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Abstract: The working model to describe the mechanisms used to replicate the  

cancer-associated virus Epstein-Barr virus (EBV) is partly derived from comparisons with 

other members of the Herpes virus family. Many genes within the EBV genome are 

homologous across the herpes virus family. Published transcriptome data for the EBV 

genome during its lytic replication cycle show extensive transcription, but the identification 

of the proteins is limited. We have taken a global proteomics approach to identify viral 

proteins that are expressed during the EBV lytic replication cycle. We combined an 
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enrichment method to isolate cells undergoing EBV lytic replication with SILAC-labeling 

coupled to mass-spectrometry and identified viral and host proteins expressed during the 

EBV lytic replication cycle. Amongst the most frequently identified viral proteins are two 

components of the DNA replication machinery, the single strand DNA binding protein 

BALF2, DNA polymerase accessory protein BMRF1 and both subunits of the viral 

ribonucleoside-diphosphate reductase enzyme (BORF2 and BaRF1). An additional 42 EBV 

lytic cycle proteins were also detected. This provides proteomic identification for many EBV 

lytic replication cycle proteins and also identifies post-translational modifications. 

Keywords: virus; cancer; replication; proteome; herpes; Epstein-Barr 

 

1. Introduction 

Epstein-Barr virus (EBV) is associated with diverse cancers including Burkitt’s lymphoma, 

Hodgkin’s lymphoma, NK/T lymphomas, Nasopharyngeal carcinoma and gastric cancer [1–9]. During 

the ~50-years since the identification of the virus [10] and the ~30 years since the genome sequence of 

the first isolate was published [11], there has been a strong focus on research into the viral genes 

commonly expressed in tumors, which has enabled us to obtain a good understanding of the ability of 

EBV to transform cells and so establish viral latency. 

EBV within tumor cells undergoes lytic cycle replication only rarely and ~90% of EBV genes are not 

commonly expressed in tumors. However, these are transcribed following the disruption of latency as 

cells enter the EBV lytic replication cycle. Sensitive transcriptome analysis in Burkitt’s lymphoma cells 

that have been stimulated to initiate the EBV lytic replication cycle [12,13], together with array-based 

strategies [14,15] and earlier mapping approaches (reviewed in [16]), suggests that the entire genome 

complement is expressed once EBV lytic replication cycle is activated. 

The contribution of several EBV lytic cycle genes has been subject to genetic evaluation. This 

identified BZLF1, BRLF1 [17], BSLF2 + BMLF1 [18] and BMRF1 [19] as essential for regulating viral 

gene expression during viral lytic replication and others (BFLF1, BFLF2, BFRF1, BGRF1 and BDRF1) 

contribute to encapsulating the viral genome [20–22]. In contrast, BGLF4 contributes to the efficiency 

of viral replication [23–26] and some viral genes such as BLLF1 and BNRF1 are not required to generate 

virus but rather contribute to the subsequent infection of cells or allow efficient entry and genome  

release [27–29]. Finally, some viral genes contribute to immune evasion of infected cells, e.g.,  

BNLF2a [30]. The contributions that many other EBV lytic replication cycle genes make to the EBV 

lytic replication cycle are inferred through their homology with the alpha herpesvirus family [1]. Several 

of these proteins have been detected by immunofluorescence during viral replication (e.g., [31]). 

Despite three studies using proteomics approaches [32–34], not all EBV lytic cycle genes have been 

previously identified and many have not been independently verified. Here, we used an engineered 

Burkitt’s lymphoma cell system to enrich for cells undergoing EBV lytic replication and coupled this 

with SILAC-proteomics to develop a route to detect EBV proteins in Akata cells undergoing EBV lytic 

replication. This allowed us to identify a total of 44 EBV proteins and post-translational modifications 

of several viral proteins. 
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2. Results 

2.1. Isolation of Proteins in Cells Undergoing EBV Lytic Cycle 

Cells from a Burkitt’s lymphoma which harbor EBV in type I latency had previously been engineered 

to co-express Green Fluorescent Protein (GFP), Nerve Growth Factor receptor (NGFR) and Zta (BZLF1) 

from an inducible bi-directional promoter (Akata-Zta). A cell line in which the Zta coding sequence is 

orientated in the non-coding direction acts as a control [35,36]. Proteins within the Akata control and 

Akata Zta cells were differentially metabolically labeled with amino acids consisting of stable isotopes. 

Following activation of the expression cassette using doxycycline, cells that had successfully been 

induced were isolated by their affinity for anti-NGFR coated magnetic beads. Analysis of GFP 

expression in the enriched cell population revealed a purity of between 57% and 62% (Figure 1). 

 

Figure 1. Enrichment of Burkitt’s Lymphoma (BL) cells induced to enter Epstein-Barr virus 

(EBV) lytic replication cycle. (a) Co-induction of Green Fluorescent Protein (GFP), Nerve 

Growth factor receptor (NGFR) and Zta (or not for control cells) and procedure to induce 

and enrich cells, together with the % enrichment (GFP positivity) is shown; (b) Total protein 

extracts were prepared, fractionated on SDS-PAGE and stained. 

2.2. Identification of Proteins in Cells Undergoing EBV Lytic Cycle 

The proteins from Akata-control and Akata-Zta were mixed in equal amounts and the relative 

abundance of cellular and viral proteins was analyzed by quantitative mass spectrometry (MS). Global 

analysis of the differences in abundance detected through the differential SILAC labeling and the 

difference in abundance of individual proteins determined by Western blot analysis revealed a modest 
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overall reduction in the abundance of cellular proteins (between 1.2 and 2-fold) during EBV lytic cycle 

(Figure 2). Viral proteins were identified only in the Zta-expressing cells. 

 

Figure 2. Stable isotope labeling with amino acids in cell culture (SILAC) coupled to mass 

spectrometry (MS) analysis of proteins in Burkitt’s Lymphoma (BL) cells during EBV lytic 

cycle. Total protein extracts were prepared from the enriched BL cells. MS analysis was 

undertaken. (a) The change in abundance of proteins with SILAC-information from both 

control and Zta expressing cells is shown; (b) The frequency distribution of the difference 

in protein abundance is shown as a Gaussian plot; (c) Total proteins were separated by SDS-

PAGE. Western blots were probed with anti-HSP90 and beta actin antibodies. 

2.3. Identification of EBV Proteins 

To identify EBV proteins in cells undergoing lytic replication, we considered the peptides that match 

with an EBV protein. The Uniprot databases which include proteins from three viral genomes HHV4 

(B95-8 UP000007640; AG876 UP000007639; and GD1 UP000007641). The identity of each of the 169 

peptides that correspond to an EBV protein with a Posterior Error Probability (PEP) score of less than 

1.0 × 10−3 are provided in Table S1. These were all up regulated ≥8.6 fold during lytic cycle, with the 

majority being undetectable in latency. This identified peptides corresponding to 33 EBV proteins  

(Table 1). In addition, a custom made database of the Akata EBV proteome was generated and searched 

to ensure that polymorphic regions were not overlooked. However, this revealed no additional protein 

identifications. In order to increase the sensitivity of EBV protein detection in our dataset, we carried 

out a further MaxQuant search against the EBV proteome (UniProt), omitting human sequences [37]. 

This identified an additional 11 EBV proteins, also shown in Table 1 (highlighted). The peptides 

associated with this search are listed in Table S2.  
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Table 1. EBV proteins identified by MS analysis. 

Gene Function 
BALF2 Major DNA-binding protein 
BALF4 Envelope glycoprotein B 
BALF5 DNA polymerase catalytic subunit 
BaRF1 Ribonucleoside-diphosphate reductase small chain 

BBLF2-BBLF3 primase protein 
BBLF4 DNA replication helicase 
BBRF2 Virion egress protein UL7 homolog 
BcLF1 Major capsid protein 
BDLF1 Triplex capsid protein VP23 homolog 
BFLF1 Packaging protein UL32 homolog 
BFLF2 Virion egress protein 
BFRF1 Virion egress protein UL34 homolog 
BFRF3 Capsid protein VP26 
BGLF2 Capsid-binding protein 
BGLF4 Serine/threonine-protein kinase 
BGLF5 Shutoff alkaline exonuclease 
BHRF1 Apoptosis regulator 
BKRF3 Uracil-DNA glycosylase 
BLLF3 Deoxyuridine 5′-triphosphate nucleotidohydrolase 
BLRF2 Tegument protein 

BSLF2-BMLF1 mRNA export factor ICP27 homolog 
BMRF1 DNA polymerase processivity factor 
BNRF1 Major tegument protein 
BORF2 Ribonucleoside-diphosphate reductase large subunit 
BPLF1 Deneddylase 
BRRF1 Transcriptional activator 
BRRF2 Tegument protein 
BSRF1 Tegument protein UL51 homolog 
BTRF1 Uncharacterized protein BTRF1 
BVRF2 

Capsid scaffolding protein 
BdRF1 
BXLF1 Thymidine kinase 

BZLF1 * Trans-activator protein 
BDLF3 pg85 
BLLF1 gp350 
BMRF2 Protein BMRF2 
BORF1 Triplex capsid protein 
BPLF1 deneddylase 
BRLF1 Replication and transcription factor 
BRRF2 tegument protein 
BSLF1 DNA primase 

gH gH 
gL gL 

LF1 LF1 

* BZLF1 expression is driven by the doxycycline induced expression vector in these cells so detection  

cannot be ascribed to the endogenous protein. Yellow highlight represents proteins only identified in the  

EBV-specific search. 
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Table 2. Post-translational modifications of EBV proteins identified by MS analysis.  

Gene Name Modification pep_seq 
aa of EBV 

Protein 
Residue of 

Modification 
BALF5 N terminal acetylation [ac]SGGLFYNPFLRPNK 2–15 2 
BLLF3 N terminal acetylation [ac]MEACPHIR 9–16 9 
BLRF2 Phosphorylation GQPS[ph]PGEGTRPR 124–135 127 
BMRF1 2 Phosphorylation HTVS[ph]PSPS[ph]PPPPPR 330–343 333 and 337 
BMRF2 N terminal acetylation [ac]METTQTLR 1–8 1 
BORF1 Phosphorylation RLNIS[ph]R 26–31 30 
BORF2 N terminal acetylation [ac]ATTSHVEHELLSK 2–14 2 
BXLF1 Phosphorylation TQAAVTSNTGNS[ph]PGSR 86–101 97 
BZLF1 N terminal acetylation [ac]MMDPNSTSEDVK 1–12 1 

None of the EBV proteins are associated with EBV latency; all originate from genes with a 

characteristic lytic replication cycle pattern of expression [16]. One of the 44 proteins identified, BZLF1, 

could be derived from either the expression vector or the endogenous virus so it should not be considered 

as proof of identity of the endogenous protein. We confirm expression of one of these proteins, BMRF1, 

by Western blot (Figure 3A) and we show which gene products are uniquely identified here and which 

provides confirmation of proteins previously identified in other reports (Figure 3B). 

 

Figure 3. SILAC MS analysis of proteins EBV proteins detected in Akata cells during lytic 

cycle. (A) Akata control and Akata Zta cells were induced with doxycycline for 24 h and 

total protein extracts prepared. Western blot analysis of BMRF1, Zta and beta actin 

abundance is show; (B) The EBV proteins identified are shown in relation to previously 

published studies. BZLF1 is marked*, its expression is driven by the doxycycline induced 

expression vector in these cells so detection cannot be ascribed to the endogenous protein. 

2.4. Identification of Post-Translational Modifications of EBV Proteins 

We searched for potential post-translational modifications of EBV proteins using MASCOT to search 

a minimal EBV database. All identifications were required to be from medium-labeled peptides, i.e., 
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present after EBV induction. The same phosphorylation and N-terminal acetylation modifications were 

also identified in a MaxQuant search of the EBV database. Those phospho-serine and amino-terminal 

acetylation modifications corresponding to proteins identified in Table 1 are shown in Table 2, with 

peptide identification evidence provided in Table S3. This identified that five lytic EBV proteins sustain 

amino-terminal acetylation; BZLF1 (Zta), BMRF2, BLLF3, BALF5, and BORF2. In addition EBV 

peptides corresponding to serine phosphorylation were identified for BMRF1, BLRF2, BORF1 and BXLF1. 

3. Experimental Section 

3.1. Cell Culture 

Akata-Zta and Akata control cells [36] were cultured in RPMI–SILAC labeled RPMI containing 

13C6-arginine and 4,4,5,5-D4-lysine (R6K4) (medium) and RPMI R0K0 (light) respectively (Dundee 

Cell products). Each was supplemented with 15% (v/v) dialyzed FBS and 100 units/mL penicillin,  

100 μg/mL streptomycin and 2 mM L-glutamine (Life Technologies) at 37 °C with 5% CO2. Cells were 

maintained between 3 and 10 × 105 cells/mL and were cultured in SILAC-medium for 16 population 

doublings. Doxycycline (Sigma) was added to a final concentration of 500 ng/mL and cells incubated 

for a further 24 h. Successfully induced cells were enriched using anti-NGFR antibodies coupled to 

paramagnetic beads as described [36]. 

3.2. FACS Analysis 

Live cells were analyzed using a multi-parameter fluorescent activated cell analysis (FACs) (Facs 

Canto-Beckton Dickinson). GFP positive cells were identified using BD FACSDiva™ Software 

(Beckton Dickinson). 

3.3. Western Blot Analysis 

An equivalent number of cells were lysed using SDS-PAGE sample buffer at a final concentration of 

1.0 × 104 cells/μL. Extracts from 1.0 × 105 cells were fractionated on SDS-PAGE. The total protein 

complement was detected following staining with Simply Blue stain or transferred to nitrocellulose. 

Proteins were identified using the following primary antibodies, beta actin (A2066, SIGMA), HSP90 

(AC88 ab13492, ABCAM), Zta [38] and BMRF1 (8F92, ab30541, ABCAM). This was followed by 

incubation with species-specific infra-red labeled secondary antibodies (LiCor). The presence and relative 

abundance of proteins was determined using an Odyssey Fc Imager and Odyssey Image Studio (Licor). 

3.4. Mass Spectrometry Collection and Analysis 

Extracts from Zta expressing and not expressing cells were mixed and fractionated on SDS-PAGE 

(Novex). The lane was cut into six slices and each slice was subjected to in-gel digestion with a  

DigestPro MSi automatic digestion system (Intavis Bioanalytical Instruments) as described in [39]. The  

resulting peptides were fractionated using a Dionex Ultimate 3000 nano HPLC system coupled to an  

LTQ-Orbitrap Velos mass spectrometer (Thermo Scientific). In brief, peptides in 1% (v/v) formic acid 

were injected onto an Acclaim PepMap C18 nano-trap column (Dionex). After washing with 0.5% (v/v) 
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acetonitrile 0.1% (v/v) formic acid, peptides were resolved on a 250 mm × 75 μm Acclaim PepMap C18 

reverse phase analytical column (Dionex) over a 150 min organic gradient, using 7 gradient segments 

(1%–6% solvent B over 1 min, 6%–15% B over 58 min, 15%–32% B over 58 min, 32%–40% B over 3 

min, 40%–90% B over 1 min, held at 90% B for 6 min and then reduced to 1% B over 1 min) with a 

flow rate of 300 nL·min−1. Solvent A was 0.1% formic acid and Solvent B was aqueous 80% acetonitrile 

in 0.1% formic acid. Peptides were ionized by nano-electrospray ionization at 2.3 kV using a stainless 

steel emitter with an internal diameter of 30 μm (Thermo Scientific) and a capillary temperature of  

250 °C. Tandem mass spectra were acquired using an LTQ-Orbitrap Velos mass spectrometer controlled 

by Xcalibur v2.1 software [40] and operated in data-dependent acquisition mode. The Orbitrap was set 

to analyze the survey scans at 60,000 resolution (at m/z 400) in the mass range m/z 300–2000 and the 

top six multiply charged ions in each duty cycle selected for MS/MS in the LTQ linear ion trap. Charge 

state filtering, where unassigned precursor ions were not selected for fragmentation, and dynamic 

exclusion (repeat count, 1; repeat duration, 30 s; exclusion list size, 500) were used. Fragmentation 

conditions in the LTQ were as follows: normalized collision energy, 40%; activation q, 0.25; activation 

time 10 ms; and minimum ion selection intensity, 500 counts. Data were acquired using the Xcalibar 

v2.1 software. The raw data files were processed and quantified using MaxQuant as described in [39] and 

searched against standard human proteome and EBV protein lists from UNIPROT and a translation of 

the Akata EBV genome. A search was also carried out against the EBV UniProt proteins plus 

contaminants, with the human sequences omitted [37]. Peptide precursor mass tolerance was set at 10 

ppm, and MS/MS tolerance was set at 0.8 Da. Search criteria included carbamidomethylation of cysteine 

(+57.0214) as a fixed modification and oxidation of methionine (+15.9949) and appropriate SILAC 

labels as variable modifications. 

Searches were performed with full tryptic digestion and a maximum of two missed cleavages was 

allowed. The reverse database search option was enabled and all peptide data was filtered to satisfy false 

discovery rate (FDR) of 1%. 

A database search using Mascot was carried out against a database containing 282 EBV protein 

sequences from UniProt. The search used the following parameters: 10 ppm precursor mass tolerance; 

0.6 Da fragment ion mass tolerance; fixed modification: carbamidomethylation (C); variable modifications: 

Protein N-terminus acetylation, methionine oxidation, phosphorylation (STY), 2H(4) K, 13C(6) R. 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium [1] via 

the PRIDE partner repository with the dataset identifier PXD002461 [41]. 

4. Conclusions 

Two previous studies compared the proteomes in BL and primary effusion lymphoma (PEL) cells  

during EBV lytic cycle with the proteomes of cells during latency or to those that are refractory to 

entering EBV lytic cycle [33,34]. The previous studies used the histone deacetylase inhibitor sodium 

butyrate [34] and/or a combination of the histone deacetylase inhibitor sodium butyrate and  

12-O-tetradecanoylphorbol-13-acetate to induce EBV to enter its lytic replication cycle. Here, we used 

a different method to initiate EBV lytic cycle gene expression, the ectopic expression of Zta protein. We 

previously demonstrated that this is sufficient to promote expression of several EBV lytic cycle genes 

leading to replication of the EBV genome [36]. Sensitive transcriptome analysis of EBV identified highly 
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abundant mRNAs [12,14,33]. While some of the proteins encoded by these are readily detected in the 

lytic cells (e.g., BMRF1, BMLF1 and BHRF1), others are not detected in any study (e.g., BALF1). This 

highlights one of the limitations of interpreting a global proteomics study; some proteins do not generate 

peptides that can be unambiguously identified. Whether EBV completes the lytic cycle in response to 

any of these stimuli yet protein expression is too low to be detected by mass spectrometry, or whether 

the lytic cycles are aborted prior to full viral gene expression and release of infectious virus is unknown. 

In addition to the analysis of viral proteins within cells, proteins present in purified EBV virions have 

also been detected using proteomics [32]. 

A comparison of our data with these three datasets revealed that we detected 28 EBV proteins that 

had been identified in two or more previous studies. We therefore provide further support for the 

identification of these proteins. Importantly, our analysis detected 12 viral proteins that were only 

identified in one previous study, providing important independent evidence of their detection. In 

addition, we provide evidence for the first detection of three viral proteins by mass spectrometry. The 

first is BBRF2, which is a homologue of the HSV1 virion egress protein UL7. Clues as to its function 

arise from the recent demonstration that UL7 plays a role in linking tegument proteins of HSV1 to 

membranes [42]. The second protein is BFLF1. Interestingly, BFLF1 is a homologue of the HSV1 UL32 

gene, which plays a role in HSV1 encapsidation [43] which supports the potential involvement of BFLF1 

protein in cleavage and packaging of the viral genome [21]. The third, BSLF1, encodes the DNA primase 

that is required for genome lytic replication [44,45]. In addition, we detected Zta protein (BZLF1), 

although it is not possible to distinguish whether this originates from the endogenous genome or the 

expression vector. 

Further analysis of the data identified evidence for novel post-translational modifications of nine EBV 

proteins. Amino-terminal acetylation events were identified for Zta, BLLF3, BALF5, BMRF2 and 

BORF2. For BALF5 and BORF2 amino terminal processing had occurred and the acetylation is present 

on the second residue, for the remainder it is present on the initiator methionine. Neither the acetylation 

nor the amino terminal processing had been described previously. A large sub-set of cellular proteins 

also sustain the amino terminal acetylation, the function is enigmatic, and roles in protein–protein 

interaction, sub-cellular targeting and degradation have all been postulated [46]. In addition to this, EBV 

peptides corresponding to serine phosphorylation of BMRF1, BLRF2, BORF1 and BXLF1 were 

identified. Of these, BMRF1 is known to be phosphorylated at residue 337 [47], in addition to residues 

344, 349 and 355. We provide evidence for a further site of phosphorylation at serine 333. In addition, 

this is the first report that BLRF2, BORF2 and BXLF1 sustain serine phosphorylation. 

In summary, the definitive identification of 44 EBV proteins in BL cells undergoing EBV replication 

and the identification of novel post-translational modifications of nine of these lytic cycle proteins 

increase the knowledge base of EBV lytic replication and may highlight different targets for future 

strategies to enable the development of therapeutic interventions to manipulate EBV replication. 

Supplementary Materials 

Supplementary materials can be accessed at: http://www.mdpi.com/2076-0817/4/3/739/s1. 
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