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A zoned fishnet metamaterial lens is designed, fabricated, and experimentally demonstrated at

millimeter wavelengths to work as a negative near-zero refractive index lens suitable for compact

lens antenna configurations. At the design frequency f¼ 56.7 GHz (k0¼ 5.29 mm), the zoned

fishnet metamaterial lens, designed to have a focal length FL¼ 9k0, exhibits a refractive index

n¼�0.25. The focusing performance of the diffractive optical element is briefly compared with

that of a non-zoned fishnet metamaterial lens and an isotropic homogeneous zoned lens made of a

material with the same refractive index. Experimental and numerically-computed radiation

diagrams of the fabricated zoned lens are presented and compared in detail with that of a simulated

non-zoned lens. Simulation and experimental results are in good agreement, demonstrating an

enhancement generated by the zoned lens of 10.7 dB, corresponding to a gain of 12.26 dB.

Moreover, beam steering capability of the structure by shifting the feeder on the xz-plane is

demonstrated. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4869436]

I. INTRODUCTION

After more than a decade of intensive research, metama-

terial concepts are now being applied in a variety of fields,

though the main impulse is still in electromagnetism, where

they were first proposed1 and demonstrated.2 They have

enabled numerous applications thanks to the artificial manip-

ulation of the material intrinsic electromagnetic properties.3

The field of lenses has greatly benefited from metamate-

rials since their initial conception. The perfect lens,4 super-

lenses,5 hyperbolic lenses,6–8 and advanced lenses designed

on the basis of transformation optics9,10 or extreme refractive

index values11–13 show the merits of applying metamaterials

concepts throughout the whole spectrum. Different metama-

terial implementations have been proposed for lenses to ful-

fill the particular requirements of each spectral window. For

microwaves, the classical arrangement of split ring resona-

tors and wires has been widely used.14,15 However, for

higher frequencies, these structures are limited due to their

increasing losses. Therefore, for higher frequencies, such as

millimeter-waves, the fishnet metamaterial is the preferred

choice.11,16,17 The fishnet metamaterial consists of stacked

subwavelength hole arrays working in the extraordinary

transmission realm.18–22 Hence, it is also known as extraordi-

nary transmission metamaterial.23

One of the drawbacks of the lenses studied in Refs. 11,

12, 16, and 17 is that they are bulky, due to the need of sev-

eral layers to realize the desired profile/performance. This

was overcome in Ref. 24 by simply zoning the lens, which

implies the removal of layers each time a critical thickness is

reached, resulting in a reduced volume/weight and, addition-

ally, lower insertion losses.

Here, the study of the zoned fishnet metamaterial lens

presented in Ref. 24 is extended and it is focused on the radia-

tion characteristics when the diffractive optical metamaterial

element is fed by an ideal omnidirectional feeder or a real

open-ended waveguide. Moreover, the steering capability of

the lens is demonstrated experimentally and compared with

numerical simulations. The structure is designed to work at

the frequency f¼ 56.7 GHz (k0¼ 5.29 mm) with a focal length

FL¼ 47.62 mm¼ 9k0. From the dispersion diagram of an infi-

nite fishnet metamaterial, at the design frequency, the struc-

ture behaves as a near-zero refractive index medium (also

called zero index materials, ZIM) with n¼�0.25.

II. METAMATERIAL ZONED LENS DESIGN

The numerical study of the zoned lens is made using the

commercial software CST Microwave StudioTM. First, the

eigenmode solver of the software is used to compute the effec-

tive refractive index of an infinite fishnet metamaterial whose

unit cell is shown in the inset of Fig. 1(a). The dimensions of

the unit cell are dx¼ 3 mm, dy¼ 5 mm, dz¼ 1.5 mm (air gap

of 1 mm and metal thickness w¼ 0.5 mm), and hole diameter

a¼ 2.5 mm. Perfect electric conductor is used for this simula-

tion since it is a good approximation for metals at

millimeter-waves and simplifies the analysis. With these

a)Electronic mail: victor.pacheco@unavarra.es
b)Electronic mail: b.orazbayev@unavarra.es
c)Electronic mail: unai.beaskoetxea@unavarra.es
d)Electronic mail: miguel.beruete@unavarra.es
e)Electronic mail: m.navarro@imperial.ac.uk
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conditions, a single hole has its cut-off frequency at 72 GHz.

However for an array of such holes, extraordinary transmis-

sion appears in the range between 53 and 58 GHz. It has been

demonstrated in the past that extraordinary transmission reso-

nance is caused by the accumulation of energy in the vicinity

of the first order diffraction mode cutoff, thus it is directly

related to the periodicity of the hole matrix.20,22 The simula-

tion result of the effective nz for the fundamental band is

shown in Fig. 1(a). It can be observed that the fishnet metama-

terial is dispersive with negative refractive index at the funda-

mental band. We choose f¼ 56.7 GHz (k0¼ 5.29 mm) as the

design frequency, where n¼�0.25 [see Fig. 1(a)], because

the dispersion is lower in such ZIM regime.

According to the general equation of conical curves, for

n¼�0.25 and one face flat, the lens profile of the remaining

face needs to be an ellipse.11 Although this planoconcave

profile [Fig. 1(b)] is thinner than the convex profiles of

dielectric lenses, it is still slightly bulky and precludes the

use of the fishnet metamaterial lens for applications with

space limitation, such as automotive radar systems. This dis-

advantage can be overcome by zoning the lens, whereby

parts of the lens are removed when their phase variation with

respect to free-space propagation is an integer multiple of

2p.24,25 This determines a thickness limit (t) that can be

mathematically calculated as a relation between the free-

space wavelength (k0) and the effective refractive index of

the structure, as follows:

t ¼ k0

1� n
: (1)

Note that, due to the selected refractive index of the fish-

net metamaterial (n¼�0.25), t¼ 0.8k0� 4.23 mm, i.e., it is

smaller than the free-space wavelength, allowing us to

design a compact lens.

By combining the general equation of an ellipse11 and

the thickness limit from Eq. (1), the equation for the zoned

profile of the lens is obtained as follows:24

ð1� n2Þðzþ mtÞ2 � 2ðFLþ mtÞð1� nÞðzþ mtÞ þ x2 ¼ 0;

(2)

where m is an integer representing the successive steps for

the zoned lens profile (m¼ 0, 1, 2, 3).

By choosing a focal length, FL¼ 47.62 mm¼ 9k0, the

final lens profile obtained following Eq. (2) is shown on

Figs. 1(c) and 1(d). The whole structure comprises a total

number of 37� 27 holes along x and y directions, respec-

tively, and between 2 and 6 stacked plates along z-axis.

Thus, the metal structure of the lens can be enclosed by a

box with dimensions 21k0� 25.5k0� 1.5k0.24 Notice that

the total thickness of 1.5k0 is not in contradiction with Eq.

(1), since Eq. (1) accounts for the thickness limit correspond-

ing to the zoned face. The total thickness, however, is com-

posed of such thickness and the additional holey plate at the

back of the lens.

III. SIMULATION RESULTS

In this section, the zoned fishnet metamaterial lens is

compared numerically with two more idealized lenses to

evaluate its performance: a non-zoned fishnet metamaterial

lens and an isotropic homogenous zoned lens with effective

index n¼�0.25, see Figs. 1(b) and 1(c). First, the focusing

properties of the three lenses are studied when they are illu-

minated from their flat interface by an ideal plane-wave.

Afterwards, the radiation pattern of the zoned lens is com-

pared with its non-zoned counterpart when a point feeder

(short electric dipole) at the focal point is used to excite the

lens.

To begin with, the output profile of the non-zoned fish-

net metamaterial lens is obtained by using Eq. (2) with

m¼ 0, resulting a lens with a concave-profiled output face.

The homogenous lens is simulated using the frequency-

domain solver of CST Microwave StudioTM. We are inter-

ested in evaluating the performance of the homogeneous

structure for a single frequency (f¼ 56.7 GHz); therefore, by

using this solver, the structure is simulated without the need

of a dielectric dispersion model, such as Drude material to

mimic the ZIM behavior. This way, simulation time is

reduced. Moreover, periodic boundary conditions are

imposed along y so that the lens is effectively infinite in that

direction, whereas open boundary conditions (i.e., perfectly

FIG. 1. (a) Effective refractive index,

nz, of an infinite fishnet metamaterial;

(inset) schematic representation of the

unit cell with dimensions: dx¼ 3 mm,

dy¼ 5 mm, dz¼ 1.5 mm, metal thick-

ness w¼ 0.5 mm and hole diameter

a¼ 2.5 mm. Schematic representation

of the different profiled lenses studied

in this work: (b) concave profile using

the fishnet metamaterial, (c) zoned lens

using an isotropic homogeneous me-

dium with n¼�0.25, and (d) zoned

lens using the fishnet metamaterial.

124902-2 Pacheco-Pe~na et al. J. Appl. Phys. 115, 124902 (2014)
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matched layers) are used along x and z. The other designs

(non-zoned and zoned fishnet metamaterial lenses) are simu-

lated using the transient solver in order to evaluate the spec-

tral response of the lenses within the millimeter-wave

V-band (see Sec. IV). The excitation is done with a vertically

polarized (Ey) plane-wave impinging on the flat face of the

structures.

Simulation results of the spatial power distribution in

xz-plane for the three structures at the working frequency

f¼ 56.7 GHz (k0¼ 5.29 mm) are shown in Fig. 2. It is evi-

dent that they all work as focusing lenses and that they have

similar focal lengths: the non-zoned lens has FL¼ 47.4 mm

(¼8.96k0) which is very close to the homogenized zoned

lens FL¼ 47.63 mm (¼9.01k0), whereas the zoned lens

presents a slightly different value, FL¼ 49.5 mm (¼9.35k0).

The small difference (0.34k0¼ 3.7%) between the ideal FL

obtained with the isotropic homogeneous structure and the

zoned fishnet metamaterial lens validates the design here

presented.

The power distribution at the focal plane for each lens is

presented on top of each two-dimensional color map. The

full width at half maximum (FWHM) along x at the focal

plane is very similar in all considered cases, namely, 0.47k0,

0.57k0, and 0.56k0 for the non-zoned, zoned, and homoge-

nized lenses, respectively. Moreover, it can be observed that

the lateral lobes are more prominent for both zoned lenses.

This is as expected due to the smaller output numerical aper-

ture of the zoned lenses compared with the non-zoned case.

However, these simulation results demonstrate that the zoned

fishnet metamaterial lens does not exhibit major deteriora-

tion on the overall performance.

Regarding the radiation pattern, the lens is compared

numerically with its non-zoned counterpart, using three-

dimensional lenses. A short electric dipole is used as feeder

and is placed at the focal length obtained from Fig. 2. Far-

field monitors are used to record the radiation pattern of the

two lenses within the frequency range 50–60 GHz with a

step of 0.5 GHz. Note that this is an approximated study

because of the chosen feeder. This is done in order to evalu-

ate the performance of the fishnet metamaterial lenses when

an idealized excitation (omnidirectional) is used. In Sec. IV,

a realistic study will be presented using an open-ended wave-

guide (WR-15) as feeder.

The simulation results for the power distribution of the

co- and cross-polar components on the H-plane are presented

in Figs. 3(a) and 3(b) and Figs. 3(c) and 3(d) for the non-

zoned and zoned structures, respectively. It is shown that the

co-polar enhancement (defined as the ratio between the

power available when the lens is used and the power

received without the lens) of the non-zoned lens (12.9 dB) is

slightly better than that of the zoned lens (11.2 dB). Hence,

the directivity (defined as the ratio between the radiated

power density in the direction of maximum emission, 0� in

our case, and the power density radiated by an ideal isotropic

source emitting the same total power) obtained with the non-

zoned and zoned lens is 15.17 dBi and 14.53 dBi, respec-

tively. The cross-polarization at 0� of the non-zoned and

zoned structures is �180 dB and �178 dB at the design fre-

quency. In addition, cross-polar lobes appear at 643� and

637.2� for the non-zoned and zoned lenses, respectively, at

the design frequency (f¼ 56.7 GHz). They are more promi-

nent for the zoned lens with a level of 144.9 dB and 142.2 dB

FIG. 2. Normalized spatial power distribution in xz-plane: (a) non-zoned

fishnet metamaterial lens, (b) zoned lens using an isotropic homogeneous

medium with n¼�0.25, and (c) zoned fishnet metamaterial lens. The top

panel of each figure is the power at the focal length along the white dashed

line (x-axis in mm) depicted in each two-dimensional color map.

124902-3 Pacheco-Pe~na et al. J. Appl. Phys. 115, 124902 (2014)
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below the co-polar for the non-zoned and zoned cases,

respectively [see Figs. 3(b) and 3(d)]. The origin of these

side lobes and those also observed for the co-polar around

615–20� can be arguably assigned to grating lobes, as the

white dashed lines in Fig. 3 demonstrate.

This better performance of the non-zoned lens can be

explained on the basis of the spillover efficiency (i.e., the ratio

between the power reemitted from the lens and the total power

radiated by the feed; this parameter gives an idea of the total

power radiated from the source that is intercepted by the lens).

According to the simulations, the spillover efficiency (gso) is

0.25 and 0.19 for the non-zoned and zoned lenses, respec-

tively. However, these results again corroborate that the zoned

fishnet metamaterial lens has a small deterioration on its prop-

erties compared to the non-zoned counterpart.

IV. EXPERIMENTAL RESULTS: RADIATION PATTERN

The zoned fishnet metamaterial lens was fabricated

using aluminum layers perforated and cut by laser. Frames

of the same metal with thickness of 1 mm were used to create

the air gap between each holey plate. A picture of the fabri-

cated zoned fishnet metamaterial lens is presented in Fig.

4(a). Measurements of the zoned lens were performed using

an ABmmTM millimeter-wave quasi-optical vector network

analyzer (VNA) in the V-band. To evaluate the radiation

characteristics of the lens, the radiation pattern was meas-

ured following the next procedure: an open-ended rectangu-

lar waveguide (WR-15) was placed at the experimental focal

length (FL¼ 46.5 mm¼ 8.79k0), see Sec. III and Ref. 22, to

excite the lens. Both elements, open-ended waveguide and

lens, were standing on a rotating platform in order to make

angular measurements from �90� to þ90�, with a step of 1�.
A high gain standard horn antenna was placed at 4000 mm

from the flat face of the lens to detect the radiated power.

The schematic representation of the experimental setup is

presented in Fig. 4(b) along with the pictures of the

open-ended waveguide [Fig. 4(c)] and the horn antenna [Fig.

4(d)] used as feeder and detector, respectively. First, a cali-

bration of the system was made by recording the transmitted

power in absence of the lens. Next, the lens was placed

between detector and feeder.

In order to better assess the performance of the fabri-

cated lens, simulations were also launched for the three-

dimensional non-zoned and zoned fishnet structures by using

a realistic open-ended WR-15 as feeder at the numerically-

estimated focal point. As it was done in Sec. III, far-field

monitors were used to record the radiation pattern of the two

lenses within the frequency range 50–60 GHz with a step of

0.5 GHz. The simulation results for the power distribution of

the co- and cross-polar components on the H-plane are pre-

sented in Figs. 5(a) and 5(b) and Figs. 5(c) and 5(d) for the

non-zoned and zoned structures, respectively. Experimental

measurements for the co- and cross-polarizations are pre-

sented in Figs. 5(e) and 5(f), respectively.

By inspection of the measurement and the simulation

results from Fig. 5 along with the simulations from Fig. 3, it

is evident that the use of a realistic waveguide feeder models

significantly better the experiment. The spillover efficiency

is now 0.9 and 0.86 for the non-zoned and zoned lens,

respectively, and arguably can explain the closer perform-

ance between the non-zoned and zoned lens.

FIG. 3. Simulation results of radiation

pattern (dB) for the frequency range

50–60 GHz using a point source at the

focal position: co-polarization (a) and

(c) and cross-polarization (b) and (d)

of the non-zoned (a) and (b) and zoned

(c) and (d) fishnet metamaterial lens

antenna. The white dashed lines repre-

sent the analytical positions of the gra-

ting lobes of order (0,�1), (�1,0), and

(�1,1).
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A high enhancement of the zoned lens is obtained in the

experiment (10.7 dB), which is slightly better than the simu-

lation value (9.65 dB), see Figs. 5(c) and 5(e). A very narrow

H-plane beamwidth is found (h�3 dB¼ 3.5�), demonstrating

its good performance. Notice that the minor discrepancy

between simulation and experiment falls within the experi-

mental error. The enhancement of the non-zoned lens

(11.5 dB)—obtained uniquely from simulation—is slightly

better than that of the zoned lens, in good agreement with

the numerical results of Sec. III. In the zoned lens, the

co-polar component presents side lobes near 670�, which

are observed in both simulation and experimental results

within the whole frequency range, with a magnitude between

�12 and �10 dB (i.e., �22.7–�20.7 dB relative to the main

lobe) in the experiment, see Fig. 5(e). In the simulation, they

have slightly smaller values, see Fig. 5(c). These side lobes

are due to the spillover. Hence, they are frequency independ-

ent. Given the larger numerical aperture of the non-zoned

lens, these side lobes are not present [see Fig. 5(a)]. All this

is more evident by looking at the radiation pattern of both

non-zoned and zoned lenses for f¼ 56.7 GHz [see Figs. 6(a)

and 6(b), respectively]. The zoned lens has clearly such

prominent side lobes at 670�, whereas the non-zoned lens

has such side lobes due to spillover at 690� with a magni-

tude near �16 dB (�27 dB relative to the main lobe). A

simple approach to reduce spillover side lobes in the zoned

lens would be to decrease the focal length-to-diameter ratio.

It is known that side lobes can also be generated due to peri-

odicity, so called grating lobes. They are unavoidable in our

lenses because of the fishnet periodic nature. The analytical posi-

tions of the first order grating lobes (0,�1), (�1,0), and (�1,1)

are plotted as white dashed lines in Fig. 5, revealing clearly the

origin of all the side lobes observed in the diagram. Note that

when a short electric dipole was used as feeder in last section,

grating lobes were also observed (see Fig. 3).

To facilitate comparison, the normalized radiation dia-

gram of the zoned lens at the design frequency

(f¼ 56.7 GHz) is shown in Fig. 6(c), for simulation results of

the co-polarization (dotted line) and experimental measure-

ments (solid lines). The cross-polar level at 0� is �43 dB,

whereas the simulation predicts the unmeasurable �209 dB

(notice that we have estimated the dynamic range of the sys-

tem to be �50 dB). Meanwhile, the simulations predict

cross-polar lobes at 639.2� and 634� at the design fre-

quency for the non-zoned and zoned lenses, respectively.

However, since their magnitudes are below the noise floor of

the system, they are not recorded in the experiment.

FIG. 4. (a) Picture of the fabricated zoned fishnet metamaterial lens. (b)

Schematic representation of the experimental set-up for the characterization

of the radiation pattern. (c) Open-ended rectangular waveguide used as

feeder and (d) horn antenna used as detector.

FIG. 5. Radiation pattern (dB) for the frequency range 50–60 GHz: simulation

results for co-polarization (left column) and cross-polarization (right column)

of the non-zoned (a) and (b) and zoned (c) and (d) fishnet metamaterial lens;

experimental co-polarization (e) and cross-polarization measurements (f) of

the zoned fishnet metamaterial lens; the white dashed lines represent the ana-

lytical positions of the grating lobes of order (0,�1), (�1,0), and (�1,1).
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In order to fully characterize the radiation performance,

the numerically-computed and experimental gain (defined as

the ratio of the radiated power density in the direction of

maximum emission, 0� in our case, and the power density

radiated by an ideal lossless isotropic radiator that emits all

the power fed by the source) for the zoned fishnet metamate-

rial lens are presented in Fig. 7 in the frequency range of

50–60 GHz. For the experiment, the gain is obtained compar-

ing our lens antenna with a horn antenna following the gain

comparison method.26 A high gain of 12.26 dB is found,

close to the value obtained in simulation (14.9 dB), which is

directly calculated by using the software-implemented far-

field monitors. As happened with the enhancement, the gain

is slightly better for the non-zoned lens (16.5 dB; not shown

in the plot). The small difference between simulation and

experimental results obtained can be due to the imperfections

on the fabrication and assembly of the lens. In general, simu-

lation and experimental results are in good agreement.

The results obtained in this section for the zoned lens

are summarized in Table I: �3dB beamwidth in the H-plane,

cross-polar level at 0�, gain, cross-polar main lobe location,

comparing simulation and experiment.

V. BEAM STEERING USING THE ZONED FISHNET
METAMATERIAL LENS

Following the analysis of the radiation pattern of the

zoned lens, its beam steering capability by mechanical shift

of the feeder is studied in this section.

According to Fourier optics, the output beam can be

steered in a lens antenna by shifting the feeder.27 Therefore,

we aim to find experimentally in the first instance the coordi-

nates on the xz-plane where the feeder should be placed in

order to steer the output angle from 0� to 20� in 5� steps.

Next, we characterize the radiation properties of the steer-

able beam.

The process to find experimentally the position on the

xz-plane of the open-ended waveguide feeder is as follows:

first, the whole system is fixed at each measured output angle

(0�, 5�, 10�, 15� and 20�). Then, the feeder is moved on the

xz-plane in order to find the position at which the maximum

power is detected. The feeder is moved from 0 to 15 mm and

from 20 to 70 mm along x-axis and z-axis, respectively, with

a step of 0.5 mm. In this way, the focal point coordinates on

the xz–plane are obtained accurately.

FIG. 6. Simulation results of the radiation pattern (dB) at the design fre-

quency (f¼ 56.7 GHz) for the co-polarization of the non-zoned (a) and

zoned lens (b). (c) Simulation (dotted curve) and experimental results (solid

curves) for the normalized power at the design frequency (f¼ 56.7 GHz):

co-polarization (red curve) and cross-polarization (blue curve).

FIG. 7. Gain of the zoned fishnet metamaterial lens (dB) for the frequency

range 50–60 GHz: simulation (blue curve) and experimental measurement

(red curve).

TABLE I. Simulations and experimental results of the radiation performance.

Structure BWa Cross-polar at 0� (dB) Location MLb cross-polar (deg) ENHc (dB) Gd (dB)

Non-zoned lens (simulation) 3.6 �203 639.2 11.5 16.5

Zoned lens (simulation) 3.8 �209 634 9.65 14.9

Zoned lens (experimental) 3.5 �43 Not detected due to the limit of dynamic range 10.7 12.26

aBW is the H-plane beamwidth.
bML is the main lobe.
cENH is the enhancement.
dG is the gain.
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The experimental positions of the open-ended wave-

guide found, for each output angle, by the above described

procedure are shown in Fig. 8(a) as filled circles. By invok-

ing reciprocity, the shifting of the focal position can be also

numerically computed by exciting the zoned lens with a

plane-wave at the desirable oblique incidence. This is illus-

trated in Fig. 8(b), where simulation of the spatial power dis-

tribution on the xz-plane is presented when a plane-wave

impinges obliquely at 10� upon the flat-input face of the

lens. Following this approach, the simulation results (filled

triangles) of the (x,z) coordinates of the focal position when

a plane-wave impinges obliquely with different angles (0�,
5�, 10�, 15�, and 20�) are also presented in Fig. 8(a). Note

that the experimental positions are slightly different from the

simulation coordinates, yet the trend is maintained. This

small discrepancy can be assigned to experimental toleran-

ces, such as the accuracy of the feeder position.

Simulation and experimental results of the radiation pat-

tern at the design frequency for the output angles 0�, 5�, 10�,
15�, and 20� are presented in Figs. 8(c) and 8(d), respectively.

Simulations are now done by placing the open-ended WR-15

at the numerically-estimated positions [filled triangles in Fig.

8(a)]. It is shown that the experimental output angles are

indeed very close to the values obtained by simulations.

To summarize the beam characteristics regarding the

mechanical beam steering using the fabricated zoned fishnet

metamaterial lens, the results of the output angles, beam-

width at �3 dB for the H-plane, and the side lobe level are

presented in Table II for simulation and experimental results.

From the comparison of these results, one can observe that

experimental and simulation results are in good agreement

for all output angles, except for 20� where a clear deteriora-

tion in terms of beamwidth and side lobe level is obtained.

The beamwidth in the H-plane for simulation and experiment

shows a range between 3� and 4� for all output angles, except

for 20� where beamwidth is 8�. Moreover, it can be seen that

the lower side lobe level is obtained for the output angle 0�

and 5� for simulation and experiment, respectively. Note that

the difference between the experimental beamwidth for 0�

and 5� is however only 12.5% and falls within the experi-

mental error. Furthermore, the experimental side lobe level

for the output angle 20� is only 1.56 dB below the main lobe.

Compared with simulations, the side lobe level at the angle

20� is 5.4 dB. This discrepancy can be due to errors in the

location of the feeder for experimental measurements. Based

on these results, and considering a scan loss of 3 dB (which

is commonly used for evaluating the steering capability of an

antenna; scan loss is defined as the maximum value of power

reduction allowed for a given angle compared with the value

at 0�), the structure here designed has a beam steering capa-

bility up to 610�.

VI. CONCLUSIONS

In this paper, a zoned fishnet metamaterial lens was

designed, simulated, and measured at millimeter-waves. The

performance of the zoned lens was compared with a non-

FIG. 8. (a) (x,z) coordinates of the focal length on the xz-plane for the output

angles 0�, 5, 10�, 15�, and 20�: simulation results (filled-triangles) and ex-

perimental positions (filled-circles). (b) Simulation result of the spatial

power distribution on the xz-plane when a plane wave impinges obliquely at

10� upon the flat-input face of the zoned fishnet metamaterial lens. Results

of the radiation pattern for the angles obtained at the output of the lens: (c)

simulation and (d) experimental results.

TABLE II. Simulations and experimental results of the beam steering capability.

Output angles (deg) H-plane beamwidth (deg) Side lobe level (dB)

Simulational Experimental Simulational Experimental Simulational Experimental

0 0 3.8 3.5 7.5 7.93

5 5 3.6 4 6.1 8

10 9 4 4 5.7 5.76

15 14 4.3 4 5.6 4.71

20 20 3.3 8 5.4 1.56
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zoned planoconcave lens synthesized by the fishnet metama-

terial and with an idealized zoned lens made of an isotropic

homogeneous medium with n¼�0.25. The radiation pattern

of the zoned fishnet metamaterial lens demonstrated an ex-

perimental enhancement, compared with an open-ended

WR-15 waveguide, up to 10.7 dB for the co-polarization

with a gain of 12.26 dB. Meanwhile, the cross-polarization

was 43 dB lower than the co-polar component at the design

frequency. Finally, the beam steering capability of the zoned

lens was analyzed. By changing the position of the open-

ended waveguide feeder from the focal point on the xz-plane,

experimental measurements showed that the main lobe of

the radiation pattern shifted at the angles 0�, 5�, 9�, 14�, and

20�, which were very close to the required angles. Moreover,

a suitable beam steering up to 10� was demonstrated by con-

sidering a standard 3 dB scan loss.
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