10% 
(25mM NAA, 

20mM phosphate buffer) 
-105.81 320.25  2.677 -2.92  



Figure 1: Spherical glass phantom used for controlled temperature circulation and realising the freezing point of the 

organic fixed point compounds, the positions of the optical fibre probe, organic compound and sample (e.g. NAA 

solution) are shown. 

Figure 2: Example of a HLSVD water suppressed single voxel spectrum acquired from the ionic control solution using the 

diphenyl ether phantom (26.3°C ). 

Figure 3: Temperature versus ∆(H20-NAA)  plots of the ionic control, neuronal ionic concentration and glial ionic 
concentration solutions.  The trendline shown is based on the ionic control solution.  

Figure 4: Plots of ∆(H20-NAA)  versus ionic concentration at different set temperatures (26, 31, 36, 41°c). Trend-line linear 
analysis results are also shown.  

Figure 5: Temperature versus ∆(H20-NAA) plots of the ionic control, 5%, 10% and 15% protein concentration solutions.  The 
trendlines shown are based on the ionic control and the 15% protein concentration solutions. 

Figure 6: Plots of∆(H20-NAA)  versus protein content at different set temperatures (31, 36, 41°c). Trend-line linear analysis 
results are also shown. 

Figure 7: Simulated temperature calibration curves based on set chemical shifts and calculated probe temperatures 
using calibration coefficients.  Ionic (a), glial (b), neuronal (c) and BSA 10% (d), from the results of the study here (BBB) 
and Vescovo et al (1.5T, labelled V) are shown.  
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