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ABSTRACT
We present a new and up-to-date analysis of the solar low-degree p-mode parameter shifts
from the Birmingham Solar-Oscillations Network over the past 22 years, up to the end of
2014. We aim to demonstrate that they are not dominated by changes in the asymmetry of
the resonant peak profiles of the modes and that the previously published results on the solar-
cycle variations of mode parameters are reliable. We compare the results obtained using a
conventional maximum-likelihood estimation algorithm and a new one based on the Markov
Chain Monte Carlo (MCMC) technique, both taking into account mode asymmetry. We assess
the reliability of the solar-cycle trends seen in the data by applying the same analysis to
artificially generated spectra. We find that the two methods are in good agreement. Both
methods accurately reproduce the input frequency shifts in the artificial data and underestimate
the amplitude and width changes by a small amount, around 10 per cent. We confirm earlier
findings that the frequency and line width are positively correlated, and the mode amplitude
anticorrelated, with the level of solar activity, with the energy supplied to the modes remaining
essentially unchanged. For the mode asymmetry the correlation with activity is marginal,
but the MCMC algorithm gives more robust results than the MLE (Maximum-Likelihood
Estimate). The magnitude of the parameter shifts is consistent with earlier work. There is no
evidence that the frequency changes we see arise from changes in the asymmetry, which would
need to be much larger than those observed in order to give the observed frequency shift.

Key words: Sun: helioseismology – Sun: oscillations.

1 IN T RO D U C T I O N

The variation of solar acoustic mode (p-mode) parameters with
solar activity is one of the best-known results in helioseismology,
and has been studied at a wide range of spatial and temporal scales
over the last few decades. In the light of recent developments in
mode parameter estimation techniques it seems timely to revisit
these findings. In this work we re-analyse the Sun-as-a-star data
from the Birmingham Solar-Oscillations Network (BiSON) over
the last two solar cycles and verify our ability to detect subtle
variations using two different algorithms, one that uses conventional
maximum-likelihood estimation and a new one based on Bayesian
principles

1.1 Historical background

1.1.1 Frequency variation

Small changes in the frequencies of the low-degree modes, posi-
tively correlated with proxies for the solar activity such as sunspot

�E-mail: rhowe@nso.edu

number and 10.7-cm radio flux (RF), were reported for example
by Woodard & Noyes (1985) using data from the Active Cavity
Radiation Monitor (ACRIM), and later confirmed in ground-based
observations by Pallé, Regulo & Roca Cortes (1989) and Elsworth
et al. (1990), while Libbrecht & Woodard (1990) first reported
solar-cycle changes in the frequencies of medium-degree modes
from resolved-Sun observations at the Big Bear Solar Observatory.
Libbrecht & Woodard (1990) also pointed out that the variation in-
creased with frequency, following the inverse of the so-called ‘mode
inertia.’ This indicates that the mechanism responsible for the shifts
is located close to the solar surface. The frequency dependence of
the variation is harder to detect in low-degree data due to the smaller
number of modes available, but within a few years it was reported
by Elsworth et al. (1994).

In resolved-Sun data the frequency shifts follow the activity vari-
ation in location as well as in time (e.g. Howe, Komm & Hill 2002,
and references therein); modes of the same radial order n and de-
gree l but different azimuthal order m have different distributions of
power with latitude and so are differently affected as the magnetic
activity belts move in latitude over the solar cycle. Even for low-
degree modes, Chaplin et al. (2004), Jiménez-Reyes et al. (2004),
Chaplin et al. (2007), and Salabert, Garcia & Turck-Chieze (2015)
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Solar cycle changes in low degree modes 4121

have reported marginally significant differences in the response of
the frequency to activity for modes of different degree, consistent
with the different latitudinal distribution of power for the different
spherical harmonics.

1.1.2 Power and width variations

Magnetic activity influences not only the frequency of the acoustic
modes but also their power and lifetime. Elsworth et al. (1993) re-
ported an anticorrelation between solar activity and the amplitude
of low-degree modes, with about a 30 per cent change between so-
lar minimum and solar maximum. The positive correlation between
mode width and activity took longer to establish, due to the dif-
ficulties introduced by systematic effects such as the broadening
of the modes when the duty cycle is low. However, Chaplin et al.
(2000), after a careful analysis of BiSON data, reported a change
of around 24 per cent in the line width and a similar decrease in
the mode power (amplitude squared) between solar minimum and
maximum. The combination of these two results suggested that the
solar-cycle change affects the mode damping rather than the ex-
citation, with the rate of energy supplied to the modes remaining
constant. Komm, Howe & Hill (2000a,b) found activity-correlated
changes in the mode width for medium-degree Global Oscillation
Network Group (GONG) data, which could also be localized to the
latitudes where magnetic activity is present. (Komm, Howe & Hill
2002). Again, the energy supply rate appears to remain constant.

Salabert et al. (2007) studied the line-width variation in 9.5 years
of BiSON data and found marginal evidence for a degree depen-
dence of the sensitivity, with the l = 0 shifts about half the size
of those for l ≥ 1, consistent with what would be expected from
the latitudinal distribution of the modes in relation to the latitudinal
migration of the activity belts during the solar cycle. They con-
cluded that previous estimates of Sun-as-a-star line-width changes
may have been overestimated by about 50 per cent because the shifts
were averaged over all the modes.

1.1.3 Asymmetry

As discussed below in Section 2, the mode peaks show a small
asymmetry due to the correlation of mode excitation with the noise
that drives it (Duvall et al. 1993). This term is negative for ve-
locity observations and generally positive for measurements made
in intensity; it is smallest where the modes are strongest and for
low-degree observations can reach a value of a few per cent at
the extremes of the p-mode band and a fraction of 1 per cent at
3 mHz. Jiménez-Reyes et al. (2007) reported a fractional change
of about 15 per cent between solar maximum and solar minimum
in the asymmetry of low-degree modes in data from BiSON and
the Global Oscillations at Low Frequencies (GOLF) instrument
on the Solar and Heliospheric Observatory (SOHO) spacecraft,
with the strongest (most negative) asymmetry at solar maximum.
As the uncertainty in the asymmetry depends strongly on the signal-
to-noise (S/N) ratio of the modes and also on the duty cycle, the
result was most clearly seen in the GOLF data and was described
as ‘marginally significant’ for BiSON.

1.2 Mechanisms

There is still some uncertainty about the precise mechanisms re-
sponsible for the parameter shifts. Attempts have been made to
model the frequency shifts by invoking the direct effects of magnetic

field at the tachocline (Roberts & Campbell 1986), the sunspot an-
choring zone around 50 Mm below the surface (Foullon & Roberts
2005), the photosphere (Bogdan & Zweibel 1985), or the chro-
mosphere (Campbell & Roberts 1989; Jain & Roberts 1994), but
none of these have predicted shifts of the observed magnitude. The
shifts have also been considered as an indirect effect of temperature
changes associated with the activity belts (Kuhn 1988) and as an
effect of a change in acoustic cavity size (Dziembowski & Goode
2005). None of these models is universally accepted. In any case, it
is possible to consider the frequency shifts as a solar-cycle proxy in
themselves, and one of the few that has some sensitivity to layers
below the photosphere.

1.3 Motivation

Two relatively recent developments have prompted us to revisit the
mode parameter variations over the last two decades of BiSON
observations.

First, although there is broad consensus on the size and sign
of the different solar-cycle effects on mode parameters, Korzennik
(2013) has reported results from a re-analysis of GONG, Michelson
Doppler Imager, and Helioseismic and Magnetic Imager medium-
degree data showing frequency changes smaller by about a factor
of 2 than have been seen in the standard analysis of these data sets.
The author attributes the discrepancy to the use of asymmetric peak
profiles in the fitting, and also reports variations in the peak width
and asymmetry, with the asymmetry changes possibly accounting
for the ‘missing’ frequency shifts. These results make it timely
to reinvestigate the frequency variations over the past two solar
cycles of BiSON observations and assess the validity of our mode-
parameter variations using fits that take into account the asymmetry
of the modes.

Secondly, there is growing evidence of, and interest in, temporal
variations in the mode frequency that cannot be described simply
as a linear function of the global activity level. These may take
the form of fluctuations superimposed on the linear trend with ac-
tivity proxy or of changes in the strength of the trend over time;
the two are not necessarily clearly distinguished, as the presence
of an additional short-term variation may reduce the strength of
the correlation with activity. Following the long, anomalous solar
minimum after Solar Cycle 23 and the relatively weak Cycle 24,
there has been particular interest in any changes in frequency shifts
that might indicate changes in the structure of the outer solar layers.
Basu et al. (2012) found that the shifts in Cycle 23 BiSON data
did not follow the trend with activity extrapolated from the Cycle
22 data, with the mismatch showing up first in the low-frequency
shifts and only later at higher frequencies. On the other hand,
Salabert et al. (2015), using GOLF data, reported a frequency in-
crease in Cycle 24, particularly for l = 1 modes, that was larger than
that expected from the increase in activity level when compared to
the results from Cycle 23. It seems that the interpretation of such
results is quite sensitive to which modes are averaged and what
period is taken as the reference.

There have also been reports of variations in the mode frequen-
cies on time-scales that do not correspond to the 11-yr solar cycle.
Howe et al. (2006) reported aperiodic fluctuations in individual
low-degree mode frequencies after the subtraction of the activity
effect, which were correlated between different instruments but
not with any activity index and not correlated between different
modes. These variations were attributed to stochastic fluctuations
in the solar spectrum. Fletcher et al. (2010), Broomhall et al. (2011),
and Simoniello et al. (2012, 2013) later reported a quasi-biennial
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variation in the mode frequencies, superimposed on the 11-yr varia-
tion, which they interpreted as evidence of a ‘second solar dynamo’
located in the near-surface layers. This variation appears to be corre-
lated with other activity proxies in high-activity periods but persists
during solar minima when the proxies are flat. Along similar lines,
Jain, Tripathy & Hill (2011) found that the GONG medium-degree
frequencies showed hints of a ‘double minimum’ between Solar
Cycles 23 and 24, with the frequencies first reaching their lowest
value ahead of the activity minimum; this may reflect a similar
phenomenon to that seen in the low-degree data.

All of these results make it timely to re-examine the parameter
variations and assess their reliability.

1.4 Arrangement

The arrangement of the paper is as follows: in Section 2 we discuss
the issues related to correlated and uncorrelated noise and peak
asymmetry and go on to describe the specifics of the data simulation.
In Section 3 we describe the algorithms used for extracting the mode
parameters. In Section 4 we describe the tests carried out on the
artificial data and discuss the results and their implications for the
analysis of BiSON data. In Section 5 we present the results from
fitting the BiSON data, and in Section 6 we discuss our conclusions.

2 G E N E R AT I O N O F A RT I F I C I A L DATA

In order to test for possible biases introduced into the mode pa-
rameters and their variations we have carried out a series of tests
on artificial data. The generation of the artificial data was based
on the solarFLAG simulator, which was used to make data for the
hare-and-hounds study on rotational frequency splittings discussed
by Chaplin et al. (2006) and also to test peak-bagging of Sun-as-a-
star helioseismic data in Jiménez-Reyes et al. (2007). The original
solarFLAG simulator did not include effects of correlated excita-
tion, or of correlations of the excitation with background noise. An
important consequence was that the artificial mode peaks in the
frequency power spectrum showed no asymmetry, unlike their real
solar counterparts. Since any analysis which seeks to extract accu-
rate estimates of the frequencies must cope with this asymmetry it
was felt we needed a simulator that could provide such a test. The
departure of the mode shape from the pure Lorenztian predicted by
a simple harmonic oscillator has three main causes. They are the
localization of the noise source, the impact of correlated noise on
mode excitation, and finally the more subtle effect of the presence
of the wings of nearby correlated modes. We have used a simple

but very powerful method to introduce in the time domain the ef-
fects of asymmetry, which is based on the framework proposed
by Toutain, Elsworth & Chaplin (2006). The influence of source
localization (Chaplin & Appourchaux 1999) does not need to be
explicitly considered as it produces a line shape that is the same
as from the correlated background. We include it implicitly by our
choice of correlation coefficient. Thus, there are just two factors in
our method that contribute to the asymmetry of the artificial mode
peaks. First, background noise is correlated with the excitation of
the modes, and second, overtones of the same angular degree and
azimuthal order have excitation functions that are correlated in time.
This correlated mode excitation is based on the description given
in Chaplin, Elsworth & Toutain (2008) and the method is described
in detail in the following sections. Further details, and analytical
descriptions of the examples in Section 2.1 below, may be found in
Chaplin et al. (2008).

2.1 Correlated noise and mode excitation

In Toutain et al. (2006) it was hypothesized that the excitation
function of a mode of angular degree l, azimuthal degree m, and
frequency ν, is the same as that component of the solar background
(granulation) noise that has the same spherical harmonic projection,
Ylm, in the corresponding range in frequency in the Fourier domain.
Let us start by considering the impact on the line shape of this
correlated background noise. We do this in the context of how the
solarFLAG simulator generates artificial data on single p modes.

The basis of the solarFLAG simulator is the method discussed
by Chaplin et al. (1997) for generating time series of individual
p modes. The method uses the Laplace transform solution of the
equation of a forced, damped harmonic oscillator to make the output
velocity of each artificial mode. Oscillators are re-excited at each
time sample – the chosen cadence is typically 40 or 60 s for Sun-
as-a-star data – with small ‘kicks’ from a time series of random
noise. This procedure mimics the stochastic excitation of the solar
p modes. For the moment we shall assume the random noise data
are drawn from a normal (i.e. white) distribution having zero mean.
We shall see later that in the final version of the simulator we used
‘granulation-like’ noise – to mimic the spectrum of solar granulation
– which has a spectrum that looks white only locally in the vicinity
of the oscillator resonance.

The left-hand panel in Fig. 1 shows, on a logarithmic scale, the
limit power spectral density of two scenarios, which illustrate the
impact of correlated noise. In both scenarios the power spectral den-
sity has contributions from a mode – of frequency ν = 2990 μHz,

Figure 1. Limit frequency power spectra for scenarios with one or two modes. Left-hand panel: a single mode, with background noise. The dashed red line
shows the spectrum for no correlation; the solid black line for when the mode is correlated with the background noise. Centre panel: two modes. The dashed
red line shows the limit spectrum when the excitation of the modes is uncorrelated; the solid black line when the excitation is correlated. Right-hand panel:
two modes, with background noise. The dashed red line shows the limit spectrum when there is no correlation of the excitation, or with the background noise;
the solid black line when the excitation is correlated, and there is correlation with the background noise.
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Solar cycle changes in low degree modes 4123

and line width � = 1 μHz – and from white background noise. The
thin dashed red line shows the result for a scenario where the exci-
tation of the mode is uncorrelated with the background noise. The
solarFLAG simulator would generate the data for this scenario by
using one time series of random noise to excite the mode; to the ve-
locity output of the mode would then be added another, completely
uncorrelated time series of appropriately scaled random noise, to
represent the background (here the height-to-background ratio is
100). Since there is no correlation, the limit frequency power spec-
trum is given simply by the incoherent addition of the limit spectrum
of the mode (a Lorentzian) and the limit spectrum of the noise (here,
a flat offset for white noise).

Now, what if we use the excitation time series as the background
noise? The excitation and the background will now be 100 per cent
correlated, and the power spectral density will have a peak that is
asymmetric. This situation, for a large (about 10 per cent) value of
the asymmetry, is shown with the thick black line in the left-hand
panel of Fig. 1. If only the effect of the background correlation
had been considered the peak asymmetry would have been positive
with an excess of power on the high-frequency side of the peak.
However, the asymmetry seen in low-l solar p modes observed
in Doppler velocity is negative and hence we show the effect of
negative correlation with excess power on the low-frequency side
of the resonance. The observed asymmetry is much lower than
illustrated here.

Next, we consider the impact of correlated mode excitation.
An important implication of the framework proposed by Toutain

et al. (2006) is that overtones with the same (l, m) should have
excitation functions that are correlated in time. (Note that the Ylm for
(l, m) and (l, −m) are orthogonal, and are therefore assumed to have
independent, i.e. uncorrelated, excitation.) To illustrate the impact
of this correlation, we look at the simplest possible scenarios, which
have just two modes in the frequency power spectrum. Consecutive
overtones of the low-l solar p modes are separated in frequency by
∼135 μHz. Here, we consider two modes separated in frequency by
20 μHz. This smaller frequency spacing exaggerates the impact of
the correlated excitation on the observed power spectral density, and
therefore allows us to show more clearly the effect of the correlation.
We again assume each mode has a line width of 1 μHz. The impact
of the actual ∼135 μHz spacing is considered in Section 2.2 below.

The thin dashed red line in the middle panel of Fig. 1 shows
the limit spectrum for two modes whose excitation is uncorrelated
in time. There is no background noise. The solarFLAG simulator
would generate the data for this scenario by using independent time
series of random noise to excite each oscillator. Now, what happens
if the simulator excites both oscillators with the same time series
of random noise? The excitation is now 100 per cent correlated in
time, and the power spectral density shows clearly that the peaks
are asymmetric (thick dark line). This asymmetry comes from the
interaction of the tails of the mode peaks. We draw an important
conclusion from this example: correlated excitation of modes will
give a contribution to the observed asymmetry that is dependent on
how the tails of the individual modes overlap. It turns out that this
effect is important even for quite well-separated modes.

In our final example, we consider both sources of asymmetry
together and we add background noise to each two-mode scenario
above. The thin dashed red line in the right-hand panel of Fig. 1
is for a scenario where the background noise and the mode exci-
tation are all uncorrelated. The thick dark line instead shows what
happens if we add correlated background noise to the two corre-
lated modes. This means the excitation and background noise are
all 100 per cent correlated, and we see that addition of the back-

ground further modifies the shape of the power spectral density,
relative to the correlated-mode example with no background noise.
As such, there are now two factors which contribute to the peak
asymmetry: there is a contribution from the correlated excitation
of individual modes (and also potentially from source localization),
and a contribution from the correlated background.

One other important point to note is that correlation of the exci-
tation in time does not imply correlation of the mode amplitudes in
time. This can be understood by considering the analogy of damped,
stochastically forced oscillators. Modes of different frequencies will
be ‘kicked’ by the common excitation at different phases in their
oscillation cycles, and provided the frequencies differ by more than
a few line widths (see Chaplin et al. 2008) – a condition easily met
by consecutive overtones of the low-l modes, which are separated
by ∼135 μHz – there will be significant differences in how the
amplitudes vary in time, due to the excitation.

2.2 The solarFLAG simulator

2.2.1 General overview

The solarFLAG data sets simulate full-disc ‘Sun-as-a-star’ Doppler
velocity observations of the Sun, such as those made by the BiSON
and GOLF. The solarFLAG data sets are made with a full cohort
of simulated low-l modes, covering the ranges 0 ≤ l ≤ 5. The
frequencies of the modes come from a standard solar model of the
user’s choice. A surface term is also added to these frequencies,
based on polynomial fits to the differences between the standard
model frequencies and frequencies from analysis of BiSON and
GOLF data. For data presented in this paper the frequencies came
from model BS05(OP) of Bahcall, Serenelli & Basu (2005).

A data base of p-mode power and line width and asymmetry
estimates, obtained from analyses of GOLF and BiSON data, was
used to guide the choice of the other mode input parameters. The
hypothetical solarFLAG instrument was assumed to make its obser-
vations from a location in, or close to, the ecliptic plane. This is the
perspective from which BiSON (ground-based network) and GOLF
view the Sun. The rotation axis of the star is then always nearly per-
pendicular to the line-of-sight direction, and only a subset of the
2l + 1 components of the non-radial modes are clearly visible:
those having even l + m. These components are represented ex-
plicitly in the solarFLAG time series. The visibility for given (l, m)
also depends, although to a lesser extent, on the spatial filter of
the instrument (e.g. Christensen-Dalsgaard 1989; Broomhall et al.
2009). Here, we adopted BiSON-like visibility ratios.

Fig. 2 shows a schematic representation of the solarFLAG simu-
lator, the details of which we discuss next.

Before the simulator can begin its calculations, all the input pa-
rameters must be specified. The p-mode input parameters are held
in a control file (with mode powers having been suitably scaled
to reflect the visibility filter of the Sun-as-a-star observations). The
other input parameters relate to the granulation-like noise, and other
background noise, and are specified at run time by command-line
inputs. Time series of granulation-like kicks are used to excite the
modes, and are also used to give correlated background noise. The
time-scale and standard deviation of this noise must be chosen. A
single constant, ρ, is also set and this fixes the coefficient of cor-
relation for the correlated excitation, and the correlation with the
background noise. This gives the user the flexibility to ‘tune’ the
asymmetry of the mode peaks (as well as other effects arising from
the correlations), since higher correlation gives larger peak asym-
metry. The input parameters of other sources of noise, such as the
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Figure 2. A schematic representation of the solarFLAG simulator.

standard deviation, σ psn, of the photon-shot noise, are also specified
at this point.

The main block of the solarFLAG simulator code generates out-
put time series for each (l, m). It makes the time series of all the

overtones, n, for that (l, m). The modes are excited by time series
of granulation-like noise. For each (l, m) there is a noise time series
that gets used again and again to excite the overtones: this is the
correlated gr. noise time series. When the user fixes the correlation
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Solar cycle changes in low degree modes 4125

at less than 100 per cent, a suitable fraction of uncorrelated gr.
noise (see schematic in Fig. 2) must be mixed in when the modes
are excited. These uncorrelated noise time series must be seeded
with completely independent random noise and made afresh for
each mode. After all overtones have been made, a suitably scaled
mixture of correlated and uncorrelated noise is added to the time se-
ries. This gives the cumulative time series for each (l, m). Execution
of the main code block is then repeated for a total of 14 different
(l, m) combinations.1

After time series for all the (l, m) have been made they are added
together. The final stage of processing adds in the simulated time
series of other uncorrelated noise sources. The schematic includes
a contribution from photon-shot noise. Other sources may also be
included at this point (e.g. active-region noise and instrumental
noise) but this was not done for the data used in this work.

A complete description of the different elements that make up
the complex frequency amplitude (and frequency power) spectrum
of a solarFLAG time series is presented in Appendix A.

We now turn to specifics on how the data are made, and how the
effects of correlations are quantified.

2.2.2 Achieving correlated excitation of overtones

As noted above, we use time series of granulation-like noise to
excite the overtones, n, of the same l and m. Later we will refer to
this as ‘correlated noise’. The granulation-like noise is made using
white-noise input to a low-order, autoregressive model of the AR[1]
type (e.g. see Koen 2005), i.e.

u(t) = u(t − �t) exp −�t/τ + δ(t). (1)

Here, u(t) is the output time series of granulation-like noise; τ is
the time constant of the model, which should be given a value
to mimic the lifetime of the solar granulation (see below); �t is
the cadence at which samples are generated by the autoregressive
process; and finally the δ(t) are random numbers drawn from a
normal distribution having zero mean and sample standard deviation√

σ 2�t/τ , where σ fixes the amplitude of the granulation-like
noise. The power spectral density, n(ν), of this granulation-like
noise follows the approximate but useful Harvey (1985) power-law
model i.e.

n(ν) = 4σ 2τ

1 + (2πντ )2
. (2)

The default option would be to excite all overtones of the same
(l, m) with the same time series u(t), meaning the excitation of the
overtones would be 100 per cent correlated (as in Section 2.1). As
indicated earlier, we decided to add to the solarFLAG simulator the
option to let the user choose a coefficient of correlation, ρ, common
to all modes. We describe in Section 2.2.2 below how the asymmetry
of a mode is fixed by the combination of ρ, the noise background,
and the input mode parameters.

Overtones of the same (l, m) are excited by a composite time
series of kicks, u(t), where

u(t) = |ρ|1/2uc(t) + (1 − |ρ|)1/2 uu(t). (3)

1 Data on modes cover the range 0 ≤ l ≤ 5; and there are l + 1 m-components
visible in the Sun-as-a-star data at each l. This actually sums to give 21
combinations of (l, m). However, components at l = 4 and 5 that do not have
l = ±m are so weak that they are not included in the time-series generation.
Discounting these modes reduces the number of combinations to 14.

In the above, the uc(t) and uu(t) are both time series of granulation-
like noise. However, the uc(t) are kicks that are common to all the
overtones (the correlated gr. noise time series shown in Fig. 2),
while the uu(t) are completely independent (shown as uncorrelated
gr. noise in Fig. 2).

So far in this section we have not said anything about tuning the
correlation with the background noise. Correlated background noise
is provided by the correlated part of the u(t). After all overtones of
the same (l, m) have been made, the u(t) is added to the time series
to give background noise (having first been appropriately scaled).
In the formulation presented by Chaplin et al. (2008), another coef-
ficient, α, was used to describe the correlation with the background
noise. Here, we assume this correlation has the same size as the
correlation between the excitation of different modes, so that we set
α = ρ. The a priori choice of ρ therefore also fixes the correlation
of the overtones with the background noise.

How do we juggle all the choices implied by the descriptions
above to give a time series where both the S/N in the modes and
the asymmetry of the modes are realistic? That is the question we
turn to next. We use two main factors to contribute to the peak
asymmetry: correlation of the modes with the background noise,
and correlated excitation of the overtones. We will now consider
each of these in turn as it relates to controlling the asymmetry of
the artificially generated modes.

2.2.3 Asymmetry due to correlated noise

The contribution to the asymmetry from correlations with the noise
background may be dealt with analytically in a fairly straightforward
manner. Let bnlm be the asymmetry, due to correlated noise, of the
nth overtone of a given (l, m). The frequency of this mode is νnlm.
The asymmetry (as it appears in the mode parametrization function
in equation 12) is given by (Toutain et al. 2006)

bnlm = ρ

√
nlm(νnlm)

Hnlm

, (4)

where Hnlm is the height of the mode peak in the frequency power
spectrum. Notice the presence of the factor ρ in equation (4): it
is needed because it is only the correlated part of nlm(νnlm) that
contributes to the asymmetry. nlm(νnlm) is the granulation-noise
background at the frequency of the resonance, which is just (cf.
equation 2)

nlm(νnlm) = 4σ 2
lmτ

1 + (2πνnlmτ )2
. (5)

We give σ lm in equation (5) an explicit dependence on the combi-
nation (l, m). This gives us the ability to choose different σ lm for
different (l, m), to take proper account of the different mode visibil-
ities. This plays a key part in tuning the asymmetry, as we now go
on to explain.

We have assumed that at a given frequency the relative sizes
of the granulation noise and the mode amplitudes on the Sun are
independent of degrees l and m. An important consequence of this
assumption is that the asymmetries from the correlated noise will
be the same for all (l, m). In the solarFLAG simulator, after making
overtones of a given (l, m), the time series of mode amplitudes is
multiplied by a visibility factor, S lm, to mimic the visibility filter
of the Sun-as-a-star observations. To preserve the independence of
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4126 R. Howe et al.

Figure 3. Impact of choice of ρ on mode peak asymmetry. The left-hand panel shows the asymmetry due to correlation with background noise (Section 2.2.3),
the centre panel the asymmetry due to correlated mode excitation (Section 2.2.4), and the right-hand panel the total asymmetry, due to the complex interaction
of the two contributions. All panels show results for σ = 0.2 m s−1 and τ = 260 s. Different line-styles show results for different ρ: dotted for ρ = −0.20;
solid for ρ = −0.36, and dashed for ρ = −1.00.

Figure 4. Impact of choice of τ on mode peak asymmetry. The left-hand panel shows the asymmetry due to correlation with background noise (Section 2.2.3),
the centre panel the asymmetry due to correlated mode excitation (Section 2.2.4), and the right-hand panel the total asymmetry, due to the complex interaction
of the two contributions. All panels show results for σ = 0.2 m s−1 and ρ = −0.36. Different line-styles show results for different τ : dotted for τ = 130 s;
solid for τ = 260 s, and dashed for τ = 520 s.

asymmetry on (l, m) we must therefore also modify the σ lm of the
granulation noise, according to

σlm = σ
Slm∑

all(l,m)

Slm

. (6)

Here, σ is the equivalent standard deviation of the cumulative gran-
ulation noise background, n(ν), so that

n(ν) = 4σ 2τ

1 + (2πντ )2
=

∑
all(l,m)

4σ 2
lmτ

1 + (2πντ )2
. (7)

We have now covered all the steps needed to see how the asymmetry
is tuned.

The p-mode parameters (i.e. frequencies, heights, line widths) are
fully specified on input. The asymmetry is then tuned by three free
parameters: the coefficient of correlation ρ; the equivalent standard
deviation of the cumulative granulation noise background, σ ; and
the time-scale of the granulation, τ . Once σ and τ have been chosen,
we use equation (6) to determine the σ lm for each combination of
(l, m). This in turn determines the asymmetry, due to the correlated
noise, according to equations (4) and (5).

The left-hand panel of Fig. 3 shows resulting asymmetries given
by the parameters σ = 0.2 m s−1 and τ = 260 s. The dotted line
shows results for ρ = −0.20, the solid line for ρ = −0.36, and
the dashed line for ρ = −1.00. Here, we used negative ρ to give
the negative asymmetries observed in Doppler velocity data. The
magnitude of the asymmetry increases in direct proportion as the
magnitude of ρ is increased (this follows trivially from inspection
of equation 4). When ρ = −0.36 we get asymmetries that resemble
quite closely those seen in the real observations. The asymmetries

are largest at low and high frequency, because the ratio of the granu-
lation background to mode amplitude is highest there. Very similar
looking plots are given by varying σ ; inspection of equations (4) and
(5) indicates that the magnitude of the asymmetry is proportional
to σ .

The left-hand panel of Fig. 4 shows instead the effect of varying
τ (for fixed σ = 0.2 m s−1 and ρ = −0.36). The dotted line shows
results for τ = 130 s, the solid line for τ = 260 s, and the dashed
line for τ = 520 s. Changes in τ clearly have a less pronounced
effect on the asymmetries than do similar relative changes in ρ.

2.2.4 Asymmetry due to correlated excitation

The contribution to the asymmetry overtones of the same (l, m)
from the overlapping wings of the overtones of the same (l, m) that
have been excited with correlated noise is fixed by the frequency
separations, line widths and relative heights of those overtones, and
the choice of ρ. We later refer to this as ‘correlated excitation.’
This contribution is far less amenable to a neat analytical descrip-
tion than the correlated noise contribution described above. For a
given overtone it must describe, in the complex plane, the contri-
bution of power from all other overtones to which it is correlated.
A full description of the complex frequency amplitude spectrum,
and frequency power spectrum, is given in Appendix A. We may
use the analytical descriptions there to calculate numerically the
asymmetries given to the mode peaks by the correlated excitation.
The resulting estimates are shown in the central panels of Figs 3 and
4. Note that the correlated excitation contribution does not depend
on the sign of ρ (only the magnitude), and is independent of the
choice of τ (and σ ).
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Solar cycle changes in low degree modes 4127

At lower frequencies the asymmetry given to modes by the cor-
related excitation is negative. Here, there are a larger number of
other overtones at frequencies above a mode than there are below
it. The reverse is true at higher frequencies, where the asymmetry
is positive. To understand the sign of the asymmetry in each region,
we refer back to the central panel of Fig. 1. There, we had two cor-
related modes. The lower-frequency mode had negative asymmetry,
due to the correlated impact of its higher-frequency counterpart; the
higher-frequency mode showed asymmetry of opposite sign, due
to the lower-frequency mode. We see this pattern repeated in the
full spectrum of overtones with the crossover in behaviour located
where p-mode power is a maximum.

The right-hand panels of Figs 3 and 4 show the full asymmetry
given to the modes. It is worth pointing out that this is not simply
the sum of the asymmetries given by correlated noise (left-hand
panels) and correlated excitation (central panels). Matters are a
bit more complicated, because the correlated noise and correlated
excitation act together in a non-trivial manner in the complex plane.

One final thing to mention with regard to the asymmetries is that
there is actually a third contribution, which comes from the fact
that the frequency response of the granulation-like noise used to
excite modes is not white (i.e. flat). The response in the vicinity of
each resonance of course rises with decreasing frequency, meaning
there will be a small negative asymmetry contribution. The effect
is, however, negligible. (The impact of the non-white response of
the excitation is modelled in Appendix A.)

We have seen that the input frequencies, powers and line widths
of overtones, and the correlation coefficient ρ, fix the asymmetry
contribution from the correlated excitation. When in addition the
σ and τ of the granulation-like noise are chosen the asymmetry
contribution from the correlated noise is also completely specified.
Once any additional uncorrelated background has been specified,
these choices in principle also fix the observed S/N ratio of the
mode peaks. For the data analysed below, we chose τ = 260 s – the
characteristic solar time-scale – and ρ = 0.36, chosen to give a good
match to the asymmetry measured in previous work. These values
correspond to the solid curves in Figs 3 and 4. We also chose σ =
0.2 m s−1 for correlated and σ = 0.25 m s−1 for uncorrelated noise.
We now go on to describe the S/N, in terms of the commonly used
background-to-height ratio, β.

2.2.5 Background-to-height ratio in mode peaks

The intrinsic background-to-height ratio, βnlm, in a mode peak is
given by

βnlm = N (νnlm)

Hnlm

, (8)

where N(νnlm) is the total background at the resonance. It has a
part due to the cumulative granulation background of all (l, m) that
appear in the time series. There will also be parts due to other
sources of uncorrelated noise. In what follows we specify just one
of the possible components: photon-shot noise, Npsn. This shot noise
is specified by its variance, σ 2

psn. The power spectral density due to
this noise term is then

Npsn = 2σ 2
psn � t. (9)

The total background may therefore be written as

N (νnlm) = Npsn +
∑

all(l,m)

nlm(νnlm), (10)

or explicitly

N (νnlm) = 2σ 2
psn � t + 4σ 2τ

1 + (2πνnlmτ )2
. (11)

The above implies that the intrinsic background-to-height ratio
is in principle specified by the choice of four parameters (when
no instrumental or other sources of noise are specified): the
height of the mode, Hnlm; the σ and τ of the granulation-like
noise background; and the σ psn of the uncorrelated shot-noise
background.

2.2.6 Solar-cycle effects

It is a fairly straightforward matter to include solar-cycle-like varia-
tions in the artificial time-series data. Changes in frequency may be
introduced by varying in time the natural frequency of the damped,
driven oscillator used to simulate each mode component; whilst
changes in amplitude and damping may be introduced by varying
in time the damping constant for the oscillator. In all cases we re-
quire changes that mimic those seen in the real data. We base these
changes on an artificial proxy of the real 10.7-cm RF variations
observed over solar activity cycle 23. Variations in the frequencies
and damping rates are programmed to follow the artificial proxy,
with appropriate calibration constants used to fix the absolute scale
of the variation for each parameter.

Here, we used a high-order polynomial fit to the 10.7-cm RF
versus time – for the 11 yr period beginning 1997 February 3 – to
provide the proxy activity, which we refer to as X in later sections of
the paper. The purpose of the fit was to provide a smooth proxy that
captures the main 11 yr cycle while removing shorter-term varia-
tions. Calibration constants for the frequencies and damping rates of
every simulated mode were based on results from previous analyses
of real BiSON data. The calibration constants for the frequencies
depend not only on frequency – the higher the frequency, the larger
is the solar-cycle frequency shift – but also the angular degree, l, and
the azimuthal order, m, of each simulated component (e.g. Chaplin
et al. 2004). The dependence on (l, m) is due to the strong latitu-
dinal dependence of the real near-surface activity, which drives the
changes in the mode parameters.

As noted earlier, due to the relatively large uncertainties in the
measurements little information is available on the frequency and
(l, m) dependence of detected solar-cycle changes in the mode am-
plitudes and damping rates for low-degree modes, but we know
from medium- and high-degree studies (e.g. Komm et al. 2000a;
Howe et al. 2004) that the changes are strongest in the middle of
the five-minute band. However, the relative sizes of the variations
are consistent with the hypothesis that both are the result of net
changes to the damping only (e.g. Chaplin et al. 2000). Here, we
have introduced solar-cycle variations that adhere to this finding,
so that in our simulations we change only the damping constant.
Further information on the introduced variations is included later in
Section 4.

Finally, we note that variations in amplitude lead to solar-cycle-
like changes in the mode peak asymmetries of our artificial data.
This is because the height-to-background ratios of the mode peaks
changes with the artificial proxy, due to variations in the intrinsic
amplitudes (the simulated granulation and shot-noise components
were stationary in time). Again, information on the programmed
variations is in Section 4.

MNRAS 454, 4120–4141 (2015)

 at U
niversity of B

irm
ingham

 on January 22, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


4128 R. Howe et al.

3 FI T T I N G M E T H O D S

Part of the object of the current work is to compare the results from
two different fitting algorithms. Both of these are conventional in
the sense that they use the ‘pairwise’ fitting approach in which each
l = 0/2 and 1/3 pair of peaks is fitted independently with its own
background and parameter set.

The two methods we use are labelled as MLE (Maximum-
Likelihood Estimate) and MCMC (Markov Chain Monte Carlo)
but are not solely described by the method of optimization. There
are differences in the power spectrum model that we detail below.

3.1 Mode parametrization

Common to both fitting methods, each mode component of degree
l, radial order n and azimuthal order m is represented by a peak
profile described by the equation

P (ξ ) =
(

h

1 + ξ 2

)
× [(1 + bξ )2], (12)

where

ξ = 2(ν − ν0)/�, (13)

ν0 is the frequency of the Lorentzian component, � its width, h its
height, and b a fractional parameter characterizing the asymmetry.
This expression simplifies to the normal Lorentzian for b = 0. This
is the profile of Nigam & Kosovichev (1998), with the quadratic
term in b suppressed for greater stability (Fletcher et al. 2009). For
this work, we have chosen to parametrize the peak in terms of the
amplitude, A, where

h = A2/(π�). (14)

Neglecting the small asymmetry term, A2 ≡ π�h is proportional to
the integrated energy of the mode (see, for example, Komm et al.
2000b, but note that their A is our h), and the energy supply rate
dE/dt is given by

dE/dt ∝ A2� ∝ �2 h. (15)

The likelihood spaces (or the posterior probability distributions)
are lognormal for the mode width and mode amplitude parameters,
so we follow the common practice of varying the logarithms of the
amplitude and width parameters rather than their raw values.

The background term is a constant for each l = 0/2 or 1/3 pair,
and in both algorithms the asymmetry term α is also common to all
of the peaks in each pair. In the code used for the MLE algorithm
there is a separate � for each n and l, while the MCMC code uses
the same � for every peak within an l = 0/2 or 1/3 group. There
is a separate amplitude parameter for each n and l, but the relative
heights of the rotationally split components of different m within
an n, l group are fixed in the MLE code at 1:0.41 for the m = 2:
m = 0 component ratio for l = 2 and 1: 0.19 for the m = 3: m =
1 ratio for l = 3. In the MCMC code they are allowed to vary; the
priors are set at a normal distribution of width 0.2 centred on 0.4
for the l = 2, m = 0: l = 2, m = 2 ratio and the l = 3, m = 1: l = 3,
m = 3 ratio while for the l = 3, m = 1: l = 3, m = 3 ratio we use a
flat-topped Gaussian centred on 0.2 that is flat between 0.1 and 0.3
and has Gaussian sides that drop off with width 0.1. As we will see,
the differences have no obvious impact on the final results.

The rotational splitting parameter was fixed at 0.4 μHz for the
MLE algorithm, while for the MCMC it was left as a free parameter
with a Gaussian prior with centre 0.4 and width 0.05 μHz.

3.2 Optimization

The Fourier power spectrum has the statistics of χ2 with two de-
grees of freedom rather than Gaussian statistics. The quantity to be
minimized is the negative log of the likelihood function (Anderson,
Duvall & Jefferies 1990),

S ≡ − ln L =
∑

i

{
ln Mi + Oi

Mi

}
, (16)

where M is the model, O is the observed spectrum, and the sum is
over the data points (frequency bins) in the fitting window.

In the MLE approach we simply find the values of the model
parameters that give the minimum value of S and estimate the errors
by inverting the Hessian matrix. For MCMC, on the other hand, we
take the standard deviation of the posterior distribution for each
parameter.

The MLE code used here was a slightly modified version of the
one developed for use with BiSON data and described by Chaplin
et al. (1999). The MCMC code is a vanilla Markov Chain Monte
Carlo approach (see Gelman et al. 2003; Davies et al. 2014a, for
more details).

3.3 Treatment of window function

It is a well-known problem in ground-based helioseismology that
the Earth’s rotation causes the observations to be interrupted with a
24 hr periodicity, which gives rise to ‘sidelobe’ peaks at multiples
of 11.57 μHz from each mode. At low degrees, where l = 0/2 and
1/3 pairs are separated in frequency by a similar amount, this is
particularly problematic. The effect is greatly reduced by the use
of multisite observations but cannot be entirely eliminated, and it
must therefore be taken into account in the data analysis.

As is conventional, we describe the modulation of the time se-
ries by a ‘window function’ – a time series corresponding to the
observations in which each time sample is represented by a 1 for
an observation and a 0 for missing data. The observed spectrum
can be considered as the convolution of the power spectrum of this
window function with that of the uninterrupted observations.

In the MLE code used here, the sidelobe peaks are represented in
the fitting model by peaks of the same width and asymmetry as each
main peak, at ±11.57 μHz from its central frequency. The initial
guess for the relative amplitude of this sidelobe peak was estimated
from a spectrum in which a single sine wave was convolved with
the window function of the time series. For modes in the main five-
minute band (between 2.0 and 3.5 mHz) this relative height was
then allowed to vary in the first pass of fitting and held fixed for
modes outside this frequency range. The mean value of the fitted
sidelobe after the first pass was then used as the fixed value for all
modes in the final pass. This allowed a larger number of successful
fits to be recovered than if the sidelobe height had been left as a free
parameter throughout.

The MCMC algorithm uses a different, more accurate but more
computationally expensive approach in which the model spectrum is
convolved with the window function spectrum at each optimization
step. This method can also account for the broadening of the peak
as the duty cycle of the observations is decreased; however, neither
this approach nor the one used with the MLE algorithm take into
account the correlations between frequency bins introduced by the
missing data. Note that the treatment of the sidelobes is related to
the specifics of the codes used here and is not intrinsic to the MLE
or MCMC approach; in principle it would be possible to perform
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Solar cycle changes in low degree modes 4129

MLE with the convolution, as was indeed done for example by
Jiménez-Reyes et al. (2007) and Fletcher et al. (2009).

4 A RTIFICIAL DATA TESTS

The object of the tests described here is to check that the MLE
and MCMC algorithms give consistent and reliable results for the
variation of the different mode parameters with the activity index.

The 11-yr time series generated as described in Section 2 above
was divided into contiguous 365 d segments and each segment
was fitted using both the MLE and MCMC algorithms. The series
were fitted both with 100 per cent duty cycle and with a ‘realistic’
duty cycle based on that of the BiSON time series for the 11 years
starting with the notional start date of the artificial series, 1997
February 3. For each mode we then take an error-weighted mean
over all the data sets and subtract this from the values to obtain the
shifts, finally using a linear least-squares fit to the activity index to
derive the sensitivity for each mode for comparison with the input
values.

For the MLE method only, three additional, more extensive tests
were carried out. In one test, 25 additional realizations of the 11-yr
artificial data series were fitted in 1 yr segments, while in another
each 1 yr segment of a single realization of the artificial data was
fitted with the duty cycle corresponding to each of the 21 one-
year BiSON time series. The term ‘realization’ here refers to a
realization of the noise exciting the simulated modes. The extra
fits make it easier to distinguish the systematic errors from the
random noise; by using 25 realizations we reduce the random er-
rors by a factor of 5, which is sufficient to clarify the trends. In
the real observations we have 22 years of data, so the random er-
rors on the mean parameters and sensitivities are a factor of

√
2

smaller than for a single realization of the simulated data, or ap-
proximately three times larger than for 25 realizations. Finally, to
help rule out the possibility that the frequency shifts are caused
by asymmetry changes, we prepared another set of artificial data
realizations where the input amplitude and width changes – and
hence the asymmetry changes – were as before but the input fre-
quency change was set to zero. We note that to generate frequency
shifts as large as those observed, the asymmetry shift would need
to be extremely and unrealistically large, as discussed below in
Section 4.2.

4.1 Results

4.1.1 Frequencies

Figs 5(a)–(d) show the input and fitted values of dνnl/dX, the fre-
quency shift per unit of the activity index X for each fitting method.
Note that the differential notation we use throughout is a convenient
shorthand for the regression slope. In the case of the artificial data
the linear relationship between activity and mode parameters is de-
signed to be exact; the real data may exhibit small deviations from
this but it is still a useful measure of the sensitivity to first order.
Except for a few modes at the higher end of the frequency range,
the results from both of the algorithms agree within errors with the
input values; the mean ratio between the fitted and input dνnl/dX
for 0 ≤ l ≤ 2 and 2000 μHz ≤ νnl ≤ 3500 μHz is consistent with
unity in each of the four cases.

Panels (e) and (f) of Fig. 5 illustrate the sensitivity of the fre-
quency to activity for the tests with 25 realizations of the artificial
data, with panel (f) showing the results for the test with no input
frequency variation. Apart from a few modes at frequencies above

3.7 mHz where the S/N ratio is low, we see no frequency change in
the data set where none was explicitly introduced. Fig. 5(g) shows
the sensitivity of the frequency to the duty cycle. These results were
obtained by performing for each mode a multiple linear regression
in which the independent variables were the activity index X and the
duty cycle F and the dependent variable was the mode frequency.
The results in Fig. 5(e) clearly show the slightly lower dν/dX for
the l = 0 modes – a difference that is lost in the noise for the
single-realization test.

In another test of the MLE fitting we applied each of the 21 one-
year window functions from the BiSON network for 1993–2013 to
each of the 11 years of the solarFLAG time series. These results
were used to check for any bias in the sensitivity of the frequency to
activity level due to the different window function, as follows. The
results were divided into 21 sets in which the 11 one-year spectra
all had the same duty cycle but different activity indices. For each
set a regression was performed for each mode, with the frequency
shift as the dependent and the activity index as the independent
variable, to obtain a set of slopes dνnl/dX for each value of F.
Finally, a regression was performed for each mode with the duty
cycle F as the independent variable and the dν/dX value as the
dependent one. The results are shown in Fig. 5(h). The sensitivity
of the frequencies to activity index shows no systematic bias due to
the window function.

4.1.2 Amplitudes

For mode amplitude A (defined as in equation 14 above) and width
� we work with the natural logarithm of the parameter; a shift in
the logarithmic parameter is equivalent to a fractional shift in the
raw parameter.

Figs 6(a)–(d) show the sensitivity, d log Anl/dX, of the natural
logarithm of the amplitude parameter Anl to activity index, obtained
using the two methods for artificial data with 100 per cent and re-
alistic duty cycles, compared with the input values. The individual
d log Anl/dX for the two methods are well correlated, with corre-
lation coefficients of 0.77 for the 100 per cent duty cycle and 0.70
for the realistic one over the 47 modes common to both sets; the
threshold for 0.1 per cent probability of the same result arising for
two unrelated populations of 47 samples is 0.47.

The mean ratios between fitted and input dAnl/dX values are
0.84 ± 0.08 for MCMC and 0.85 ± 0.07 for MLE in the 100 per cent
duty cycle case and 0.83 ± 0.09 for MCMC and 0.79 ± 0.10 for
MLE in the realistic duty cycle case. This result suggests that the
sensitivity of the amplitude to the activity index is being systemat-
ically underestimated by both methods. However, as we shall see
below, when we average overall realizations of the artificial data we
find that the average bias is not as severe as for this case.

In panels (e) and (f) of Fig. 6 we show the sensitivity of the am-
plitude measurements to activity index for the multiple-realization
tests with MLE fitting; panel (f) shows the results for the artificial
data with no input frequency variation. The lack of frequency varia-
tion does not significantly affect the amplitude variation. The results
with multiple realizations clearly reveal the frequency dependence
of the shifts, and also confirm the systematic underestimation of
the sensitivity. The sensitivity to duty cycle (panel g) has a small
non-zero value that does not depend strongly on frequency; this is
most likely due to the power in higher order daily sidelobes that is
not accounted for in the fitting.

Fig. 6(h) shows the variation with duty cycle of the amplitude shift
per unit activity, from the test with MLE fitting where the window
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Figure 5. Sensitivity of fitted frequency to activity level and fill for artificial data. Panels (a)–(d) show fitted (symbols) and input (lines) dνnl/dX for MLE (a,
c) and MCMC (b, d) fits to 11 one-year sets of artificial data at different activity levels, mimicking the solar cycle. The results are for 100 per cent (a, b) and
realistic (c, d) duty cycle. The lower two rows, for MLE only, show the results of the tests with multiple realizations of the artificial data. Panel (e) shows the
sensitivity of the frequency to activity index, X; panel (f) is similar to panel (e) but for a set of artificial time series where there is no input frequency variation.
Panel (g) shows the sensitivity to duty cycle, F, for the test with 25 realizations of the artificial data. Panel (h) shows the rate of change with duty cycle F of the
sensitivity dν/dX of mode frequency to activity index, for the test where each of the 21 one-year BiSON window functions was applied to each of the 11 years
of the solarFLAG time series. Black circles represent l = 0, blue diamonds l = 1, red squares l = 2, and green open triangles l = 3.
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Figure 6. Sensitivity of mode amplitude to activity index and duty cycle. Panels (a)–(d) show fitted (symbols) and input (lines) d log Anl/dX for MLE (a, c)
and MCMC (b, d) fits to 11 one-year sets of artificial data at different activity levels, mimicking the solar cycle. The results are for 100 per cent (a, b) and
realistic (c, d) duty cycle. The bottom two rows, for MLE only, show the results of the tests with multiple realizations of the artificial data. Panels (e) and (f)
show the sensitivity of the amplitude to activity index, X, with panel (f) showing the results for the test with no input frequency variation. Panel (g) shows
the sensitivity to duty cycle, F, for the test with 25 realizations of the artificial data. Panel (h) shows the rate of change with duty cycle F of the sensitivity
d log Anl/dX of mode amplitude to activity index, for the test where each of 21 one-year BiSON window functions was applied to each of the 11 years of the
solarFLAG time series. Black circles represent l = 0, blue diamonds l = 1, red squares l = 2, and green open triangles l = 3.
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4132 R. Howe et al.

Figure 7. Fitted amplitude (left) and line-width (right) shifts averaged over 25 realizations of the artificial data with realistic duty cycle for each mode between
2.0 and 3.5 mHz, plotted against the input value. Black circles represent l = 0, blue diamonds l = 1, and red squares l = 2. The correspondingly coloured lines
represent least-squares fits for each l.

function was varied. Apart from a few low-frequency modes and the
l = 3 modes, the results show no systematic bias of the sensitivity
measurement due to the window function.

The apparent underestimate of the amplitude shifts is of some
concern. However, when we consider the MLE fits to the larger
cohort of artificial time series, we obtain a more favourable result.
Fig. 7(a) shows the fitted amplitude shifts for data with realistic fill,
averaged over 25 realizations of the artificial data for each mode
and plotted as a function of the expected shift. In this case we find,
for modes between 2.0 and 3.5 mHz, that the slope of a linear fit of
fitted versus input shifts is 0.92 ± 0.03, 0.95 ± 0.02, and 0.89 ± 0.02
for l = 0, 1, and 2, respectively, which suggests that the realization
chosen for the main plots was a particularly ‘unfortunate’ example
and the real systematic underestimate of the sensitivity is likely to
be less than 10 per cent. We emphasize that the size of the fractional
shifts is not affected by any systematic errors in the underlying
values as long as these are not activity-dependent.

4.1.3 Line width

Figs 8(a)–(d) show the input and fitted values of d log �nl/dX, the
rate of change of line width with the activity index X, for the two
methods. As for the amplitude measurements, the individual-mode
sensitivity results for the two methods are well correlated with one
another, with a correlation coefficient of 0.59 in the 100 per cent
duty cycle case and 0.71 for the realistic duty cycle, over 27 values.
The slope of a fit of MCMC versus MLE values is 0.96 ± 0.48
for 100 per cent duty cycle and 1.08 ± 0.70 for realistic duty cycle,
which indicates that the values are consistent; furthermore, for each
method the d�/dX values for the 100 per cent and realistic duty
cycle cases are consistent. The results of the tests with multiple
realizations are shown in Figs 8(e) and (f). Again, the frequency
variation of the sensitivity is clearly seen in Figs 8(e) and (f), with
panel (f) being for the case with no input frequency variation. Again,
the lack of frequency variation has no significant effect on the
width variations. Fig. 8(g) shows that there is a small, more or
less frequency-independent, effect of the duty cycle on the fitted
line-width, which is to be expected for the MLE algorithm due to
the crude handling of the window function effects. Fig. 8(h) shows

that the results of the MLE test with multiple duty cycles applied
to the same realization of the artificial data; the duty cycle has no
significant effect on the sensitivity of the line width to activity-
related variations, so as long as the two factors are not correlated
we can treat the effects as independent of one another.

As in the case of the amplitude, d�/dX appears systematically
underestimated, with a mean ratio between fitted and input values
of 0.81 ± 0.09 for 100 per cent and 0.79 ± 0.10 for realistic duty
cycle for MLE fits and 0.84 ± 0.08 for 100 per cent fill and 0.83 ±
0.09 for realistic duty cycle from MCMC. For the test with MLE fits
to 25 realizations of artificial data with realistic duty cycle (Fig. 7b),
we obtain slopes of 0.87 ± 0.04, 0.88 ± 0.03, and 0.77 ± 0.03 for
l = 0, 1, and 2, respectively; as with the amplitude, this suggests
that our main sample realization was particularly unfavourable, but
we might still be failing to recover the l = 2 shifts completely.

4.1.4 Energy supply rate

We recall from equation (15) that the energy of a mode is propor-
tional to the square of its amplitude, and the rate of energy supply
to the mode dEnl/dt is proportional to hnl�

2
nl ; so for the logarithmic

quantity we have

log dEnl/dt = 2 log �nl + log Anl + const, (17)

where const includes a contribution from the mode mass and visi-
bility function.

The energy supply rate is believed not to vary with the activity
level, and the solarFLAG data were designed to reflect this. In other
words, we expect 2dA/dX + d�/dX = 0. As the d log Anl/dX and
d log �nl/dX values are noisy, we check for this by performing a
weighted least-squares fit with the individual δlog Anl and δlog �nl

as x- and y-values. For the l = 0, 1 values between 2.0 and 3.5 mHz
we obtain slopes of −1.8 ± 0.58 and −1.47 ± 0.90 for the MLE
fitting with 100 per cent and realistic duty cycle, respectively, and
−1.53 ± 0.48 and −1.34 ± 0.58 for MCMC. Three of these values
are within 1σ of the expected value of −2, and the other is only
just outside the 1σ range. A fit with d log Anl/dX as the abscissa and
d log �nl/dX as the ordinate gives agreement within the (large) error
in all cases, and the mean value of 2d log Anl/dX + d log �nl/dX is
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Solar cycle changes in low degree modes 4133

Figure 8. Sensitivity of fitted line-width to activity index and fill, for artificial data. Panels (a)–(d) show fitted (symbols) and input (lines) d log �nl/dX for
MLE (a, c) and MCMC (b, d) fits to 11 one-year sets of artificial data at different activity levels, mimicking the solar cycle. The results are for 100 per cent
(a, b) and realistic (c, d) duty cycle. The bottom two rows, for MLE only, show the results of the tests with multiple realizations of the artificial data. Panels
(e) and (f) show the sensitivity of the line width to activity index, X, with the results in panel (f) being for the test with no input frequency variation. Panel
(g) shows the sensitivity to duty cycle, F, for the test with 25 realizations of the artificial data. Panel (h) shows the rate of change with duty cycle F of the
sensitivity d�nl/dX of mode width to activity index, for the test where each of the 21 one-year BiSON window functions was applied to each of the 11 years
of the solarFLAG time series. Black circles represent l = 0, blue diamonds l = 1, red squares l = 2, and green open triangles l = 3; for MCMC black circles
represent l = 0/2 pairs and blue diamonds l = 1/3.
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4134 R. Howe et al.

Figure 9. Fitted (symbols) and input (lines) mean fractional asymmetry shift δb/b as a function of time for MLE (a, c) and MCMC (b, d) fits to 11 one-year
sets of artificial data, for 100 per cent (a, b) and realistic (c, d) duty cycle. The dashed lines represent the activity index scaled to the best linear least-squares fit
to the asymmetry-shift data.

consistent with zero in all four cases. We can therefore say that the
fitting is not significantly biasing the variation of the energy supply
rate, in spite of the small bias on the d log Anl/dX and d log �nl/dX
values.

4.1.5 Asymmetry

The design of the solarFLAG data is such that the fractional shift
in the asymmetry is expected to be the same as that in the line
width. Because the asymmetry determinations are noisier, we do not
show the results per mode. Instead, we look at the error-weighted
average fractional shift relative to the (also error-weighted) temporal
mean value for each mode. Fig. 9 shows the temporal variation
of the mean fractional asymmetry shift, averaged over all modes
between 2 and 3.5 mHz, compared with that which would have
been obtained if the fitting returned exactly the input values with
the same uncertainties. The correlation coefficients between the
expected and measured mean asymmetry shifts are as follows: 0.79
and 0.65 for MLE with 100 per cent and realistic duty cycle, and
0.78 and 0.75 for MCMC. The slopes of linear least-squares fits
with the input average fractional shift as the independent variable
and the measured values as the dependent one are 1.15 ± 0.33,
2.35 ± 0.68 for MLE with 100 per cent and realistic duty cycle,
and 0.82 ± 0.25, 1.0 ± 0.49 for MCMC. These results suggest
that we can (marginally) detect a shift in the asymmetry of about
the right magnitude and sign, but even when averaging over many
mode pairs the random errors are too large to make a statement

about any systematic over- or underestimate of its size, particularly
in the realistic-duty-cycle case. We can also infer, with caution, that
the MCMC fitting is performing somewhat better than the MLE
in this respect. This is also true in the case (not shown) where the
tests were repeated using MLE with the window function handled
by convolution rather than sidelobe fitting, which suggests that the
advantage is specifically in the MCMC approach rather than the
window function convolution.

4.2 Discussion of the test results

The results of the simulated-data exercise give us confidence that
with 11 years of observations we can determine the activity-related
shifts in the frequencies without significant bias with either fitting
method. For the amplitudes and line widths both methods may
underestimate the shifts by around 10 per cent (or more for the l = 2
widths). This may be the result of a peak profile model that does not
fully capture the subtleties of the mode asymmetry. We also have
marginal sensitivity to changes in the asymmetry, even with realistic
duty cycle. As we are fitting data with asymmetric peaks using an
asymmetric peak profile, we would not expect in this case to see
any bias in the frequency shifts due to neglect of the asymmetry,
and indeed, even though we only make a weak detection of the
asymmetry variation, we are very successful in recovering the input
frequency shift – and also in recovering a zero input frequency shift.
A brief consideration of the numbers makes this understandable. A
frequency shift due to neglect of the asymmetry could not exceed
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Solar cycle changes in low degree modes 4135

Figure 10. Yearly duty cycle for the BiSON network over the period cov-
ered by our analysis.

the product of the line width and the absolute asymmetry parameter.
At 3 mHz the line width is about 1 μHz and the maximum low-
degree frequency variation is around 0.31 μHz or one-third of the
line width, which would require around a 30 per cent change in the
absolute value of the asymmetry – far in excess of what is observed,
and so large that the asymmetry would be obvious to the eye rather
than requiring subtle analysis.

Given the good agreement between the two techniques it seems
unlikely that the use of MCMC fitting will invalidate the major
results from the previous two decades or more of MLE fitting of
Sun-as-a-star data.

A comparison of the error estimates returned by the two algo-
rithms shows that the uncertainties for the frequency are very sim-
ilar, as are those for the asymmetry parameter. For amplitude, we
find that the uncertainties from MLE are slightly (about 10 per cent)
higher than those for MCMC for the l = 0, 1 modes and about
15 per cent smaller for l = 2, 3 where the signal-to-noise is lower
and the modes are made up of more components that are handled
differently by the two algorithms, with the MLE fit having fewer in-
dependent parameters. For line width, the l = 0 and 1 uncertainties
from MLE are, not surprisingly, somewhat (20 to 50 per cent) larger
than those for the l = 0/2 and 1/3 pairs provided by the MCMC
algorithm.

These findings will guide our interpretation of the results of the
fitting of observational data.

5 BISO N DATA

5.1 Data

Early observations by what was to become the BiSON group have
been made since 1976, but until the early 1990s the observations
were relatively sparse. The final BiSON network was deployed in
1990–1992 and has been operating ever since, although there have
been some changes to the instruments over time. Fig. 10 shows the
yearly duty cycle of the network over time. For the purposes of this
analysis, we use 22 non-overlapping spectra corresponding to the
calendar years 1993–2014. We are fortunate in that over this period
the BiSON duty cycle is essentially uncorrelated with the activity
level. The data for 1992 and earlier years have much lower duty
cycle and were excluded from this analysis.

5.2 Analysis

5.2.1 Data preparation

The BiSON data were prepared as described in Davies et al. (2014b)
and divided into 1-yr, non-overlapping time series.

5.2.2 Choice of activity proxy

It is common to express activity changes in terms of a linear re-
lationship to an activity measure, although sometimes additional
terms may be used, especially for higher-degree modes. Such anal-
yses have been carried out using, for example, the sunspot number,
the 10.7-cm RF, and the global magnetic flux. Bachmann & Brown
(1993) found that, for observations over the period 1984–1990, the
RF and the Mg II index gave better correlation with medium-degree
frequency shifts than the global Kitt Peak magnetic field strength,
and Chaplin et al. (2007) also found better agreement with proxies
such as the RF flux that have a greater sensitivity to weak flux. On
the other hand, for low-degree modes Chaplin et al. (2001) found
that the correlations were essentially the same for all six proxies
they examined, although there was a slight difference between the
sensitivity to the Kitt Peak magnetic index in the falling phase of
Cycle 22 and the rising phase of Cycle 23. For local and latitudinally
resolved measurements a spatially-resolved proxy is needed, and for
this purpose a localized measure of the photospheric magnetic field
strength (often called a magnetic activity index, or MAI), tends to
be preferred because the irradiance-based measures are not spatially
resolved. The relationships between these proxies are not necessar-
ily linear, and may not be consistent over time as instruments are
upgraded or observing protocols change. Even magnetic measure-
ments from different instruments may show the effects of small
differences in calibration; also, many magnetic indices are only
available as Carrington maps that cannot easily be translated into
daily indices. These considerations need to be borne in mind when
using the measures to compare with long sequences of helioseismic
data. For the current work, as we are dealing with Sun-as-a-star
data, we have chosen to use the daily RF index averaged over the
exact period covered by each spectrum.

5.3 Results

For all variables, we first find the modes that are common to all
the data sets being compared and then calculate the shifts for each
mode relative to an error-weighted mean over all the data sets. These
individual-mode shifts can then be combined in an error-weighted
mean to show the overall variation.

5.3.1 Frequency

Figs 11(a) and (b) shows the mean frequency variation with time
and with RF index for the two algorithms, and Figs 11(c) and
(d) shows dνnl/dRF for each mode as a function of frequency for
each method. The methods agree well, even in the small deviations
from the linear fit; in fact, the correlation coefficient between the
MCMC and MLE mean frequency shifts is 0.992, better than the
correlation between the shifts and the RF index, which is 0.975 in
each case. The threshold for significance at the 0.1 per cent level
is 0.65 for 22 data points, so all of these are highly significant
correlations. It is noticeable in Fig. 11(a) that in both solar minima
the frequency points tend to lie below the activity trend-line. The
frequency dependence of the shifts is very clearly seen, and there is
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4136 R. Howe et al.

Figure 11. Solar-cycle frequency changes from BiSON data 1993–2014. The top row shows frequency variation from MLE (filled symbols) and MCMC
(open symbols) fits, as an error-weighted mean over all modes with l ≤ 2 and frequencies between 2 and 3.5 mHz, as a function of time (a) and RF index
(b). The solid and dashed lines represent linear fits to the RF index for MLE (solid) and MCMC (dashed). The bottom row shows dνnl/dRF as a function of
frequency for MLE (c) and MCMC (d) fits, for l = 0 (black circles), l = 1 (blue diamonds), l = 2 (red squares), and l = 3 (green open triangles).

a hint that the l = 0 shifts are lower than those for l > 0, consistent
with the expected behaviour due to the latitudinal distribution of the
activity bands.

5.3.2 Amplitude

Figs 12(a) and (b) show the amplitude variation for the two al-
gorithms as a function of time and as a function of RF index,
and Figs 12(c) and (d) show d log Anl/dRF as a function of fre-
quency for each algorithm Again, the two methods show good
agreement, with a correlation coefficient of 0.98 between the two
sets of mean shifts, while the correlation with the RF index is −0.88
in each case. The data plotted in Figs 12(a) and (b) have been cor-
rected for the window-function effect on the amplitude, but this
makes very little difference to the result. The mean shift changes by
(−0.078 ± 0.005) per cent per Radio Flux Units (RFU) from MLE
and (−0.071 ± 0.005) per cent per RFU from MCMC, giving
a change of about (−8.8 ± 0.6) per cent for MLE or −8.0 ±
0.5 per cent for MCMC from the highest to the lowest RF value.
The scatter of the points around the linear fit, together with the
agreement between the methods, suggests that effects other than a
simple linear dependence on activity may be involved. Curiously,
the points for the years 2011–2013 in Fig. 12(a) all fall below the
fit to the RF index, suggesting that the modes may have been more
strongly suppressed in the rising phase of Cycle 24.

The uncertainties are still too large to allow us to usefully quantify
the frequency dependence of the individual-mode shifts, but there

is a visible tendency for the modes in the middle of the five-minute
band to be more strongly suppressed by activity. The reduction in χ2

obtained by fitting a quadratic function of frequency to the values
with l ≤ 2, rather than a constant, corresponds to a probability of
12 per cent for MLE and 23 per cent for MCMC that the result could
have been obtained from a random distribution – better than a 1σ

result but not at the 2σ level. The shape of the variation, with the
greatest sensitivity around 3 mHz where the modes are strongest, is
consistent with the findings from resolved helioseismology.

5.3.3 Line width

Figs 13(a) and (b) show the mean shift in log � for the two al-
gorithms as a function of time and RF, averaged over the modes
between 2 and 3.5 mHz. Figs 13(c) and (d) show d log �/dRF as
a function of frequency for each method. A direct comparison be-
tween the two data sets in this case is more difficult because the
MCMC algorithm returns only one width per mode pair while the
MLE gives two; also the different treatment of the window func-
tion affects the line-width estimates. However, the two sets of mean
shifts have a correlation coefficient of 0.946, while the correla-
tion coefficient with the RF index is 0.922 for MLE and 0.951 for
MCMC. Although the width shifts are larger than those in amplitude
they also have larger uncertainties. Given the uncertainties, we do
not see any significant deviation from the linear trend of the mean
shifts with RF index. The mean shift is (0.146 ± 0.016) per cent per
RFU for MLE and (0.142 ± 0.013) per cent per RFU for MCMC,
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Solar cycle changes in low degree modes 4137

Figure 12. Solar-cycle mode amplitude changes from fits to 1-yr BiSON spectra from 1993–2013. The top row shows amplitude variation from MLE (filled
symbols) and MCMC (open symbols) fits, averaged over all modes with l ≤ 2 and frequencies between 2 and 3.5 mHz, as a function of time (a) and RF index
(b). The solid and dashed lines represent linear fits to the RF index for MLE (solid) and MCMC (dashed). The bottom row shows d log Anl/dB as a function
of frequency for MLE (c) and MCMC (d), for l = 0 (black circles), l = 1 (blue diamonds), l = 2 (red squares), and l = 3 (green open triangles). The dashed
curve represents a quadratic function in frequency fitted to the modes with l ≤ 2.

corresponding to a change of (16.3 ± 1.8) per cent and (15.9 ±
1.5) per cent, respectively, between minimum and maximum RF
values.

With the available data, the statistical significance of any fre-
quency dependence of d log �nl/dRF is not high. The decrease in
χ2 obtained by fitting a quadratic function of frequency to the
values, rather than a constant value, corresponds to a 14 per cent
probability for MLE and 10 per cent for MCMC of this result being
obtained from random data – again better than a 1σ result but not
at the 2σ level.

5.3.4 Energy supply rate

We plot in Fig. 14 the variation with date and RF index of the mean
change in the natural log of the energy supply rate Enl, formed by
taking the sum of the mean line-width shift and twice the mean
amplitude shift. Following Chaplin et al. (2000), the ≈90 per cent
correlation between the A and � errors has been taken into account
in the error propagation. The results imply a fractional change in
the energy supply rate between minimum and maximum RF of
(−1.1 ± 2.2) per cent from MLE and (0.17 ± 1.9) per cent from
MCMC. The previous result that there is no significant change in
the energy supply rate with activity level is thus confirmed. On the
other hand, there is a hint of a decrease in the energy supply rate
from 2011–2013, which we see as an unexpectedly large decrease
in the mode amplitude in this period.

5.3.5 Asymmetry

Fig. 15 shows the mean fractional shift in the asymmetry parameter
b as a function of time and of RF index, for the two algorithms. As
the uncertainties are large, we do not show the shifts for individual
mode pairs. The coefficient of correlation between mean shift and
the RF index is 0.36 for MLE (just short of being significant at the
10 per cent level) and 0.66 for MCMC (significant at the 0.5 per cent
level), and the correlation between the two sets of mean shifts is
0.46. The results of the artificial data tests lead us to place more re-
liance on the MCMC estimate. Even though the result is marginally
significant, it is consistent with the results in Jiménez-Reyes et al.
(2007), which only included data on the declining phase of the last
cycle, where the asymmetry change is most pronounced.

6 D I S C U S S I O N A N D C O N C L U S I O N S

We have analysed 22 years of BiSON data for activity-related
changes in the mode parameters using two different algorithms.
The analysis was validated by the use of an improved process that
allowed for the incorporation of the effects of line asymmetry. The
newer MCMC algorithm represents a small improvement over the
older MLE, particularly in the search for changes in the asymmetry,
but in general there is good agreement between the two algorithms.
Both methods accurately reproduce the input frequency shifts in ar-
tificial data and slightly underestimate the shifts in mode amplitude
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4138 R. Howe et al.

Figure 13. Width variation with activity. Top row shows mean shift in log �nl from MLE (filled symbols) and MCMC (open symbols) fits, averaged over all
modes with l ≤ 2 and frequencies between 2 and 3.5 mHz, as a function of time (a) and RF index (b). The solid and dashed lines represent linear fits to the RF
index for MLE (solid) and MCMC (dashed). The bottom row shows d log �nl/dRF as a function of frequency for MLE (c) and MCMC (d) for l = 0 (black
circles), l = 1 (blue diamonds), l = 2 (red squares), and l = 3 (green open triangles). For MCMC fits the l = 0 value is for the l = 0/2 pair and the l = 1 for
the l = 1/3 pair. The dashed curve shows a quadratic fit to the l ≤ 2 values with frequency as the independent variable.

Figure 14. Mean change in log energy supply rate from MCMC (open symbols) and MLE (filled symbols) fits, averaged over all modes with l ≤ 2 and
frequencies between 2 and 3.5 mHz, as a function of time (left) and RF index (right).

and width, which is perhaps not surprising given the limitations of
the model peak profile.

One of the objectives of this work was to check that the previ-
ous reports of frequency shifts were not an artefact of underlying
changes in the mode asymmetry, as suggested by Korzennik (2013).
Contrary to this suggestion, we find that our fitting accurately repro-
duces the input frequency shifts in artificial data and finds shifts in
the real data of the same magnitude as those reported in earlier work.

Furthermore, the MCMC parameter estimation explicitly favours a
frequency change over a simple change in underlying asymmetry
(with the model we apply) and in any case the asymmetry change
required to account for the frequency shift would be unrealistically
large.

We have not attempted in this work to reproduce the kind of
analysis of frequency shifts used by for example Basu et al. (2012),
in which spectra from heavily overlapped time periods were used
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Figure 15. Asymmetry variation (mean fractional shift) from MLE (filled symbols) and MCMC (open symbols) fits, averaged over all modes with l ≤ 2 and
frequencies between 2 and 3.5 mHz, as a function of time (left) and RF index (right). The solid and dashed lines represent linear fits to the RF index for MLE
(dashed) and MCMC (solid).

and the shifts were averaged in frequency bands; our objective was
instead to look for systematic biases in long-term trends. Having
eliminated the fear of such biases in the frequency shifts, we will be
able to proceed with confidence to a more detailed analysis of the
short-term variations in further work. We do see deviations from
the linear relationship between frequency and activity that are more
evident at low activity and appear consistent with those reported by
Fletcher et al. (2010), Basu et al. (2012), and others.

Our amplitude and width changes also agree well with ear-
lier work. Elsworth et al. (1993), who fitted using a symmetric
Lorentzian peak profile, report a change of −35 per cent in mode
area (height times width) between the 1986 minimum and the 1990
maximum, but based on their linear fit to sunspot number a change
of −20 per cent would give a more realistic comparison with our
result. As our amplitude is proportional to the square root of their
mode area, that would translate to a roughly −10 per cent change
in amplitude, which compares reasonably well with our estimate of
around −8 per cent. Chaplin et al. (2000), in an analysis covering
the period 1991–1997 and averaging over modes between 2.6 and
3.6 mHz, report changes of (24 ± 3) per cent in line width and −
(22 ± 3) per cent in power between maximum and minimum, [cor-
responding to ( − 11 ± 2) per cent in amplitude]. The 100 d periods
analysed by Chaplin et al. (2000) correspond to a range in RF index
of about 150 RFU, compared with the range of 110 in the 365 d
average values in our analysis, which would make their 24 per cent
change in line-width equivalent to 18 per cent, within a 1σ differ-
ence from our 15.5 per cent value. For amplitude, their change of
−11 per cent would be equivalent to (8.1 ± 1.1) per cent, in good
agreement with our analysis. It is not clear whether the ≈10 per cent
underestimate uncovered by our simulations applies to both results;
the biases for symmetric fits may well be different.

We do not reproduce the finding of Salabert et al. (2007) that the
l = 0 mode width is less sensitive to global activity than the higher-
degree modes. It is not possible to check this using the MCMC
fitting, as the l = 0 and 2 mode components are assumed to have
the same width.

Our results on the asymmetry shifts are somewhat disappointing.
However, we should note that the work of Jiménez-Reyes et al.
(2007) was more narrowly focused on the asymmetry measurement
and they carried out a more elaborate analysis to obtain the best
possible results. Also, if we look only at the eight years of BiSON
data that they used in the frequency range that they considered, we

do reproduce their ‘marginally’ significant result for the BiSON
data. The much weaker correlation that we find for the whole data
set suggests that their result for BiSON may have been a statisti-
cal fluke; measuring the asymmetry in ground-based data with a
duty cycle in the 70 per cent range is still challenging. In particular,
the intimate relationship between background and asymmetry may
make it difficult to improve very much on these results using our
current approach of pairwise fitting with a flat background for each
pair. We note that the asymmetry shifts – and the absolute asymme-
try values – observed for low-degree modes are too small to have a
significant influence on the frequency shifts.

In general, both MLE and MCMC methods perform well and
give consistent results for the solar-cycle variations of the mode
parameters, as well as very similar uncertainties. This has impli-
cations for future peak-finding strategies in both solar and stellar
applications. For high-quality data the considerable extra compu-
tational expense of the Bayesian approach may not be justified
unless we are specifically looking for asymmetry changes. We have
not addressed the issue of the advantages that might be gained
by using global or pseudo-global instead of pairwise fitting for
solar data. Such methods are, again, more computationally in-
tensive than the conventional approach, and when combined with
the Bayesian method this expense becomes nearly prohibitive for
large data sets. Our results suggest that it might be worthwhile
instead to concentrate on developing MLE-based global or pseudo-
global methods for use with solar data; such methods are already
in use for asteroseismology of solar-like oscillators but may re-
quire refinement to deal with longer and higher-quality solar data
sets. Any such methods would need to be cross-checked against
earlier results. Our findings confirm that solar-cycle variations of
mode frequency, lifetime, and amplitude from earlier Sun-as-a-star
work are reliable. If, as in the case of Korzennik (2013), the re-
sults obtained by novel methods differ substantially from those
obtained by more conventional means, they should be treated with
caution.

The data we have analysed cover the period up to the end of
2014, well into the weak but drawn out and double- or possibly
multiple-humped maximum of Solar Cycle 24; we note that the
RF value for 2014 is higher than that for 2013. Some of the issues
around intercycle differences may become clearer once Cycle 24
definitely enters its declining phase. We await the next few years of
measurements with interest.
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A P P E N D I X A : T H E S O L A R F L AG C O M P L E X
F R E QU E N C Y A M P L I T U D E , A N D F R E QU E N C Y
POWER, SPECTRUM

In the following description – which is based on the detailed discus-
sions in Toutain et al. (2006) and Chaplin et al. (2008) – we model
the p modes as forced, damped oscillators having a high Q. The
frequency response of a given mode (with n, l, and m) is then just a
Lorentzian, which may be written in complex amplitude form as

Lnlm(ν) = 
[Anlm(ν)] + i�[Anlm(ν)], (A1)

where


[Anlm(ν)] = ξnlmH
1/2
nlm

1 + ξ 2
nlm

and

�[Anlm(ν)] = H
1/2
nlm

1 + ξ 2
nlm

(A2)

are the real and imaginary parts, respectively. In the above, Hnlm is
the height of the peak and

xnlm = (ν − νnlm)/(�nlm/2),

where νnlm and �nlm are the central frequency and line width of the
mode, respectively.

The observed response in the frequency domain also depends
on the spectral response of the excitation function, which we call
Enlm(ν). The complex amplitude, Anlm(ν), of the full response is
therefore actually

Anlm(ν) = Lnlm(ν)Enlm(ν). (A3)

We excite the modes with the granulation-like noise, which has a
response that is white only locally in the vicinity of the resonance.
The power spectral density of this granulation-like noise follows the
Harvey (1985) power-law model given in equation (2). To obtain
the excitation response, Enlm(ν), we must take the square root of
the power spectral density of the granulation-like noise; and we
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must also normalize to the value of the granulation-like noise at the
frequency of the resonance. This gives

Enlm(ν) =
(

1 + (2πνnlmτ )2

1 + (2πντ )2

)1/2

. (A4)

The power spectral density of this mode is then:

PSDnlm = |Anlm(ν)|2 = [Lnlm(ν)Enlm(ν)][L∗
nlm(ν)E∗

nlm(ν)]. (A5)

Now let us write down equations to describe the complete so-
larFLAG spectrum. This spectrum is comprised of many overtones,
whose excitation is correlated, and also correlated and uncorrelated
background noise. We begin with a description of the power spec-
tral density of the overtones of a given (l, m). The excitation of the
overtones is correlated, with the coefficient ρ describing this cor-
relation. The modes are also correlated with the granulation-noise
background, and this correlation is also set equal to ρ.

First, consider the equations which describe the real and imag-
inary parts of the complex amplitude given by the overtones. We
must sum over all the radial orders n of the chosen (l, m). We
therefore have


[Alm(ν)] =
∑
overn

(
HnlmEnlmξnlm

1 + ξ 2
nlm

)1/2

, (A6)

and

�[Alm(ν)] =
∑
overn

(
HnlmEnlm

1 + ξ 2
nlm

)1/2

. (A7)

Note that to keep things tidy, we have dropped the explicit depen-
dence of Enlm and ξ nlm on ν in the equations above, and in what

follows. The observed power spectral density of the overtones and
the granulation-like noise for this (l, m) is then given by

PSDlm(ν) = |ρ|ψlm(ν)ψ∗
lm(ν)

+ (1 − |ρ|)
(∑

overn

(
HnlmEnlm

1 + ξ 2
nlm

)
+ nlm

)
, (A8)

where

ψlm(ν) = 
[Alm(ν)] + i �[Alm(ν)] − n
1/2
lm . (A9)

There are two important things to notice about equations (A8) and
(A9). First the description in equation (A8) has two parts: one part,
prefixed by the factor |ρ|, describes the correlated contributions to
the spectrum; while the other part, prefixed by the factor (1 − |ρ|),
describes the uncorrelated contributions. Secondly, notice how the
background factor n

1/2
lm in equation (A9) is prefixed by a minus sign.

This makes the correlation of the modes and background negative,
which in turn means we get negative asymmetry as in real Doppler
velocity observations.

Finally, the total power spectrum density is given by summing,
incoherently, the power spectral densities of all (l, m) in the spec-
trum, and the uncorrelated photon-shot noise background, npsn (see
Section 2.2.5), to give

PSD(ν) =
∑

all(l,m)

PSDlm(ν) + npsn. (A10)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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