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Prediction of sulphide build-up in filled sewer pipes  

Amir M. Alani; Asaad Faramarzi; Mojtaba Mahmoodian; Kong Fah Tee 

Department of Civil Engineering, School of Engineering, University of Greenwich 

 

 

ABSTRACT  

 

Millions of dollars are being spent worldwide on the repair and maintenance of sewer 

networks and wastewater treatment plants. The production and emission of hydrogen 

sulphide has been identified as a major cause of corrosion and odour problems in sewer 

networks. Accurate prediction of sulphide build-up in a sewer system helps engineers and 

asset managers to appropriately formulate strategies for optimal sewer management and 

reliability analysis. This paper presents a novel methodology to model and predict the 

sulphide build-up for steady state condition in filled sewer pipes. The proposed model is 

developed using a novel data-driven technique called evolutionary polynomial regression 

(EPR) and it involves the most effective parameters in the sulphide build-up problem. EPR is 

a hybrid technique, combining genetic algorithm (GA) and least square (LS). It is shown that 

the proposed model can provide a better prediction for the sulphide build-up compared with 

conventional models.  
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1 Introduction 

Sulphide build-up is one of the major problems occurring in wastewater systems. The 

production and emission of sulphide is the main cause of corrosion and noxious odours in 

sewer systems [1, 2]. It is known that the degradation of sewer systems can be primarily 

attributed to corrosion induced by biogenic sulphuric acid attack, which causes severe 

structural deterioration and ultimate structural collapse [3-7]. There are many cases in which 

sewer pipes designed to last 50 to 100 years have failed due to hydrogen sulphide (H2S) 

corrosion after only 10 to 20 years of service life. Such problems are rarely brought to the 

attention of the public until a catastrophic failure occurs. Prediction of sulphide build-up in 

sewer systems would greatly benefit the development of appropriate strategies for controlling 

sulphide formation or H2S emissions. Accurate prediction of sulphide formation during both 

the design phase and operation of sewers is important for planning engineering measures to 

mitigate the sulphide related problems. 

Since 1959, several steady-state empirical equations for prediction of sulphide build-up have 

been developed [8-10].  Although these models have been used as the basis for many studies 

in recent decades, there have been debates about accuracy and consistency of the models [11, 

12]. Holder [11] noted that neither Pomeroy [8] equation nor Thistlethwayte's [9] equation is 

adequate for sulphide build-up prediction. He stated that, together with the intrinsic capacity 

of the slimes to convert sulphate to sulphide, the effects caused by mass transfer resistances 

in both the slime phase and the liquid should be taken into consideration in the development 

of improved predictive equations. The model by Boon & Lister [10] also does not consider 

stream velocity, which has been criticised by other researchers [13]. Recent studies focus on 

the dynamic change occurring in sewer systems [12, 14-15]. In dynamic analysis, the 

concentration of sulphide is predicted as a function of location with temporal variations.  



4 
 

In the present study a novel approach called evolutionary polynomial regression (EPR) is 

used to develop a model to predict the sulphide generation in filled sewer pipes. EPR 

introduces a new unified, clear and physically plausible framework in which different aspects 

of a system can be directly captured from experimental data and represented in the form of 

mathematical expressions. The developed models are capable of satisfactorily explaining the 

physics of the problem. The proposed model in this paper will be compared with existing 

conventional models to prove accuracy and reliability. 

 

2 Formation of sulphide in sewer systems 

Most sulphide in sewers is formed by bacteria thriving in a matrix of filamentous microbes 

and gelatinous material coating the inner submerged walls of wastewater pipes that is often 

referred to as the slime layer. Oxygen cannot normally penetrate this layer, leading to the 

formation of an inert anaerobic zone next to the pipe wall [16]. Insufficient ventilation of 

sewer pipes leads to the accumulation of hydrogen sulphide in the atmosphere on the pipe 

walls. The bacteria producing sulphide are strict anaerobes and, consequently, live beneath 

the water surface [17]. The bacteria may also thrive in sludge and grit deposits found along 

the bottom of pipes. The formation of sulphide compounds depends on the presence of 

components in the sewer that contain sulphur. Sulphate, generally abundant in wastewater, is 

usually the common sulphur source, although other forms of sulphur, such as organic sulphur 

from animal wastes, can also be reduced to sulphide [18-21]. The dissolved organic material 

prevalent in the wastewater provides an ample food supply for the bacteria to flourish. The 

reduction of sulphate in the presence of waste organic matter in a wastewater collection 

system can be described as follows [22, 23]:  
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SO4

2- + organic matter + H2O →2HCO3
- +H2S 

Bacteria 

(1) 

If concentrations of sulphate and dissolved organic material in the wastewater are high and if 

these materials are able to penetrate the solids deposits, then large amounts of sulphides can 

be produced. Once sulphides are produced in the wastewater as a result of sulphate reduction, 

H2S gas will be released into the atmosphere [22-25]. In pressure mains (i.e., filled pipes) 

where the detention times are longer than, say, 10 minutes, there can be considerable sulphide 

build-up [22].  When the pump begins to operate, the heavy sulphide concentration is 

discharged, usually into a gravity sewer, where serious corrosion can take place if acid 

susceptible materials are used for the pipeline. These sources of deterioration are often 

disregarded by engineers when designing pumping stations and pressure mains. In some 

cases, it is difficult or not cost effective to design a sewer pipeline system that will be free of 

sulphide problems. It is then useful to know what levels of sulphide can be expected. The 

major determining factors for sulphide build-up are as follows [26, 27]: 

1. The most fundamental quantity appearing explicitly or implicitly in these equations is the 

sulphide flux from the slime layer into the stream, expressed as grams of sulphide per 

square metre-hour (g/m2-hr). Therefore hydraulic radius (which is represented by 
�
� � for 

a circular cross section pipe) affects the rate of sulphide build-up. 

2. The rate changes with temperature. While the chemical reaction presented in Equation (1) 

is accelerated in higher temperatures, the rate of sulphide build-up increases with increase 

of temperature. 

3. The concentrations of organic nutrients and of sulphate. The rate of sulphide build-up can 

be limited by a scarcity of either sulphate or organic matter. Since both are consumed in 

the biological reactions that produce sulphide, they are required in a certain ratio. If there 
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is an excess of organic nutrients, then the rate is limited by the amount of sulphate and if 

there is an excess of sulphate it is limited by the amount of organic nutrients. The organic 

nutrients for sulphide generation are proportional to the chemical oxygen demand (COD). 

4. (a) The stream velocity. At low velocity, solids may settle and move slowly and 

intermittently along the bottom. The loosely deposited solids quickly become depleted of 

oxygen, and sulphide generation proceeds until the depletion of sulphate or organic 

nutrients. Higher velocities increase oxygen absorption into the stream, increase the rate 

of oxygen transfer to the slime layer, and shorten the time that the sewage spends in 

transit, all of which lead to lower sulphide concentrations. 

(b) On the other hand, at low velocities, and especially if the sewage is intermittently 

stationary, nutrients may become depleted in the water adjacent to the slime layer, thus 

retarding sulphide generation. An increase of velocity in a completely filled pipe will, up 

to a point, increase sulphide generation. 

Considering the major determining factors for sulphide build-up, an equation could be 

written that would express the rate of sulphide build-up as a function of the involving factors 

(i.e., pipe diameter, temperature, chemical oxygen demand (COD) and stream velocity). 

Three well-known equations have already been proposed for the forecasting of sulphide 

build-up in filled pipes [8-10].  However in the current study a novel and recent data-driven 

technique, evolutionary polynomial regression (EPR), is used to present a better and more 

reliable equation for sulphide build-up prediction. It is shown that the developed model is 

able to learn the complex relationship between the sulphide build-up problem and its 

contributing factors in the form of a function with a high level of accuracy. The developed 

model in this study will be compared with the existing conventional models to forecast 

sulphide build-up in sewer pipes. 
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3 Evolutionary polynomial regression (EPR) method 

The use of data-driven techniques and in particular those based on artificial intelligence (AI) 

in modelling of engineering phenomena have drawn much attention from the scientific and 

research community in the past few decades. Several classes of the AI-based data-driven 

approaches such as artificial neural network (ANN), genetic programming (GP), and their 

variants such as GABNN, LGP, and MSGP have been used to model various engineering 

problems. Among these a recently developed technique called evolutionary polynomial 

regression (EPR) is proven to be capable of learning complex non-linear relationships from a 

large set of data, and it has many desirable features for engineering applications. The EPR 

technique has been successfully applied to modelling a wide range of complex engineering 

problems including stability of slopes; liquefaction of soils; landslide risk management; 

material modelling and many other applications in Civil and Mechanical engineering [28-33]. 

EPR is a hybrid data driven technique based on the integration of genetic algorithm (GA) and 

least square (LS) to create true or pseudo-polynomial models from observed data. A typical 

formulation of EPR can be expressed in the following equation [34]:  

 � =  � �(
, �(
, ��
�

���
+ �� 

(2) 

In this equation, � is the estimated output of the system; �� is a constant value; � is a function 

constructed by process; 
 is the matrix of input variables; � is a function defined by user; and 

� is the number of terms of expression excluding the bias term ��. The general functional 

structure represented by �(
, �(
, �� is constructed from elementary functions by EPR 

using genetic algorithm (GA). The function of GA is to select the useful input vectors from 
 

to be combined together. The building blocks (elements) of the structure of � are defined by 
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the user based on understanding of the physical process. While the selection of feasible 

structures to be combined is done through an evolutionary process, the parameters �� are 

estimated by the least square method.       

The modelling process of EPR starts by evolving equations. As the number of evolutions 

increases, EPR gradually picks up the different contributing parameters to form equations 

representing the system being studied. Accuracy of the developed models is measured at each 

stage using the coefficient of determination (CD): 

where �� is the actual input value; �� is the EPR predicted value and N is the number of data 

points on which the CD is computed. If the model fitness is not acceptable or other 

termination criteria (e.g., maximum number of generation and maximum number of terms) 

are not satisfied, the current model should go through another evolution in order to obtain a 

new model [34]. 

In order to provide the best symbolic model(s) of the system being studied to the users, EPR 

is facilitated with different objective functions to optimise. The original EPR methodology 

used only one objective (i.e., the accuracy of data fitting) to explore the space of solutions 

while penalising complex model structures using some penalisation strategies [34]. However 

the single-objective EPR methodology showed some shortcomings, and therefore the multi-

objective genetic algorithm (MOGA) strategy has been added to EPR [35]. The multi-

objective EPR optimises two or three objective functions in which one of them will control 

the fitness of the models, while at least one objective function controls the complexity of the 

models. The multi-objective strategy returns a trade-off surface (or line) of complexity versus 

fitness which allows the user to achieve a lot of purposes of the modelling approach to the 

 CD = 1 − ∑ (Y� − Y� !

∑ (Y� − 1
N ∑ Y�!  !

 (3) 
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phenomenon studied (Giustolisi & Savic 2009) . In this study the multi-objective EPR is used 

to develop the EPR-based models. Further details of the EPR technique can be found in [34-

39]. 

  

4 Modelling sulphide build-up in filled pipes 

Several empirical models for prediction of sulphide build-up have been proposed by research 

studies for filled sewers. Three models have been referred to by literature as well established 

sulphide build-up models for steady state condition in filled pipes [11, 12, 24]. The models 

are presented in Table 1.  

In these models D represents diameter of pipe (m), T is temperature of the sewage (0C), r is 

hydraulic radius (m), [BOD] is concentration of biological oxygen demand (mg/lit) and 

[COD] is concentration of chemical oxygen demand (mg/lit). These models have taken into 

consideration several factors influencing sulphide production within filled sewers. While 

Thistlethwayte's equation includes the stream velocity of the sewage and the sulphate 

concentration in the sewage, the equations developed by Pomeroy [8] and by Boon and Lister 

[10] do not take into account the effect of these parameters. Boon and Lister developed their 

equation by switching COD for BOD in order to achieve a model with better accuracy. The 

value of the coefficient in their equation also was reduced accordingly compared with the 

equation developed by Pomeroy [8]. The empirical nature of the equations and the difficulty 

in comparing the prediction capability between the equations has been previously commented 

upon by Holder [40]. After considering all the three models, Pomeroy [8] noted that more 

information is needed on the effect of the stream velocity. Holder and Hauser [13] also 

concluded that further research is required to properly delineate the effect of flow velocity on 

sulphide production rate. Recent works on sulphide build-up in sewer systems focus on 
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dynamics and dynamic modelling of H2S production [12]. Dynamic modelling of sewer 

systems is necessary when dealing with certain sulphide control strategies such as injection 

of chemicals (nitrate, oxygen or metal ions) to either prevent sulphide formation or to remove 

sulphide from sewage once formed [41, 42]. However, in most applications of sewer models 

including the wastewater aerobic/anaerobic transformations in sewers (WATS), models have  

generally been limited to sewer systems under steady-state conditions [12, 15, 43].    

The data used in this study for modelling sulphide build-up in filled pipes includes all the 

data reported in [8, 10, 44]. Boon and Lister [10] selected a rising main with 22.86 cm 

diameter and 914 m length which conveyed sewage from a residential area. Sewage is 

pumped through a total height of 28m from the bottom of the sump to the top of the main, 

where it is discharged into a manhole and gravitates down a sewer.  The data that they used 

to present their model included 28 measurements from this rising main. Data presented by 

Pomeroy [8] included 51 measurements taken from different sewer systems in industrial 

countries such as the USA, Australia and Germany. Their data was taken from sewers with a 

variety of pipe diameters and lengths. Delgado's research [44] on sulphide build-up in Spain 

also produced 12 measurements from a sewer system in steady state condition.  

Usually in data mining techniques based on artificial intelligence such as neural network, 

genetic programming and EPR, the data is divided into two independent training and 

validation sets. The construction of the model takes place by adaptive learning over the 

training set and the performance of the constructed model is then appraised using the 

validation set. In order to select the most robust representation, a statistical analysis was 

performed on the input and output parameters (Table 2) of the randomly selected training and 

validation sets. The aim of the analysis was to ensure that the statistical properties of the data 

in each of the subsets were as close to the others as possible and thus represented the same 

statistical population. Random combinations of training and testing data sets were chosen and 
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the minimum, maximum, mean, and standard deviation were calculated for all the 

contributing parameters for the training and testing datasets for each case. To avoid 

extrapolation it was necessary to ensure that all parameters in testing data sets fell between 

the maximum and minimum values used in training data sets. From these combinations the 

one with the closest values of standard deviation and mean was chosen to be used in training 

and testing stages in the EPR model development process. In this way, the most statistically 

consistent combination was used for construction and validation of the EPR model. 

Once the training and validation sets are chosen, the EPR process can start. To develop the 

EPR models, a number of settings can be adjusted to manage the constructed models in terms 

of the type of functions, number of terms, range of exponents, etc. [34, 35]. When the EPR 

starts, the modelling procedure commences by evolving equations. As the number of 

evolutions increases, EPR gradually learns and picks up the participating parameters in order 

to form equations. Each proposed model is trained using the training data and tested using the 

validation data. The level of accuracy at each stage is measured using the CD (Equation 3). 

Several EPR runs were carried out and the analysis was repeated with various combinations 

and ranges of exponents, different functions and different numbers of terms in order to obtain 

the most suitable form for the model. As mentioned earlier the MOGA-EPR returns a trade-

off curve of the model complexity versus accuracy which allows the user to select the most 

suitable model based on his/her judgement and knowledge of the problem. The results of the 

EPR were analysed based on the simplicity of the models and the CD values of both training 

and testing datasets. After analysis of different alternative models the following expression 

(Equation 4) was found to be the most robust model for the sulphide build-up.  

 
#[%]
#' = 0.0135[,-�]�../�..�0�1�.. (4) 
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Where 
2[3]
24  is sulphide build-up rate (mg/l-hr), [COD] is chemical oxygen demand 

concentration (mg/l), T is sewage temperature (0C), D is internal diameter of the pipe (m) and 

u is the velocity of the stream (m/sec).    

The comparison between observed sulphide and predicted sulphide using Equation 4 for 

training and validation data are presented in Figures 1 and 2 respectively. A very good 

agreement between observed and predicted sulphide can be concluded from these figures. 

Figure 3 also illustrates the comparison between the model presented in this study by using 

the EPR model and the previous models presented by other researchers. Coefficient of 

determination (CD) obtained for the presented model is 84% while for the other models it is 

considerably less. 

To investigate the effect of each parameter on the amount of sulphide build-up, a parametric 

sensitivity analysis is carried out. For this sensitivity analysis, the amount of sulphide build-

up rate is calculated by changing the value for each parameter from its minimum to its 

maximum value while the values for other parameters are kept at their mean rate. Figures 4 to 

8 show how variation of each parameter affects the rate of sulphide build-up. It can be seen 

that increase in [COD], temperature, detention time and stream velocity will increase the 

amount of sulphide production, while increase in sewer diameter will result in less sulphide 

production. For example when COD concentration increases from 100 to 1200 mg/l, sulphide 

production rate increases from 0.7 to 2.5 mg/l-hr. The increase in sulphide build-up as a 

result of temperature rise is less significant compared with [COD]. As illustrated in Figure 5, 

when temperature increases from 150C to about 300C, the sulphide build-up rate increases 

from 1.4 to 2 mg/l-hr. The changes in sulphide build-up rate due to changes of the stream 

velocity are more notable. Figure 6 shows that sulphide build-up rate increases to up to 3.2 

mg/l-hr while the stream velocity changes from 0 to 1.32 m/s. The sulphide build-up 

predicted by Pomeroy [8] and Boon and Lister [10] does not change when the stream velocity 
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is increasing. That is because their equations (Equations No. 1 and No.2 in Table 1) do not 

involve a parameter that represents the stream velocity. Figure 7 also shows how pipe 

diameter has an inverse effect on sulphide build-up rate. The figures also show a similar 

trend for sulphide build-up rate when using other equations. Hence, in general, it can be 

concluded that the results provided by the presented model in this study are in agreement 

with the previous studies in the field of sulphide build-up in filled pipes and in steady state 

condition and moreover the developed model in this study provides better prediction 

compared with conventional models.  

 

 

6 Summary and conclusions 

Hydrogen sulphide problems (corrosion and odour) are among the most challenging 

problems regarding sewer operation and maintenance. Having an accurate model to predict 

sulphide build-up during the design phase and operation of sewers is very helpful for 

optimum planning of repair and maintenance strategies in sewer systems. A recently 

developed method (evolutionary polynomial regression) was used to present a more accurate 

model for sulphide build-up in steady state condition of filled sewers. It was shown that the 

proposed model in this study can provide more accurate predictions for sulphide build-up in 

filled pipes compared with other existing models. 

In order to investigate the influence of each contributing parameter on formation of sulphide 

build-up, a comprehensive sensitivity analysis was carried out. The results showed that while 

the sulphide build-up grows by increasing [COD], temperature, detention time and/or stream 

velocity, the sewer diameter has an inverse effect on sulphide build-up.  
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An interesting feature of EPR is the possibility of obtaining more than one model for a 

complex phenomenon. Selecting an appropriate objective function, assuming preselected 

elements (based on engineering judgement), and working with dimensional information 

enable refinement of final models. The developed model in this study can be improved as 

more data become available by re-training of the EPR using additional data. However, it 

should be noted that the EPR models should not be used for extrapolation, i.e. for new cases 

where one or more parameters fall outside the range of the parameters used in training, the 

predicted results should be taken with caution and allowance should be made for the 

uncertainty. Also, quality of the data could have an effect on the quality of the models. 

Although EPR has been shown to be effective in developing robust models based on data, the 

selection of the appropriate models should be based on engineering judgement to avoid 

selecting inappropriate models that may not conform to the physics of the problem being 

studied. 
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