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Abstract 46 

Context: Primary macronodular adrenal hyperplasia (PMAH) is a rare cause of Cushing’s syndrome 47 

(CS), which may present in the context of different familial multitumor syndromes. Heterozygous 48 

inactivating germline mutations of armadillo repeat containing 5 (ARMC5) have very recently been 49 

described as cause for sporadic PMAH. Whether this genetic condition also causes familial PMAH in 50 

association with other neoplasias is unclear. 51 

Objective: The aim of the present study was to delineate the molecular cause in a large family with 52 

PMAH and other neoplasias. 53 

Patients and Methods: Whole genome sequencing and comprehensive clinical and biochemical 54 

phenotyping was performed in members of a PMAH affected family. Nodules derived from adrenal 55 

surgery and pancreatic and meningeal tumor tissue were analysed for accompanying somatic 56 

mutations in the identified target genes. 57 

Results: PMAH presenting either as overt or subclinical CS was accompanied by a heterozygous 58 

germline mutation in ARMC5 (p.A110fs*9) located on chromosome 16. Analysis of tumor tissue 59 

showed different somatic ARMC5 mutations in adrenal nodules supporting a “second hit” hypothesis 60 

with inactivation of a tumor suppressor gene. A damaging somatic ARMC5 mutation was also found in 61 

a concomitant meningioma (p.R502fs) but not in a pancreatic tumor suggesting biallelic inactivation 62 

of ARMC5 as causal also for the intracranial meningioma. 63 

Conclusions: Our analysis further confirms inherited inactivating ARMC5 mutations as a cause of 64 

familial PMAH and suggests an additional role for the development of concomitant intracranial 65 

meningiomas.  66 

67 
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Adrenocorticotropin-independent macronodular adrenal hyperplasia (AIMAH) is a rare cause (less 68 

than 2%) of endogenous Cushing’s syndrome (CS). It is characterised by massive bilateral adrenal 69 

enlargement with hypersecretion of cortisol and consecutive suppression of ACTH release from the 70 

pituitary gland resulting in low plasma levels of ACTH (1, 2). However, the prevalence of AIMAH 71 

might be underestimated due to mild disease and the challenge of diagnosing patients with subclinical 72 

CS (3). 73 

 In rare cases AIMAH occurs in infancy associated with the McCune-Albright syndrome 74 

(MAS) due to an activating mutation in the Gsα-(stimulatory G protein α subunit) gene leading to an 75 

activation of the cAMP signalling pathway (4-6). In earlier adulthood, AIMAH may be associated 76 

with multiple endocrine neoplasia type 1 (MEN 1) (7-9), familial adenomatous polyposis (FAP) (9-77 

11), hereditary leiomyomatosis, or renal cancer syndrome (fumarate hydratase gene mutation) (12). In 78 

addition, activating somatic mutations in the Gsα gene in female adults with CS due to AIMAH 79 

without features of the MAS were first described by Fragoso et al. (13). However, the majority of 80 

patients is diagnosed in their fifth to seventh decade (with subtle signs of CS preceding the diagnosis 81 

by several years) and is not part of an established multiple tumor syndrome (14). While most cases of 82 

AIMAH in later adulthood appear to be sporadic familial clustering has been reported (15-21). 83 

 Increased cortisol secretion of hyperplastic adrenal glands in AIMAH often involves 84 

stimulation of ectopic membrane receptors (22, 23). These primarily aberrant G protein-coupled 85 

receptors showing hyperactivity or paradoxical stimulation include ectopic receptors for glucose-86 

dependent insulinotropic peptide (22, 23), catecholamines (24), luteinizing hormone/human chorionic 87 

gonadotrophin (25), and interleukin-1 via type I interleukin-1 receptors (26), as well as eutopic 88 

receptors for vasopressin type 1a (27), serotonin type 4 (25, 28), and possibly leptin (29). Very 89 

recently, a paracrine regulation of cortisol secretion in macronodular adrenal hyperplasia tissue was 90 

described with the release of ectopic adrenal ACTH triggered by ligands of aberrant membrane 91 

receptors (30). Thus Lacroix (31) judged the term “ACTH-independent macronodular adrenal 92 

hyperplasia” to be no longer appropriate. Therefore, this term will be replaced here by the term 93 

“primary macronodular adrenal hyperplasia” (PMAH) as suggested by Alencar et al. (32). 94 
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 In addition, with increasing awareness of familial clustering genetic defects associated with 95 

PMAH were found in the cAMP signalling pathway with increased levels of cAMP (33-35).96 

 Recently a first mutation underlying familial PMAH has been reported (21). By using whole 97 

exome sequencing of tumor tissue DNA a mutation of the Endothelin receptor type A (EDNRA) gene 98 

was identified in two members of a Chinese family affected by PMAH and in one patient with 99 

sporadic PMAH (21); however, functional assays proving a causative role of the EDNRA variant in 100 

the pathogenesis of PMAH are lacking. 101 

 To further elucidate the pathophysiology of PMAH we analysed the whole genome in 16 102 

members of a family with PMAH aiming to identify the underlying pathogenic germline mutation. 103 

Whilst undertaking this research, heterozygous germline mutations in the armadillo repeat containing 104 

5 (ARMC5) gene locus at 16p11.2 resulting in decreased ARMC5 protein levels were described in 105 

55% of a series of 33 patients with PMAH, mostly sporadic cases (36). Analysis of adrenal nodules of 106 

adrenalectomised patients showed additional nodule-specific somatic ARMC5 mutations or loss of 107 

heterozygosity (LOH) as a “second hit” in all cases resulting in biallelic inactivation of ARMC5 (36). 108 

Follow-up studies confirmed ARMC5 germline mutations in the context of PMAH with CS (37) and 109 

the simultaneous occurrence of germline and somatic ARMC5 mutations in a large Brazilian family 110 

further substantiated the role of this putative tumor suppressor gene for the pathogenesis of PMAH 111 

(32). Interestingly, the occurrence of intracranial meningiomas together with PMAH was described in 112 

three out of seven members of the Brazilian family (32) suggesting a possible role of ARMC5 for the 113 

development of further neoplasias. However, this has never been tested directly. Here we had the 114 

opportunity to also include two nonadrenal tumors in our molecular analyses. 115 

 116 
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Case vignette 117 

A 34-year-old female patient (F1 VII, 153 cm, 80 kg, BMI 34.2 kg/m²) was admitted to a psychiatric 118 

clinic after the delivery of a healthy girl. She presented with post partum depression, severe back pain 119 

and poor wound healing. Clinical signs of CS were truncal obesity, moon-like face, facial acne, and 120 

broad purple striae. An MRI of the lumbar spine showed recent osteoporotic fractures (vertebral 121 

bodies of Th11, L2, and L3). The patient was admitted to the endocrine clinic for suspected CS. 122 

Laboratory examination showed hypokalemia (potassium 3.2 mmol/L, reference range: 3.4-5.2 123 

mmol/L), mild leukocytosis (white blood cell count 12.3/nL, reference range: 4.5-11.0/nL), mild 124 

thrombocytosis (platelet count 464/nL, reference range: 150-400/nL), undetectable plasma ACTH ( <5 125 

pg/mL, reference range: <46 pg/mL), and an insufficient suppression of serum cortisol (337 nmol/L, 126 

reference range: <55 nmol/L) following a 2 mg overnight dexamethasone suppression test. In addition, 127 

24-h urinary free cortisol excretion was increased to 576 nmol/24h (reference range: 11.8-485.6 128 

nmol/24h) and salivary cortisol levels showed loss of diurnal variation with 16.8 nmol/L at 12 am 129 

(reference range: 2.2-15.7 nmol/L), 15.7 nmol/L at 6 pm (reference range: 1.9-12.1 nmol/L), and 5.8 130 

nmol/L at 12 pm (reference range: 0.8-9.1 nmol/L). Computed tomography (CT) scans (Fig. 1) 131 

showed bilaterally enlarged adrenal glands with multiple nodules (up to 3.0 cm on the right side) with 132 

little and inhomogeneous enhancement following the administration of a contrast agent. Overt CS 133 

caused by PMAH was diagnosed. 134 

 Screening for aberrant adrenal receptors (2)) showed a 71% increase of cortisol (from 276 to 135 

473 nmol/L) in the posture test, while a standard mixed meal, and sequential administration of GnRH 136 

(100 µg) and TRH (200 µg) intravenously as well as glucagon (1 mg) intramuscularly did not induce 137 

significant changes in cortisol levels. However, a 323% increase of cortisol (from 363 to 1174 nmol/L) 138 

was measured after ACTH administration (250 µg intravenously). The patient underwent simultaneous 139 

bilateral adrenalectomy. The size of the left (right) adrenal was 9.2x4.6x3.5 (8.3x4.6x2.2) cm with a 140 

weight of 51 (54) g. Histology of the removed adrenals showed diffuse as well as a nodular 141 

hyperplasia without hemorrhage or infarction. After bilateral adrenalectomy the patient received 142 

replacement therapy with hydrocortisone and fludrocortisone and her health improved markedly. 143 
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 Importantly, a detailed family history indicated further CS cases within the patient’s family. 144 

The mother of the patient (P I) had undergone sequential bilateral adrenalectomy due to PMAH and 145 

overt CS at the age of 66 years. Furthermore, whilst our index patient underwent her work-up, her 146 

older sister (F1 II, 49-year-old) was also diagnosed with overt CS due to PMAH and underwent 147 

simultaneous bilateral adrenalectomy. 148 

149 



 8 

Patients and Methods 150 

 151 

Clinical characterisation of the PMAH family 152 

 All participants (n=17) gave written informed consent for clinical evaluation and genetic 153 

analysis of tumor and leukocyte DNA (one participant [F2 VII] later withdrew his consent for genetic 154 

testing). Thus a total of 16 family members were characterised. Clinical phenotyping, whole genome 155 

sequencing (WGS), and genetic analysis of tumor tissue was approved by the institutional review 156 

board of the Charité - Universitätsmedizin Berlin (EA1/169/08 and EA1/031/12) and by the Ethics 157 

Review Panel of the University of Luxembourg (12-001-12 Schnjo3). A pedigree chart of the family is 158 

given in Fig. 2. All adult (>18 years) family members were invited for endocrine evaluation and with 159 

only one exception participated in our examination.  160 

 A comprehensive history with a special focus on symptoms of CS and neoplasias was obtained 161 

and all participants underwent a complete physical examination with a focus on symptoms and signs 162 

of CS. Laboratory work up was done in all participants including full blood counts, blood glucose, 163 

serum electrolytes, urea, creatinine, liver function tests, and paired serum cortisol and plasma ACTH. 164 

In addition, in all participants a low-dose overnight 1 mg dexamethasone suppression test was 165 

performed and salivary diurnal cortisol profile was collected with samples at 6 am, 12 am, 6 pm, and 166 

12 pm (reference ranges are given in Table 1). 167 

 Furthermore, 24-h urine samples were collected for detailed assessment of glucocorticoid 168 

production by gas chromatography/mass spectrometry as previously described (38); this included 169 

measurement of free cortisol and the total sum of glucocorticoid metabolites (free cortisol, 170 

tetrahydrocortisol, 5α-tetrahydrocortisol, α-cortol, β-cortol, tetrahydrocortisone, α-cortolone and β-171 

cortolone). Additionally, blood was drawn for whole genome sequencing. 172 

  Adrenal imaging was carried out in the first instance employing ultrasound to avoid radiation 173 

exposure; only in case of suspected adrenal enlargement subsequent CT scans were performed. 174 

Participants suspected to suffer from subclinical CS were invited to be re-assessed in follow-up visits. 175 

 The diagnosis of ACTH-independent CS was based on a combination of biochemical test 176 

results including suppressed plasma ACTH levels (≤10 pg/mL), insufficient suppression of serum 177 
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cortisol following administration of 1 mg dexamethasone (≥55 nmol/L), increased 24-h urinary free 178 

cortisol excretion, and altered salivary cortisol diurnal profiles as well as clinical signs of cortisol 179 

excess. Family members were classified as overt CS if they had abnormal biochemical test results 180 

together with typical clinical signs of CS. Family members with no clinical signs but at least two 181 

abnormal test results or with subtle clinical signs (apart from truncal obesity) in combination with at 182 

least one abnormal biochemical finding were classified as having subclinical CS. 183 

 During follow-up visits, patients were asked whether they had undergone cerebral imaging 184 

ever before. In addition, cerebral imaging was offered to patients with clinical or subclinical CS. 185 

 186 

Whole genome sequencing 187 

 DNA from blood leukocytes was obtained from 16 family members including the three 188 

adrenalectomised patients with confirmed PMAH: P1, F1 II, F1 VII, the five newly diagnosed patients 189 

with overt/subclinical CS: F1 I, F1 IV, F1 VIII, F2 IV, F2 IX, and the eight patients without any 190 

evidence of overt or subclinical CS: PII, F1 III, F1 VI, F2 V, F2 VI, F2 VIII, F2 XIV, F2 XV. DNA 191 

samples were sequenced by Complete Genomics (CG) (Complete Genomics Inc., Mountain View, 192 

CA, USA) (39). The samples were processed through the CG Standard Sequencing Pipeline for WGS, 193 

versions 2.2.0.26 and 2.4.0.43 (PII). For detailed description of WGS, data processing, and in silico 194 

analysis of pathogenicity of variants see Supplemental Materials and Methods and Supplemental Fig. 195 

1.  196 

 197 

Sanger sequencing 198 

 Validation experiments were performed using Sanger sequencing methodology according to 199 

modified versions of previously published protocols and primers (36, 40). 200 

 201 

Analysis of tumor samples 202 

 Tumor samples of the three adrenalectomised participants (P I, F1 II, F1 VII) were studied for 203 

somatic mutations within the different adrenal nodules. In addition, tissue of a pancreatic serous 204 
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microcystic adenoma (F1 II) and of an intracranial meningioma (histopathology: World Health 205 

Organization (WHO) grade I, meningothelial subtype) (P I) was examined.  206 

 DNA extraction from formalin-fixed paraffin embedded tissue samples and targeted 207 

sequencing of ARMC5, TOX3 (TOX high mobility group box family member 3), and ITGAX (Integrin, 208 

alpha X) were performed as described in detail in Supplemental Material and Methods. In addition, 209 

targeted sequencing of NF2 (neurofibromatosis type 2) was performed for the intracranial meningioma 210 

tissue (PI). 211 

212 
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Results 213 

 214 

Clinical and biochemical characterisation of the PMAH family 215 

 Three family members (including the index patient) had already been diagnosed with PMAH 216 

and had undergone bilateral adrenalectomy with subsequent remission of CS (P I, F1 II, F1 VII). Thus, 217 

familial screening for the presence of PMAH was performed in 14 first- and second-degree relatives of 218 

our index patient (F1 VII). With the exception of one brother all siblings of the index patient and their 219 

adult children were clinically characterised (Table 1). The clinical and biochemical assessment was 220 

carried out a blinded fashion, i.e. at the time of phenotyping we did not have knowledge of the 221 

presence of AMRC5 mutations in the participants. The assessment led to the diagnosis of overt CS and 222 

bilateral adrenal enlargement in one further family member (F1 I); interestingly, 24-h free cortisol 223 

excretion was documented as normal while total glucocorticoid metabolite excretion was 224 

pathologically increased.  Five further family members were classified as subclinical CS (F1 IV, F1 225 

VIII, F2 IV, F2 IX, F2 XIV) with two of them showing bilateral adrenal enlargement upon imaging 226 

(F1 IV, F2 IX); notably their urinary cortisol and glucocorticoid metabolite excretion was in the 227 

normal range. However, one participant (F2 XIV) showed normal hormonal test results at a 12-months 228 

follow-up with the exception of an insufficient suppression of cortisol in the low-dose overnight 229 

dexamethasone suppression test which, however, was performed under oral contraception. 230 

 PMAH was present in three consecutive generations, affecting both sexes and transmitted by 231 

both sexes. Approximately half of the descendants of affected family members developed PMAH 232 

suggesting an autosomal dominant pattern of inheritance. 233 

  234 

Whole genome sequencing  235 

 Employing WGS a total of 10.646.574 variant positions were identified at which at least one 236 

family member had an allele that varied from the reference genome. Of the 10.6 millions variant 237 

positions, 7.9 millions variants remained after strict quality control filtering (Supplemental Fig. 1 and 238 

Supplemental Table 1). Due to the pedigree structure we further filtered for dominant inheritance and 239 

shared identity by descent regions between the affected individuals, for which 1831 variants could be 240 
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identified. To narrow down the list we screened for presumably rare variants (n=308) with predicted 241 

exonic defects (n=6) and subsequent functional consequence (n=3) (Supplemental Fig. 1 and 242 

Supplemental Table 1). Among the variants considered we found a heterozygous frameshift mutation 243 

in AMRC5 at 16p11.2 (A110fs*9). The variant co-segregated with an ITGAX variant (T3341C) and a 244 

TOX3 variant (C370T/C385T) both on chromosome 16 in affected individuals only and not in controls 245 

(Supplemental Fig. 2 and Table 2). The latter variants were identified as single nucleotide 246 

polymorphism (SNPs) that occur in databases of known variants at low allele frequencies (dbSNP 247 

build 138 rs201752610 and rs145367964 and frequency cataloged in Exome Sequencing Project (ESP) 248 

6500 database: at 0.000996 and 0.0000154 for TOX3 and ITGAX respectively).  249 

 250 

Analysis of tumor samples 251 

 Next, we assessed adrenal tumor samples of the three adrenalectomised participants (P I, F1 II, 252 

F1 VII) in the PMAH affected family for additional somatic mutations in the genes for ARMC5, 253 

TOX3, and ITGAX. We found various somatic mutations and LOHs in ARMC5 (see Table 3). TOX3 254 

variants have been described within the context of breast cancer susceptibility and disease progression 255 

(41) and have been reported to affect the cAMP signalling pathway (42). However, we did not find 256 

any additional somatic mutations in TOX3 in the adrenal tumor tissue and a careful history of further 257 

neoplasias did not indicate an increased incidence of breast cancer in our PMAH family. In addition, 258 

no concurrent somatic mutation in adrenal tumor tissue was found in the ITGAX gene. The ARMC5 259 

mutations found in tumor tissue DNA were novel somatic variants (Table 3) with the exception of a 260 

frameshift mutation at position 104 of the mature protein (p.A104fs) that had been published 261 

previously (36). Among the new mutations presented here we found three frameshift mutations that 262 

were all at very early positions in the gene (p.A55fs, p.S102fs, p.A106fs), suggesting deleterious 263 

effects. Furthermore, we found a LOH status twice in adrenal nodules at p.A110fs*9, and two novel 264 

nonsense mutations. The positions of the germline and somatic variants in ARMC5 are given in Fig. 3, 265 

Table 3 and Supplemental Table 2. 266 

 We screened for additional somatic mutations also in other tumors from affected individuals in 267 

our family (pancreatic serous microcystic adenoma, F1 II, and intracranial meningothelial meningioma 268 
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WHO grade I, P I). In the meningioma we found a somatic frameshift mutation in ARMC5 (p.R502fs) 269 

(see Table 3) but no somatic mutation in TOX3 and ITGAX. As a biallelic loss of NF2 can cause 270 

familial occurrence of meningioma (43), we screened the meningioma for NF2 mutations which we 271 

did not find. Moreover, we did not find somatic mutations of either ARMC5, TOX3, or ITGAX in the 272 

pancreatic tumor. We have tested the functional impact of all somatic and germline mutations found in 273 

ARMC5 with MutationTaster (http://www.mutationtaster.org) (44). All but one somatic mutation were 274 

predicted as disease causing (Supplemental Table 2).  275 

276 

http://www.mutationtaster.org/
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Discussion 277 

Here, we report a new heterozygous germline ARMC5 variant with a frameshift mutation in the 278 

genomic region 16p11.2 (c.323_324insC) leading to the protein variant p.A110fs*9 in affected 279 

members of our PMAH family. In addition, different second somatic mutational events or LOHs of the 280 

ARMC5 gene were found in macronodular tissue derived from adrenalectomy supporting a “second 281 

hit” hypothesis of the inactivation of a tumor suppressor gene. Biallelic ARMC5 inactivation by a 282 

germline and somatic mutations as a causative factor for PMAH leading to CS was initially reported 283 

by Assié et al. (36) in a cohort of French patients (18 out of 33 PMAH patients) and has recently been 284 

confirmed in an US cohort with 15 of 34 PMAH patients displaying a germline ARMC5 mutation (37). 285 

 Since familial clustering of PMAH may be underestimated due to subclinical disease (e.g. 15-286 

17) the question arises whether ARMC5 gene mutations are also causative for familial PMAH. In our 287 

PMAH affected family the germline ARMC5 mutation was identified in all members with confirmed 288 

PMAH as well as in members with newly diagnosed overt or subclinical CS in contrast to family 289 

members without CS. In the affected subjects that underwent adrenalectomy the germline mutation 290 

was associated with somatic mutations in tumor tissue supporting the hypothesis that germline 291 

mutations in association with somatic mutations of ARMC5 are indeed causative for familial PMAH 292 

occurrence (“second hit”). Another heterozygous germline variant in the ARMC5 gene (c.1094T>C; 293 

p.Leu365Pro) was identified very recently in all 16 PMAH affected family members (out of 47 family 294 

members evaluated for the presence of PMAH) in a large Brazilian family (32). In accordance with 295 

our findings, analysis of the Brazilian family pedigree suggested an autosomal dominant inheritance 296 

pattern (32). 297 

 Until now, little is known about the functional consequences of the ARMC5 deletion. Altered 298 

transcriptomes of tumors with ARMC5 gene mutations and increased apoptosis after overexpression of 299 

ARMC5 in H295R and HeLa cells suggest a tumor-suppressor function of the gene product (36). 300 

Alencar et al. (32) discuss a potential role of ARMC5 in the canonical Wnt pathway which plays a well 301 

documented role in adrenal tumorigenesis (45). However, the precise pathomechanism of ARMC5 302 

inactivation for the development of nodular hyperplasia remains to be determined. 303 
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 In our cohort, screening of the family identified five members suffering from previously not 304 

recognized overt (F1 I) or subclinical CS (F1 IV, F1 VIII, F2 IV, F2 IX). However, clinical signs were 305 

subtle in most affected patients. The most consistent laboratory abnormalities were an insufficient 306 

suppression of cortisol following the low-dose overnight dexamethasone suppression test and an 307 

ACTH level of ≤10 pg/mL. Interestingly, the diagnostic utility of 24-h urinary cortisol excretion was 308 

far lower, with none of the patients demonstrating increased excretion of free cortisol at initial 309 

evaluation, with increased total glucocorticoid metabolite excretion only in the patient with newly 310 

diagnosed overt CS (F1 I). These findings are in line with the results of the Brazilian family (32) who 311 

were diagnosed by insufficient suppression of cortisol following overnight dexamethasone and 312 

demonstration of adrenal enlargement. In their series 24-h urinary free (or total) cortisol excretion was 313 

above the reference range in only two of 14 diagnosed PMAH patients and similarly, late-night 314 

salivary cortisol was only increased in 4 of 15 patients with PMAH (32). Inactivation of ARMC5 has 315 

been associated with decreased steroidogenesis and reduced mRNA levels of genes encoding the 316 

steroidogenic enzymes cytochrome P450 17A1 (CYP17A1) and cytochrome P450 21A2 (CYP21A2) 317 

as well as reduced mRNA levels of the gene encoding adrenal steroidogenic factor 1 (NR5A1) and 318 

melanocortin 2 receptor (MC2R) in cell-culture models (36). The reduced cortisol synthesis in an 319 

ARMC5 gene inactivated cell-culture model (36) may serve as an explanation for the observation that 320 

cortisol excess with increased 24-h free cortisol excretion is not present in early stages of the disease 321 

and only occurs if a sufficiently large adrenal mass is reached in the course of disease progression. 322 

This view is supported by the markedly higher mean adrenal weight of patients with mutated ARMC5 323 

(106 g for both sides) compared to the weight of adrenals from PMAH patients not carrying the 324 

ARMC5 mutation (55 g for both sides) (36, 37) and is in line with a mean total adrenal weight of 97 g 325 

in our adrenalectomised patients. 326 

  Familial screening for ARMC5 gene mutations in 11 supposed healthy first-degree relatives of 327 

seven index patients of the French cohort revealed ARMC5 germline mutation in six and adrenal 328 

nodular hyperplasia in five of these subjects (36). These results, the findings from Brazilian (32) and 329 

Australian families (46) together with our findings favour early genetic testing of families of PMAH 330 



 16 

affected patients with germline ARMC5 mutations, as early detection of family members affected by 331 

overt or subclinical disease becomes feasible and may avoid clinical complications of CS. 332 

 Up to now, PMAH has been suggested to be a benign process (2) and the development of a 333 

malignant adrenal tumor has - to the best of our knowledge - not been described so far. However, since 334 

ARMC5 is expressed in many organs, a concern of potential proliferative consequences of germline 335 

mutations for extra-adrenal tissues has been raised (31). We, therefore, assessed the occurrence of 336 

further neoplasias in our PMAH affected family. Further tumors (eleven intracranial meningiomas in 337 

the mother of our index patient, P I; pancreatic serous microcystic adenoma, F1 II; pinealoma, F1 IV; 338 

intracranial meningioma, F1 VII) were found in some affected family members but none in non-339 

affected members. Analysis of the meningioma (histopathology: WHO grade I, meningothelial 340 

subtype) resulted in a somatic ARMC5 variant with a frameshift (p.R502fs) suggesting a role of 341 

ARMC5 inactivation in the pathogenesis of this tumor. Intriguingly, intracranial meningiomas have 342 

also been described in the PMAH affected Brazilian family (32) and had been reported earlier for two 343 

sisters with PMAH with ectopic expression of vasopressin receptors leading to clinical CS (19). 344 

Familial occurrence of meningiomas is a well known feature of the dominantly inherited type 2 345 

neurofibromatosis syndrome caused by predisposing mutations in NF2 (43). NF2 acts as a tumor 346 

suppressor and tumorigenesis in such cases had been reported to be caused by a biallelic loss of NF2 347 

(47). However, apart from NF2, data on the genetic basis of familial meningiomas is sparse (48). 348 

ARMC5 may represent a novel gene responsible for familial meningiomas for which none of the so far 349 

identified mutations (48) can be found. Based on our observation patients carrying an ARMC5 350 

germline mutation should be carefully monitored for other tumor entities to delineate the full spectrum 351 

of ARMC5 related neoplasias, as a coincidence of PMAH with other neoplasias (including acromegaly 352 

and primary hyperparathyroidism) has been noted before (46). 353 

 In conclusion, we were able to identify a pathogenic ARMC5 germline mutation in our PMAH 354 

family by using WGS. The genetic analysis of adrenal tumor tissue shows second somatic mutational 355 

events or LOHs in the ARMC5 gene further supporting the “second hit” hypothesis. Importantly, we 356 

describe for the first time an additional somatic ARMC5 mutation in an intracranial menigioma 357 

corroborating the association of germline ARMC5 mutations with the occurrence of meningiomas. 358 
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Whether further neoplasias are involved as part of this putative inherited tumor syndrome remains to 359 

be elucidated. 360 

361 
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Figures and Legends 551 

 552 

Figure 1. Macronodular hyperplasia of the right (Panel A) and left adrenal (Panel B) on 553 

abdominal CT in the index patient (F1 VII). 554 

 555 

Figure 2. Pedigree chart of the PMAH affected family. Squares indicate male family members, 556 

circles female family members. 557 

 558 

 Figure 3. Schematic representation of the ARMC5 protein showing germline (grey) and somatic 559 

(red) mutations found in the PMAH family. Ensembl protein identification ENSP00000268314 560 

(UniProt peptide Q96C12, 935 aa). 561 

 562 

Abbreviations: ARM, Armadillo Repeats; BTB, BTB(POZ) domain 563 

 564 


