
 
 

University of Birmingham

Roles of connexins and pannexins in
(neuro)endocrine physiology
Hodson, David J; Legros, Christian; Desarménien, Michel G; Guérineau, Nathalie C

DOI:
10.1007/s00018-015-1967-2

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Hodson, DJ, Legros, C, Desarménien, MG & Guérineau, NC 2015, 'Roles of connexins and pannexins in
(neuro)endocrine physiology', Cellular and Molecular Life Sciences, vol. 72, no. 15, pp. 2911-28.
https://doi.org/10.1007/s00018-015-1967-2

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
The final publication is available at Springer via http://dx.doi.org/10.1007/s00018-015-1967-2

Checked Jan 2016

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 11. Apr. 2024

https://doi.org/10.1007/s00018-015-1967-2
https://doi.org/10.1007/s00018-015-1967-2
https://birmingham.elsevierpure.com/en/publications/297d508c-9320-4208-afca-49399b30cfc1


 1 

 

Roles of connexins and pannexins in endocrine/neuroendocrine physiology 

 

David J. Hodson
1
, Christian Legros

2,3,4,5
, Michel G. Desarménien

6,7,8
 and Nathalie C. Guérineau

6,7,8
 

1
Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London 

W12 0NN, United Kingdom;
 2

Department of Integrated Neurovascular and Mitochondrial Biology, Angers, 

France; 
3
CNRS UMR6214, Angers, France; 

4
INSERM U1083, Angers, France; 

5
University of Angers, Angers, 

France; 
6
CNRS, UMR-5203, Institute of Functional Genomics, Montpellier, F-34094, France; 

7
INSERM, U661, 

Montpellier, F-34094, France; 
8
University of Montpellier, Montpellier, F-34094, France. 

 

Address all correspondence and requests for reprints to Nathalie C. Guérineau, Institut de Génomique 

Fonctionnelle, 141 rue de la Cardonille, 34094 Montpellier CEDEX 5, France. Tel: 33-4-34-35-92-50; Fax: 33-

4-67-54-24-32; E-mail: nathalie.guerineau@igf.cnrs.fr 

 

Running title: connexin and pannexin signaling in (neuro)endocrine function. 

 

Abbreviations: adrenocorticotropic hormone (ACTH), arcuate (ARC), adenosine triphosphate (ATP), cyclic 

adenosine monophosphate (cAMP), corticotrophin-releasing hormone (CRH), connexin (Cx), folliculostellate 

(FS), follicle-stimulating hormone (FSH), growth hormone (GH), growth hormone-releasing hormone (GHRH), 

gonadotrophin-releasing hormone (GnRH), luteinizing hormone (LH), pannexin (Panx), paraventricular nucleus 

(PVN), parvocellular (PV), pituitary adenylate cyclase-activating peptide (PACAP), prolactin (PRL), supraoptic 

nucleus (SON), triiodothyronin (T3), thyroid-stimulating hormone (TSH), thyrotrophin-releasing hormone 

(TRH), thyroxine (T4), zona fasciculata (ZF), zona glomerulosa (ZG), zona reticularis (ZR). 



 2 

Abstract 

To ensure appropriate secretion in response to organismal demand, (neuro)endocrine tissues liberate massive 

quantities of hormone, which act to coordinate and synchronize biological signals in distant secretory and non-

secretory cell populations. Intercellular communication plays a central role in this control. With regard to 

molecular identity, junctional cell-cell communication is supported by connexin (Cx)-based gap junctions. In 

addition, connexin hemichannels, the structural precursors of gap junctions, as well as pannexin (Panx) channels 

have recently emerged as possible modulators of the secretory process. This review focuses on the expression of 

connexins and pannexins in various (neuro)endocrine tissues, including the adrenal cortex and medulla, the 

anterior pituitary, the endocrine hypothalamus and the pineal, thyroid and parathyroid glands. In response to a 

physiological or pathological situation, junctional intercellular coupling can be acutely modulated or persistently 

remodelled, thus offering multiple regulatory possibilities. The functional role(s) of gap junction-mediated 

intercellular communication in endocrine physiology, as well as the involvement of connexin/pannexin-related 

hemichannels are also discussed. 

 

 

Keywords: connexin, pannexin, hemichannel, endocrine, adrenal gland, pituitary gland, endocrine 

hypothalamus, pineal gland, thyroid and parathyroid glands. 
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Introduction 

The neuro(endocrine) system regulates body-wide homeostasis in mammals by dynamically integrating 

environmental cues and modifying the functional set point of downstream effectors accordingly [1]. To achieve 

this, secretory cell/neuron populations must act in unison to release either peptide hormone or neurotransmitter 

messengers [2]. Target organs then decode the information contained within the signal to mount an appropriate 

response (e.g. stress, growth, metabolism and reproduction). As a consequence, mechanisms have evolved to 

ensure coordinated responses to stimuli by streamlining cell-cell communication. Chief among these are the 

connexins and pannexins, which provide a relatively cell-specific pathway for the rapid exchange of information 

[3]. Indeed, these channels are able to modulate tissue output through the passage of ions and molecules between 

cells/neurons, as well as from cells/neurons into the extracellular space. Providing strong evidence for a critical 

role of connexins and pannexins in neuro(endocrine) regulation, studies in models with impaired channel 

function consistently present with altered intercellular communication and hormone/neurotransmitter release [4]. 

Thus, connexins and pannexins appear to be an intrinsic component of many neurohormonal axes and, as such, 

their structural and functional description is important to properly understand organismal homeostasis. The aim 

of the present paper is to review the tissue expression and localization of connexins and pannexins, as well as 

their contribution to neuro(endocrine) physiology.  

 

Adrenal gland 

Adrenal cortex: dual contribution of gap junctional communication in steroidogenesis and cell proliferation 

The adrenal cortex is a secretory tissue, which constitutes the outer part of the adrenal gland. It is involved in the 

stress response through the secretion of mineralocorticoids (i.e. aldosterone) by the zona glomerulosa (ZG) and 

glucocorticoids (i.e. cortisol/corticosterone) by the zona fasciculata (ZF). The third zone, the zona reticularis 

(ZR) cortex is dedicated to androgen synthesis and release. Interestingly, the adrenocortical cells can display 

neuroendocrine properties [5]. 

 

Connexin expression and distribution 

Adrenocortical gap junctions were structurally identified in the early seventies by freeze-fracture electron 

microscopy performed in the rat [6]. As shown in Table 1, Cx43 emerges as the major, if not exclusive, gap 

junction protein expressed in the adrenal cortex. With the exception of the human adrenal cortex, which 

expresses Cx26, Cx32 and Cx50 in addition to Cx43 [7], no signal was detected for Cx26, Cx31, Cx32, Cx36, 
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Cx37, Cx40 and Cx46 [8-12] in mammals. Of note, we recently identified Cx37, Cx40 and Cx45 transcripts in 

the mouse cortex (unpublished results). Abundant Cx43-built gap junction plaques are present in the ZF and ZR, 

while cells within the ZG exhibit few, if any, gap junctions [8, 9, 13, 14] (Table 2). Single cell RT-PCR 

experiments have also revealed the presence of Cx43 mRNA in the ZF and ZR [15]. Cx43 is not only expressed 

in the normal adrenocortical tissue, but also in benign and malignant neoplastic tissues, in which Cx43 

expression is dramatically reduced [11]. 

In mammals, the presence of gap junctions is not restricted to adults, but is also detected in neonates and fetuses 

of various species, including rat, mouse, rabbit, sheep and human [16-20]. In neonatal rats, gap junctions are 

already well differentiated in the ZF and ZR. In the ZG, they become detectable 2 weeks postnatal [16]. 

   

Connexin intercellular channels 

The first electrophysiological study of gap junction-mediated electrical coupling between cortical cells was 

reported over 40 years ago in rabbit adrenal slices [18]. As hypothesized [21], gap junctional communication in 

the adrenal cortex plays a pivotal role in a number of interactive cell processes, including differentiation, 

steroidogenesis and hormone responsiveness, migration and proliferation (reviewed in [22-24]). It is noteworthy 

that Cx43 exhibits a differential distribution pattern within the three zones of the adrenal cortex that correlates 

with divergent proliferation rates and responsiveness to ACTH. Through cAMP diffusion between cortical cells, 

ACTH enhances Cx43 protein expression and gap junction plaque formation in the ZF and ZR, resulting in an 

increased gap junction number and size [10, 13, 25], enhanced steroidogenesis, at least in cultured cells [10, 26], 

and decreased cell proliferation rate [10, 25, 26]. Altogether, this clearly indicates that expression of 

adrenocortical gap junctions is under hormonal influence. Strengthening further the evidence that adrenocortical 

gap junctions are hormonally regulated is the finding that hypophysectomy leads to a robust decrease in Cx43 

expression in the ZF and ZR, and that Cx43-mediated cell-cell communication is restored by subsequent ACTH 

treatment [27]. The physiological contribution of gap junction-mediated cell-cell communication to 

adrenocortical hormone release is demonstrated by the tissue response to a low ACTH concentration [22, 28]. At 

submaximal ACTH concentrations, only a fraction of cortical cells responds to the stimulus by producing cAMP. 

By mediating intercellular communication, gap junctions allow the transfer of cAMP from responsive to non-

responsive cells, thus resulting in increased cortisol secretion. This finding uncovers gap junctions as a 

mechanism whereby cortical cells modify their responsiveness to low physiological ACTH concentrations [28]. 
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More recently, adrenocortical gap junctions were reported as modulators of cell migration [29]. To date, there 

are no studies examining connexin hemichannel structure and/or function in the adrenal cortex.    

 

Pannexin channels 

The presence of Panx proteins in adrenocortical cells has not yet been reported. Nevertheless, we recently 

detected Panx1, but not Panx2 and Panx3, in the rat cortex (unpublished data). 

 

Adrenal medulla: gap junctional communication as an adaptive pathway to regulate stimulus-secretion coupling 

The neuroendocrine chromaffin cells are responsible for catecholamine secretion and are notably stimulated 

upon stressful situations, with a marked involvement in the ‘fight or flight’ response. The traditional scheme of 

stimulus-secretion coupling in the adrenal medulla, stating that catecholamine release is chiefly, if not 

exclusively, controlled by synaptically-released acetylcholine at the splanchnic nerve terminal-chromaffin cell 

synapses, has prevailed for many decades. It was revisited in the early 2000s, with the first description, in rat, of 

the functional role of connexin-mediated gap junctional coupling between chromaffin cells in the secretory 

process [15] (Fig. 1). 

 

Connexin expression and distribution 

In the adrenal medulla, connexin-composed gap junctional plaques were originally described in the 1980s from 

observations of freeze-fractured specimens [30]. As summarized in Table 3, diverse connexins are expressed in 

the normal adrenal medullary tissue, coupling both endocrine (i.e. chromaffin cells) and non-endocrine cells (i.e. 

satellite cells and sustentacular cells). Unlike the cortex in which Cx43 is the main connexin isoform expressed, 

the rodent medulla expresses Cx29, Cx43 and neuronal Cx36, consistent with a neural crest-derived tissue [31]. 

In humans, the medullary tissue does not show presence of Cx36, but rather of Cx50, a neuronal connexin 

robustly expressed in the horizontal cells of the retina [32]. While Cx36 and Cx43 are present in the 

neurosecretory chromaffin cells, Cx29 couples S100-positive cells, likely targeting the non-secretory glial-like 

sustentacular cell population, as well as surrounding the preganglionic sympathetic nerve fibers that innervate 

the medulla [33]. Inmunoreactivity for Cx26, Cx31, Cx32, Cx37, Cx40 and Cx46 remains absent in normal 

adrenal medullary tissue [7-9]. Of note, we recently identified in rat and mouse, Cx37 and Cx40 transcripts, two 

connexins exhibiting a vascular tropism, and Cx45 (unpublished data). Connexin expression depends on the 
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physiological/pathological status of the medullary tissue, as illustrated by the de novo expression of Cx26, Cx32 

and Cx43 in pheochromocytomas [7]. 

 

Connexin intercellular channels 

The presence of connexins between chromaffin cells, mainly Cx36 and Cx43 in rodents [12, 15, 34, 35], strongly 

suggests the involvement of gap junction membrane channels in hormone secretion [36]. In a paper published in 

the early 2000s, Martin and colleagues [15] described, for the first time, the presence of functional gap junctional 

communication between rat chromaffin cells in acute adrenal slices and its role as an additional component of 

stimulus-secretion coupling. Due to electrical coupling, a single stimulated cell can propagate its stimulus (e.g. 

electrical or nicotine/acetylcholine-evoked depolarization) to its neighbors, resulting in synchronous 

multicellular cytosolic rises in intracellular calcium concentrations and catecholamine release (Fig. 1). 

The prevalence of gap junctional coupling in the adrenal medulla is highly plastic and depends on various factors 

(Table 4 and reviewed in [37]), including age [38, 39], species [30, 40], gender [15, 34, 35], physiological (i.e. 

stressed/unstressed) state [12, 34, 41] and splanchnic innervation competence [38, 39]. 

Supporting the role of gap junctions in adrenal medulla endocrine function are data reporting an upregulated gap 

junctional communication between chromaffin cells in response to a pharmacological or surgical impairment of 

splanchnic innervation [38], or in the neonatal adrenal medulla in which the innervation is not yet fully 

competent [39]. Similarly, when hormone demand is high, such as in stressful situations, the adrenal medullary 

tissue triggers an adaptive remodelling, enabling the organism to cope with stress (Fig. 1). Among the 

determinants remodelled in response to stress [41], gap junctional coupling is dramatically enhanced (i.e. 80% of 

coupled chromaffin cells in cold-exposed rats versus 20% in unstressed animals [34]). This is associated with an 

increased expression of both Cx36 and Cx43 [34]. The plasticity of gap junction communication observed in 

response to stress is not restricted to rat, but is also found in mouse following cold-exposure [12] or application 

of the pituitary adenylate cyclase-activating peptide (PACAP) [35], a non-cholinergic splanchnic-derived 

neurotransmitter selectively released upon high frequency nerve firing [42, 43]. Importantly, the recent 

description of the contribution of gap junctions to catecholamine secretion in vivo [12] significantly advances the 

knowledge of endocrine/neuroendocrine tissue physiology. Hence, within the medullary tissue, gap junctional 

signaling between chromaffin cells is central to proper adrenal neuroendocrine function by acting as a lever to 

dynamically adjust hormone release to organism needs (Fig. 1). This implies that mechanisms exist for the fine-

tuning of gap junction activity. Accordingly, the modulation of adrenal gap junctional coupling by synaptically-
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released neurotransmitters or neuromodulators is a striking example. The ability of acetylcholine to tonically 

inhibit [38, 44] or PACAP to enhance [35] gap junctional communication between chromaffin cells likely 

represents key a regulatory check point for catecholamine secretion. At rest, when moderate catecholamine 

release is required, the cholinergic inhibitory control of gap junctions limits adrenal medullary tissue stimulation. 

Conversely, in response to increased sympathetic activity, as observed during stressful episodes, catecholamine 

need intensifies and is critical for the ‘fight or flight’ response. As observed in stressed rats [34], electrical 

coupling is upregulated, probably in response to stress-evoked splanchnic PACAP release [35]. 

Apart from a role in hormone secretion, no other obvious physiological function has been attributed to medullary 

gap junctions, but many processes, such as embryonic development, stem cell function, cell 

growth/differentiation and aging, remain to be investigated. In particular, the role of Cx29-based gap junctional 

coupling in S100-positive cells (i.e. satellite or Schwann cells and sustentacular cells) is still unknown, but the 

current hypothesis is that these non-endocrine cells may form a large-scale network, which regulates chromaffin 

cell function, similar to that described for glial cells and neurons. Indeed, the sustentacular cell network may 

coordinate the exchange and/or propagation of instructive signals, as recently reported for
 
calcium ions [45]. By 

taking an active part in adrenal medulla
 
calcium homeostasis, the sustentacular cell network regulates the 

synthesis and release of catecholamines from chromaffin cells. Also, the expression of gap junction channels at 

early embryonic stages indicates that they may contribute to function during development. In the adrenal 

medullary tissue, Cx36 deficiency results in a dramatic decrease of nerve stimulation-evoked catecholamine 

release [12], revealing an unanticipated role for Cx36 at the splanchnic nerve-chromaffin cell synapse. 

 

Connexin hemichannels 

Whereas connexin-mediated adrenal cell-to-cell communication is well-documented and unequivocally fulfills a 

function in hormone secretion, the role of connexin hemichannels in adrenal physiology is unknown. A single 

study performed in chromaffin cells reports connexin hemichannel-mediated enhanced neurite outgrowth in 

transfected PC-12 cells, likely through ATP release and signaling [46]. Since chromaffin cells express Cx36 and 

Cx43, and as these connexins can form functional hemichannels [47, 48], it is conceivable that connexons may 

have a functional role in the medullary tissue. By forming a transmembrane conduit allowing the exchange of 

ions and molecules between the cytosol and the extracellular milieu, connexin hemichannel opening can mediate 

the spread of cellular signals within a tissue through autocrine/paracrine mechanisms [49], and may therefore 

modulate physiological and/or pathological functions. 



 8 

 

Pannexin channels 

 Studies addressing the expression and role of Panx channels in the adrenal medulla are scarce. Unlike 

connexins, the ability of Panx proteins to form junctional membrane channels is still controversial. As recently 

shown [50], the formation of Panx-mediated intercellular coupling is cell-specific and depends on Panx 

glycosylation. In tumoral chromaffin PC-12 cells, stable expression of Panx1 and Panx3 does not result in 

functional gap junctions [50], consistent with the current view that Panx channels function as single membrane 

channels rather than intercellular junctional channels. Regarding endogenous Panx expression in the medullary 

tissue, we recently detected the presence of Panx1 and Panx2, but not Panx3 RNA transcripts in macrodissected 

medulla (unpublished data). A very recent study reports Panx1 protein expression in bovine chromaffin cells 

[51]. Because of their calcium permeability [52], Panx1 channels may contribute to the regulation of intracellular 

calcium homeostasis and calcium-dependent cellular mechanisms. In this respect, activity of Panx1-based 

pannexons participate in catecholamine secretion by chromaffin cells [51] and thus should be considered as new 

players in endocrine function (Fig. 1). 

Panx expression in other adrenal medulla cells still remains to be explored. In particular, whether non-endocrine 

glial-like sustentacular cells express Panx proteins is unknown, but the presence of Panx1 in astrocytes [53] 

strongly suggests that these channels may also be resident between sustentacular cells. 

 

Anterior pituitary gland: gap junctions as a long-range signaling mechanism 

In mammals, the anterior pituitary gland (i.e. adenohypophysis) originates early in embryogenesis from the 

ectoderm of the Rathke’s pouch, an epithelial depression in the roof of the mouth. Endocrine cells then 

differentiate from precursors following a pathway tightly regulated by tissue-specific and cell-specific 

transcription factors, and are typified by the hormone that they produce [54]. Thus, corticotrophs, somatotrophs, 

lactotrophs, thyrotrophs and gonadotrophs secrete ACTH, GH, PRL, TSH and gonadotrophins (i.e. FSH and 

LH), respectively. The anterior pituitary also houses non-endocrine cell types, including stem/progenitor cells 

(i.e. SOX2-positive cells) and FS cells. The latter are thought to play a supporting role similar to that glial cells 

in the brain, with which they share surface expression markers in common, such as S100b protein [55, 56]. In 

response to hypothalamic input, the anterior pituitary liberates hormones, which underlie growth and 

metabolism, lactation, reproduction and stress. This is aided by the organization of most endocrine and non-

endocrine cell populations into three-dimensionally intermingled networks, with thyrotrophs being a notable 
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exception [57-59,54,60]. Through the integration and amplification of signaling processes, these homotypic 

pituitary networks drive the complex electrical and transcriptional dynamics required to generate a ‘gain of 

function’ in hormone release [54, 61-66]. While the mechanisms underlying intercellular/intra-network 

communication remain poorly characterized, they have invoked a role for cell-cell coupling via gap junctions 

[61, 65, 67] (Fig. 2,). This particularly holds true for transmission of the secretagogue-triggered intracellular 

calcium signals which underlie calcium-dependent exocytosis [68- 70]. 

 

Connexin expression and distribution 

Gap junctions were first identified in the mammalian pituitary gland last century based upon their ultrastructural 

features as observed by electron microscopy [71-73]. Indicative of gap junction functionality is dye coupling 

between cells in organotypic pituitary cultures [74]. Immunohistochemical studies have shown that Cx43 is the 

major connexin subtype within the pituitary, being preferentially expressed in FS cells and gonadotrophs [75] 

(Table 5). In addition to Cx43, northern blot and immunostaining of rat pituitaries have demonstrated the 

presence of Cx26, although the cell type localization is not well defined [8]. Likewise, Cx36 is expressed in a 

subset of anterior pituitary cells, demonstrating that this connexin isoform is not restricted to neuroectodermal 

tissues [76]. By contrast, Cx32 is absent in the anterior pituitary [8]. While the identity of the connexin remains 

elusive, dye coupling is present in somatotrophs and lactotrophs [77, 78], suggesting that these endocrine cells 

communicate via gap junctions. We recently detected Cx43 in the pituitary glands of sheep (unpublished data), 

which is in line with findings in rats [75, 79] and mink [80]. Of note, the pars intermedia, which borders the 

anterior and posterior pituitaries and that contains melanocyte-stimulating hormone-secreting melanotrophs, is 

immunopositive for Cx43, but not for Cx26 or Cx32 [8]. 

 

Connexin intercellular channels 

While direct evidence for a role of connexin signaling in pituitary hormone release is lacking, numerous studies 

have suggested that gap junctions are an integral component of glandular cell-cell communication (Fig. 2,). 

Focusing on the individual cell populations, the known functions of connexin intercellular channels within the 

pituitary are discussed below.   

 

FS cells 
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These S100b-expressing cells form a large-scale electrically-coupled network capable of transmitting calcium 

waves from one end of the pituitary gland to the other [56-58, 61, 81]. FS cells abundantly express Cx43 [75, 

79], and pre-treatment with the gap junction uncoupler carbenoxolone impairs the extent of signal propagation 

[61]. Expression of Cx43 is highest between FS cells during the annual peak in PRL secretion in mink, 

suggesting that junctional exchanges between these cells may contribute to the intra-pituitary control of the 

lactotroph axis [80]. Moreover, evidence for bidirectional interplay between endocrine and non-endocrine 

populations is provided by studies showing that adenosine released by somatotrophs and lactotrophs is able to 

modulate Cx43 expression and dye coupling in FS cells [82].  

Lactotrophs 

During lactation in mice, lactotrophs double in size to form a highly connected structural and functional network 

tasked with coordinating
 
calcium signals [54, 65, 83]. This allows the high levels of PRL required to drive 

mammary gland development and output in mammals. Rather than returning to the status quo following 

weaning, the network stores a functional template, allowing repeated episodes of lactation to be met with 

evolved behavior and further improved tissue output [54, 65]. Gap junctions are implicitly involved in such 

experience-dependent plasticity, since homotypic and heterotypic gap junctional contacts increase in number 

during lactation, as identified using electron microscopy and immunogold labeling for hormone, and dye 

coupling is enhanced during lactation, remaining high even after weaning. Furthermore, gap junction inhibition 

using 18α-glycyrrhetinic acid reduces dye coupling and prevents the network from displaying lactating-like 

wiring patterns during demand, most likely due to blockade of long-range signal entrainment [65]. Similarly, 

recent electron microscopy studies in the ovine pituitary have shown that lactotroph-lactotroph junctional 

contacts increase in line with the circannual peak of PRL during the non-breeding season [84]. Therefore, 

episodes of structural and functional plasticity within the lactotroph population/network are associated with 

alterations in gap junctional signaling in both mice and sheep. 

Gonadotrophs 

Small gonadotroph clusters respond to gonadotrophin-releasing hormone (GnRH) stimulation with synchronous
 

calcium rises, and this may be important for information transfer within the gonadotroph network [57, 67]. 

However, such activity profiles do not appear to be gap junction-dependent, since they are not be blocked by 

18α-glycyrrhetinic acid [67]. Nonetheless, mice in which the coding region of Cx43 is replaced with Cx26 

present infertility, suggesting that the former gap junction isoform plays a key role in gonadotroph axis output in 

rodents [85]. 
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Somatotrophs 

The pattern of GH secretion differs between males and females of most species, which may explain the 

phenotypic divergence in body mass detected between the sexes [86]. While generally attributed to sexual 

imprinting of hypothalamic growth hormone-releasing hormone (GHRH) neuron number, structure and function 

[87, 88], the somatotroph network itself also gives rise to sex differences in GH output. In response to GHRH, 

female somatotrophs display highly coordinated
 
calcium-spiking activity, which subsides following stimulus 

wash-out [57, 63]. By contrast, male somatotrophs respond to an identical challenge with synchronous 

oscillations that persist beyond stimulation. At the level of GH secretion, this presents as marked differences in 

pulse width and amplitude [63]. There are a number of clues that gap junctions may mediate the display of 

coordinated behavior between somatotrophs. First, somatotrophs isolated in vitro on coverslips, or in situ in 

pituitary slices, display asynchronous intracellular calcium rises in response to GHRH,  commensurate with a 

decrease in cell-cell contacts [63, 89]. Secondly, co-activated cells are dye coupled, with a predominance of 

transfers between somatotrophs [78]. Thirdly, tracer spread between co-activated cells can be reduced using 

halothane, a gap junction blocker [78]. To date, there are no studies examining connexin hemichannel structure 

and/or function in the pituitary gland.  

 

Pannexin channels 

Pannexins are abundantly expressed in the pituitary tissue where they act as plasma membrane channels for the 

delivery of ATP, an essential signaling mediator in the purinergic pathway [90, 91] (Fig. 2). Panx1 and Panx2, 

but not Panx3, mRNA and protein expression are observed throughout the anterior pituitary, with the former 

being mainly localized to corticotrophs and some somatotrophs, and the latter being detected in FS cells [90, 92]. 

Suggesting that Panx proteins constitute ATP-permeant channels in pituitary cells is the observation that 

silencing of Panx1 in AtT-20 corticotrophs lowers basal release of ATP [90]. Moreover, full-length Panx1, as 

well as its truncated splice variants Panx1c and Panx1d physically associate with P2X2, P2X3, P2X4 and P2X7 

ATP-gated purinergic channel subtypes [92]. While the role of pannexins in pituitary cell function are not well 

defined, they may modulate gonadotrophin, GH and PRL release, given that activation of P2X receptors in 

gonadotrophs, somatotrophs and lactotrophs induces depolarization and
 
calcium fluxes [93-96] (Fig. 2). In the 

pars intermedia, melanotrophs express Panx2 [90], yet its role is unknown. 

 

Neuroendocrine hypothalamus and posterior pituitary 
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Neurons with cell bodies in the arcuate (ARC) nucleus and parvocellular (PV) neurons in the paraventricular 

nucleus (PVN) of the hypothalamus project axons to the median eminence and secrete releasing factors into the 

portal vasculature for the blood-borne regulation of pituitary hormone release [97]. Thus, GnRH, thyrotrophin-

releasing hormone (TRH), corticotrophin-releasing hormone (CRH), GHRH and dopamine control 

gonadotrophin, TSH, corticotrophin, GH and PRL release, respectively. By contrast, magnocellular 

neurosecretory neurons in the supraoptic and PV hypothalamic nuclei terminate in the posterior pituitary gland 

(i.e. neurohypohysis) and release oxytocin and vasopressin, primarily tasked with milk let down and solute 

balance [98, 99]. The posterior pituitary can be regarded as an extension of the hypothalamus from where it 

outpouches during development and, in addition to neurosecretory nerve boutons, also houses pituicytes. These 

glial-derived cells ensheath the descending hypothalamic nerve terminals and may provide a barrier function, 

modifying hormone access to the circulation as a function of demand [100].  

 

Connexin expression and distribution 

As summarized in Table 6, Cx30, Cx36 and Cx43 are expressed in the hypothalamus and posterior pituitary. Gap 

junction signaling in the neonatal hypothalamus is widespread, but decreases dramatically during postnatal 

development in line with a reduction in Cx36 expression [76, 101]. Nonetheless, homotypic dye coupling has 

been shown to be present between oxytocinergic and vasopressinergic neurons in adults [98, 102-104]. This is, 

however, unlikely to be attributable to intercellular communication via Cx36-based gap junctions, since this 

connexin isoform is only detected in PVN neurons expressing somatostatin and CRH [105]. In female rat, 

hypothalamic GnRH neurons display Cx32 immunoreactivity, which is distributed in the soma, and, very 

occasionally, in axon terminals of the median eminence [106]. While Cx26 and Cx43 are undetectable in GnRH 

neurons of female rat [106], some GnRH neurons have been shown to exhibit Cx43-immunopositive puncta in 

male rats [107]. Likewise, few Cx26 and Cx32 immunolabelings were described in the median eminence of male 

rat [107]. In the mouse, Cx36 and Cx43 are present in the hypothalamus and median eminence, but both proteins 

are absent from the GnRH population. However, high levels of Cx36 were detected in kisspeptin neurons in the 

hypothalamic anteroventral periventricular nucleus [108]. Irrespective of the species investigated (i.e. rat or 

mouse), gap junctional coupling has not been observed between adjacent GnRH neurons, but connects GnRH 

neurons and their closely apposed neuronal inputs [106, 108]. In addition to neurons, the hypothalamus contains 

glial or supporting cells, including astrocytes. Cx43, an isoform known to be enriched in astrocytes, tends to be 

expressed in the vicinity of capillaries in the ARC and ventromedial hypothalamus, and is modulated by both 
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blood glucose concentration and GH levels [91, 109]. Conversely, Cx30, which usually forms channels with 

Cx43 in astrocytes, is also expressed in the mediobasal hypothalamus, but with no clear relationship to the 

vasculature [109]. Lastly, pituicytes in the posterior pituitary express Cx43, with greater density at the periphery 

[75, 107]. Although less frequently encountered, heterotypic gap junctions can also be observed in the 

hypothalamus, as reported for a Cx32/Cx43-mediated coupling between neurons and astrocytes in the rat SON 

[110]. 

 

Connexin intercellular channels 

In the developing brain, connexin channels comprise electrical synapses responsible for generating synchrony 

between neuronal ensembles [111] (Fig. 2). In adult rats, astrocyte-astrocyte and astrocyte-neuron gap junctional 

communication underlies the transmission of calcium waves [112]. By contrast, relatively little is known about 

the contribution of connexin-based signaling to neuroendocrine hypothalamic function and is discussed below. 

Glucose homeostasis 

Inhibition of astroglial Cx43 expression in the mediobasal hypothalamus has been shown to impair the central 

regulation of glucose homeostasis, as evidenced by decreased insulin secretion following brain glucose challenge 

[109].  

Hydration 

Dye coupling between neurons in the PVN is upregulated by in vivo hydration status, as well as by extracellular 

osmolality [113], although the connexin species involved remains unknown. The hydration status not only 

influences dye coupling between vasopressin neurons, but also modifies gap junctional communication between 

neurons and astrocytes, as illustrated by the increased number of Cx32/Cx43 gap junction plaques in the rat SON 

following hyperosmotic stimuli [110]. 

Lactation 

In lactating rats, burst firing in oxytocin neurons of the SON is critical for milk ejection in response to suckling. 

Implicating a role for gap junctions in organizing this activity at the magnocellular population level is the 

observation that Cx32 mRNA expression increases during lactation [114], alongside enhanced dye coupling 

between oxytocin neurons induced by maternal behavior [99, 115, 116,]. 

Reproduction and gonadal steroid effects 

Mice conditionally deleted for Cx36 exhibit altered oestrous cyclicity in the face of normal puberty and 

fecundity [108]. This probably is not related to gap junctional communication within the GnRH neuron network, 
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since electrical coupling was absent in paired patch-clamp recordings, and no dye transfer could be detected 

between identified GnRH neurons [108]. Cx36-expressing kisspeptin neurons may thus offer an alternative and 

attractive explanation for disrupted cyclicity in the mouse. Nevertheless, the presence of connexin 

immunoreactive puncta distributed between GnRH fibres indicates the possibility that gap junctions play a role 

in GnRH release at the median eminence, at least in the rat [107]. Among magnocellular neurosecretory cells, 

the frequency of dye coupling is reduced in male rats following castration [117], but is enhanced in female rats 

following ovariectomy [118]. This clearly indicates that gonadal steroids influence gap junctional 

communication between SON peptidergic neurons.  

 

Connexin hemichannels 

Hexameric hemichannels comprised of Cx43 are present in hypothalamic tanycytes, specialized ependymal-glial 

cells involved in glucosensing [119, 120] and fasting-refeeding responses [121]. Following exposure to glucose, 

tanycytes display elevations in intracellular calcium concentrations [119, 109], with macroscopic conductance 

being abolished following Cx43 hemichannel blockade, probably due to decreased purinergic signaling [119, 

120]. The functional consequences of perturbing tanycyte Cx43 hemichannel expression in vivo remain elusive. 

In the endocrine hypothalamus, astrocytic Cx43 hemichannels have been reported to participate in the increased 

glutamate release after hypertonic stimulus [122]. This is consistent with previous studies showing that 

glutamate can diffuse through Cx43 hemichannels [123] and that Cx43 hemichannels can be induced by 

hyperosmolarity in vivo [124].  

 

Pannexin channels 

Within the posterior pituitary, Panx2 is abundantly detected in vasopressin-containing axons and nerve endings 

[90], with some Panx1 localized to S100-positive pituicytes [90]. In the endocrine hypothalamus, Panx1 mRNA 

is expressed in the magnocellular neurons of the PVN and SON [125], including vasopressin-containing neurons 

[126]. In these cells, the pharmacological blockade of pannexin channels results in a decreased ATP-induced 

current [126], demonstrating that pannexin channels may be involved in the regulation of hypothalamic neuronal 

activity. 

  

Pineal gland 
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The pineal gland is an endocrine gland located within the brain, which contains neuron-like cells (i.e. 

pinealocytes) of the same embryonic origin as eye photoreceptors, and is directly sensitive to light in birds and 

reptiles. This light sensitivity is lost with evolution and, in mammals, the gland secretes melatonin only during 

darkness under direct influence of the hypothalamic suprachiasmatic nucleus. This pathway thus controls the 

circadian rhythmicity, which typifies hormone secretion and many downstream body functions [127]. The pineal 

gland is composed of two main cell categories, namely A pinealocytes that display characteristics close to those 

of astrocytes, and B pinealocytes that secrete melatonin. The pineal gland releases melatonin with a circadian 

rhythmic pattern and unsurprisingly gap junctions are present between pineal cells in many species (see [128] for 

a review), as putative synchronizers. However, direct evidence of the function of pineal gap junctions is still 

lacking.  

 

Connexin expression and distribution 

Gap junctions have been morphologically identified in the pineal gland of various species, including the chicken 

[128], rat [76, 129, 130], mouse [131], guinea pig [132], monkey [133] and human [134]. Interestingly, gap 

junctions are present at both homocellular and heterocellular junctions between pinealocytes and astrocytes [128, 

135]. In chicken, gap junctions are mainly composed of Cx43 in astrocytes (i.e. A pinealocytes) and Cx45 in B 

pinealocytes [128], suggesting the presence of heterotypic Cx43/Cx45 gap junctional channels. In rat, Cx43 has 

been identified in astrocytes and its increased expression during development follows the differentiation of this 

cellular category [136]. Connexin expression is maintained in cultured pineal cells, pinealocytes and astrocytes 

expressing Cx26 and Cx43, respectively [137]. More recently, a sizable expression of neuronal Cx36 has also 

been detected in the pineal gland of adult rat [76]. 

 

Connexin intercellular channels 

The function of pineal cell-cell gap junctional coupling still remains to be elucidated. A commonly assigned 

function of gap junctional coupling within an excitable cell network is the synchronization of the electrical firing 

discharges between cells. Although pineal cell clusters exhibit a rhythmic bursting activity associated with 

synchronized firing, it is apparently unrelated to gap junctions, at least in rat [138]. The description of 

heterotypic communication between pinealocytes and neighboring astrocytes [128] suggests that pineal gap 

junctions are important players in the regulation of pineal tissue homeostasis. In particular, it can be 

hypothesized that gap junctional communication may coordinate metabolic functions within pinealocytes and/or 
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astrocytes, as well as between astrocytes and pinealocytes, as reported in some regions of the central nervous 

system [139, 140]. Astrocytic gap junctions would be expected to distribute glucose, metabolites and nutrients 

within the pineal gland, and contribute to the clearance of substances whose concentrations increase in the 

extracellular environment during pinealocyte activity [141]. 

Another putative contribution of gap junctions to pineal gland function relates to the regulation and/or 

amplification of melatonin secretion. In this light, chicken is an interesting model, since its pinealocytes are 

photoreceptive. Thus, a light cue received by one pinealocyte might conceivably be transferred through the gap 

junctional network to other pinealocytes, allowing melatonin release to be coordinated between all secreting 

cells. This situation is reminiscent of the rodent adrenal gland in which gap junctions contribute to signal 

synchronization and hormone release [12, 15]. In cultured rat pinealocytes, the incidence of dye coupling and the 

expression of Cx26 are increased by norepinephrine application, a mechanism that may plausibly contribute to 

neurotransmitter-regulated melatonin secretion [137]. 

Although definitive studies are lacking, it is likely that gap junction-mediated intercellular communication is an 

important determinant for synchronizing the input (i.e. light entrainment) and output (i.e. melatonin secretion) 

pathways of the pineal gland, and thereby of circadian rhythmicity. To date, there are no studies examining 

connexin hemichannel and pannexin channel structure and/or function in the pineal gland. 

 

Thyroid and parathyroid glands  

The thyroid gland secretes triiodothyronin (T3), thyroxine (T4) and calcitonin to control many body functions, 

such as body growth, metabolism, thermoregulation and calcium homeostasis, under the regulation of 

hypothalamic TSH. The thyroid tissue is composed of follicular cells secreting T3 and T4, and parafollicular 

cells secreting calcitonin. Although TSH and thyroid hormones have been reported to regulate connexins in a 

variety of target tissues [142-144], the role of connexins in mediating thyroid function itself is not well 

documented. Indeed, connexin expression in the thyroid gland mainly controls cell differentiation and gland 

development, and most studies have been focused on the role of connexins in pathological situations [145-147]. 

The parathyroid glands consist of four to eight small endocrine glands located close to the thyroid, which secrete 

parathyroid hormone to maintain blood calcium levels within a tightly controlled range. This is achieved by 

facilitating osteolysis and renal calcium reabsorption.  

 

Connexin expression and distribution 

javascript:void(0);
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The rat thyroid gland displays immunoreactivity for Cx26, Cx32 and Cx43 with labeling varying from sparse to 

abundant depending on the cell type studied [8]. In the follicles, the three connexins are present, with a more 

robust expression detected for Cx32, whereas parafollicular cells (i.e. C-cells) express only Cx26 [8]. Unlike rat 

follicular cells, pig polarized thyroid cells do not express Cx26 [148]. Freshly isolated rat thyrocytes express 

high levels of Cx32 [149]. By contrast, in pig thyroid gland, both Cx32 and Cx43 are co-expressed in the same 

epithelial cells, but with a polarized distribution. In particular, Cx32 is found throughout the basolateral 

membrane domain of the follicular cell, while Cx43 is co-localized with zonula occludens-1 in tight junctions in 

the upper juxtapical pole of the lateral cell membrane [8, 148]. This subcellular connexin compartmentalization 

points to distinct regulatory mechanisms and functions. In addition, by co-expressing Cx32 and Cx43, the 

thyroid gland shares features of both endocrine (i.e. Cx43 expression) and exocrine (i.e. Cx32 expression) 

tissues. This is consistent with the fact that thyroid cells display both an exocrine function by exporting 

thyroglobulin into the follicular lumen and an endocrine function by releasing thyroid hormones into the 

vascular compartment [22, 150].  

In the parathyroid glands, gap junctions were morphologically identified using freeze-fractured replicas in the 

early 1980s [151]. A few years later, an electrophysiological study eluded to the presence of electrically-coupled 

parathyroid cells [152]. The endocrine cells of the parathyroid glands exhibit robust immunostaining for Cx26 

and Cx43 but, unlike the thyroid secretory cells, no staining for Cx32 was evident [8]. 

 

Connexin intercellular channels 

The first indication in literature for a contribution of connexins to the differentiation and organization of 

thyrocytes in follicles came from experiments showing the persistence of Cx32 in these cells when cultured with 

TSH, which favors the reconstitution of follicles [149]. Cx32 contributes to thyroid development, in particular to 

epithelial morphogenesis. Indeed, pig thyrocyte-derived cells form three dimensional follicle-like structures in 

vitro only if they are forced to express Cx32, but not Cx43 [153]. Cx32-mediated intercellular communication 

also participates in the control of thyroid cell growth and proliferation. In thyroid-derived cell lines, 

overexpression of Cx32 [154], but not Cx43 [155], reduced cell proliferation, in line with the observed thyroid 

hypoplasia in mice in which Cx32 was upregulated selectively in thyroid cells [156]. Collectively, these findings 

argue for a critical role of Cx32 in the development of the thyroid gland. 

In the parathyroid glands, although gap junctions have been identified for a long time [151], there are no studies 

reporting their functional role within the tissue.  
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Concluding remarks and future perspectives 

Although morphologically reported several decades ago in many tissues, the functional role of connexins in 

endocrine/neuroendocrine glands, and especially in hormone secretion, is still a matter of debate. This 

particularly holds true for connexin hemichannels for which many fundamental issues remain to be addressed, as 

well as the parathyroids in which connexin function is yet to be studied. When investigated at the functional 

level, the anatomical network formed by gap junction-coupled secretory cells consistently appears to be a 

relevant determinant in the coordination and/or synchronization of hormone release from endocrine and 

neuroendocrine tissues. This is especially well documented in the pancreatic beta-cells [3, 4, 157], and in the 

adrenal medullary tissue, with in vivo studies clearly demonstrating that gap junctional communication 

contributes to insulin [158] and catecholamine secretion [12]. Although less well studied, gap junction-coupled 

glial-like cell networks must also be taken into consideration. Indeed, unlike secretory cell networks, which tend 

to be spatially restricted or compact, they support large-scale communication at low wiring cost, enabling 

integration of signals throughout the gland and concerted hormone release [61, 65]. 

Though not reviewed in this paper, it is worth noting that gap junctional communication is commonly 

dysregulated or even ‘loosened’ in tumor tissues [159], including endocrine gland neoplasms [24, 147], 

complying with its involvement in the control of cell metabolism, proliferation, growth and death. This 

strengthens the critical role of intercellular communication in the maintenance of vital physiological functions 

and body homeostasis [3]. 

Other fields lacking anatomical and functional data in endocrine/neuroendocrine tissues deal with connexin 

hemichannels and pannexin channels, first described many years ago [160, 161]. Because these transmembrane 

channels support ion and molecule exchanges between the cytosolic compartment and the extracellular 

environment, it is likely that they participate in the regulation of cell function. In the context of endocrine 

tissues, connexin hemichannels and pannexin channels may contribute to signal transduction associated with 

secretory function. Unveiling their expression and roles in secretory tissues would therefore significantly 

improve the knowledge of the physiological mechanisms that drive hormone release. 

In summary, gap junctions, connexin hemichannels and pannexin channels are all intrinsic components of 

(neuro)endocrine axis structure and function. It is anticipated that their further experimental dissection will yield 

important insights into hormone release or tissue turnover, which can then be targeted to ameliorate pathologies 

associated with (neuro)endocrine dysfunction.  

 



 19 

Acknowledgments  

We apologize to the many authors whose excellent papers could not be cited in this review for space limitations. 

D.J.H. was supported by a Diabetes UK R.D. Lawrence Research Fellowship (12/0004431). 

 

References 

1.  South J, Blass B (2012) Handbook of Neuroendocrinology. Elsevier, London 

2.  Veldhuis JD, Keenan DM, Pincus SM (2010) Regulation of complex pulsatile and rhythmic 

neuroendocrine systems: the male gonadal axis as a prototype. Prog Brain Res 181:79-110. 

doi:10.1016/S0079-6123(08)81006-0 

3.  Bosco D, Haefliger JA, Meda P (2011) Connexins: key mediators of endocrine function. Physiol Rev 91 

(4):1393-1445. doi:10.1152/physrev.00027.2010 

4.  Potolicchio I, Cigliola V, Velazquez-Garcia S, Klee P, Valjevac A, Kapic D, Cosovic E, Lepara O, 

Hadzovic-Dzuvo A, Mornjacovic Z, Meda P (2012) Connexin-dependent signaling in neuro-hormonal 

systems. Biochim Biophys Acta 1818 (8):1919-1936. doi:10.1016/j.bbamem.2011.09.022 

5.  Ehrhart-Bornstein M, Hilbers U (1998) Neuroendocrine properties of adrenocortical cells. Horm Metab 

Res 30 (6-7):436-439. doi:10.1055/s-2007-978911 

6.  Friend DS, Gilula NB (1972) A distinctive cell contact in the rat adrenal cortex. J Cell Biol 53 (1):148-

163 

7.  Willenberg HS, Schott M, Saeger W, Tries A, Scherbaum WA, Bornstein SR (2006) Expression of 

connexins in chromaffin cells of normal human adrenals and in benign and malignant 

pheochromocytomas. Ann N Y Acad Sci 1073:578-583. doi:10.1196/annals.1353.060 

8.  Meda P, Pepper MS, Traub O, Willecke K, Gros D, Beyer E, Nicholson B, Paul D, Orci L (1993) 

Differential expression of gap junction connexins in endocrine and exocrine glands. Endocrinology 133 

(5):2371-2378 

9.  Murray SA, Pharrams SY (1997) Comparison of gap junction expression in the adrenal gland. Microsc 

Res Tech 36 (6):510-519. doi:10.1002/(SICI)1097-0029(19970315)36:6<510::AID-JEMT8>3.0.CO;2-L 

10.  Oyoyo UA, Shah US, Murray SA (1997) The role of alpha1 (connexin-43) gap junction expression in 

adrenal cortical cell function. Endocrinology 138 (12):5385-5397. doi:10.1210/endo.138.12.5617 

11.  Murray SA, Davis K, Fishman LM, Bornstein SR (2000) Alpha1 connexin 43 gap junctions are decreased 

in human adrenocortical tumors. J Clin Endocrinol Metab 85 (2):890-895 



 20 

12.  Desarmenien MG, Jourdan C, Toutain B, Vessieres E, Hormuzdi SG, Guerineau NC (2013) Gap junction 

signalling is a stress-regulated component of adrenal neuroendocrine stimulus-secretion coupling in vivo. 

Nat Commun 4:2938. doi:10.1038/ncomms3938 

13.  Murray SA, Oyoyo UA, Pharrams SY, Kumar NM, Gilula NB (1995) Characterization of gap junction 

expression in the adrenal gland. Endocr Res 21 (1-2):221-229 

14.  Davis KT, Prentice N, Gay VL, Murray SA (2002) Gap junction proteins and cell-cell communication in 

the three functional zones of the adrenal gland. J Endocrinol 173 (1):13-21 

15.  Martin AO, Mathieu MN, Chevillard C, Guerineau NC (2001) Gap junctions mediate electrical signaling 

and ensuing cytosolic Ca2+ increases between chromaffin cells in adrenal slices: A role in catecholamine 

release. J Neurosci 21 (15):5397-5405 

16.  Palacios G (1979) Cell junctions in the adrenal cortex of the postnatal rat. J Anat 129 (Pt 4):695-701 

17.  Dahl E, Winterhager E, Traub O, Willecke K (1995) Expression of gap junction genes, connexin40 and 

connexin43, during fetal mouse development. Anat Embryol (Berl) 191 (3):267-278 

18.  Joseph T, Slack C, Gould RP (1973) Gap junctions and electrotonic coupling in foetal rabbit adrenal 

cortical cells. J Embryol Exp Morphol 29 (3):681-696 

19.  McDonald TJ, Li C, Massmann GA, Figueroa JP (2003) Connexin 43 ontogeny in fetal sheep adrenal 

glands. Steroids 68 (7-8):613-620 

20.  McNutt NS, Jones AL (1970) Observations on the ultrastructure of cytodifferentiation in the human fetal 

adrenal cortex. Lab Invest 22 (6):513-527 

21.  Murray SA, Fletcher WH (1984) Hormone-induced intercellular signal transfer dissociates cyclic AMP-

dependent protein kinase. J Cell Biol 98 (5):1710-1719 

22.  Munari-Silem Y, Rousset B (1996) Gap junction-mediated cell-to-cell communication in endocrine 

glands--molecular and functional aspects: a review. Eur J Endocrinol 135 (3):251-264 

23.  Murray SA, Davis K, Gay V (2003) ACTH and adrenocortical gap junctions. Microsc Res Tech 61 

(3):240-246. doi:10.1002/jemt.10332 

24.  Murray SA, Nickel BM, Gay VL (2009) Gap junctions as modulators of adrenal cortical cell proliferation 

and steroidogenesis. Mol Cell Endocrinol 300 (1-2):51-56. doi:10.1016/j.mce.2008.09.027 

25.  Murray SA, Shah US (1998) Modulation of adrenal gap junction expression. Horm Metab Res 30 (6-

7):426-431. doi:10.1055/s-2007-978909 



 21 

26.  Shah US, Murray SA (2001) Bimodal inhibition of connexin 43 gap junctions decreases ACTH-induced 

steroidogenesis and increases bovine adrenal cell population growth. J Endocrinol 171 (1):199-208 

27.  Davis KT, McDuffie I, Mawhinney LA, Murray SA (2000) Hypophysectomy results in a loss of connexin 

gap junction protein from the adrenal cortex. Endocr Res 26 (4):561-570 

28.  Munari-Silem Y, Lebrethon MC, Morand I, Rousset B, Saez JM (1995) Gap junction-mediated cell-to-

cell communication in bovine and human adrenal cells. A process whereby cells increase their 

responsiveness to physiological corticotropin concentrations. J Clin Invest 95 (4):1429-1439. 

doi:10.1172/JCI117813 

29.  Defranco BH, Nickel BM, Baty CJ, Martinez JS, Gay VL, Sandulache VC, Hackam DJ, Murray SA 

(2008) Migrating cells retain gap junction plaque structure and function. Cell Commun Adhes 15 (3):273-

288. doi:10.1080/15419060802198298 

30.  Grynszpan-Wynograd O, Nicolas G (1980) Intercellular junctions in the adrenal medulla: a comparative 

freeze-fracture study. Tissue Cell 12 (4):661-672 

31.  Anderson DJ (1997) Cellular and molecular biology of neural crest cell lineage determination. Trends 

Genet 13 (7):276-280 

32.  Massey SC, O'Brien JJ, Trexler EB, Li W, Keung JW, Mills SL, O'Brien J (2003) Multiple neuronal 

connexins in the mammalian retina. Cell Commun Adhes 10 (4-6):425-430 

33.  Eiberger J, Kibschull M, Strenzke N, Schober A, Bussow H, Wessig C, Djahed S, Reucher H, Koch DA, 

Lautermann J, Moser T, Winterhager E, Willecke K (2006) Expression pattern and functional 

characterization of connexin29 in transgenic mice. Glia 53 (6):601-611. doi:10.1002/glia.20315 

34.  Colomer C, Olivos Ore LA, Coutry N, Mathieu MN, Arthaud S, Fontanaud P, Iankova I, Macari F, 

Thouennon E, Yon L, Anouar Y, Guerineau NC (2008) Functional remodeling of gap junction-mediated 

electrical communication between adrenal chromaffin cells in stressed rats. J Neurosci 28 (26):6616-

6626. doi:10.1523/JNEUROSCI.5597-07.2008 

35.  Hill J, Lee SK, Samasilp P, Smith C (2012) Pituitary adenylate cyclase-activating peptide enhances 

electrical coupling in the mouse adrenal medulla. Am J Physiol Cell Physiol 303 (3):C257-266. 

doi:10.1152/ajpcell.00119.2012 

36.  Cena V, Nicolas GP, Sanchez-Garcia P, Kirpekar SM, Garcia AG (1983) Pharmacological dissection of 

receptor-associated and voltage-sensitive ionic channels involved in catecholamine release. Neuroscience 

10 (4):1455-1462 



 22 

37.  Colomer C, Martin AO, Desarmenien MG, Guerineau NC (2012) Gap junction-mediated intercellular 

communication in the adrenal medulla: An additional ingredient of stimulus-secretion coupling 

regulation. Biochim Biophys Acta 1818 (8):1937-1951. doi:10.1016/j.bbamem.2011.07.034 

38.  Martin AO, Mathieu MN, Guerineau NC (2003) Evidence for long-lasting cholinergic control of gap 

junctional communication between adrenal chromaffin cells. J Neurosci 23 (9):3669-3678 

39.  Martin AO, Alonso G, Guerineau NC (2005) Agrin mediates a rapid switch from electrical coupling to 

chemical neurotransmission during synaptogenesis. J Cell Biol 169 (3):503-514. 

doi:10.1083/jcb.200411054 

40.  Colomer C, Desarmenien MG, Guerineau NC (2009) Revisiting the stimulus-secretion coupling in the 

adrenal medulla: role of gap junction-mediated intercellular communication. Mol Neurobiol 40 (1):87-

100. doi:10.1007/s12035-009-8073-0 

41.  Colomer C, Lafont C, Guerineau NC (2008) Stress-induced intercellular communication remodeling in 

the rat adrenal medulla. Ann N Y Acad Sci 1148:106-111. doi:10.1196/annals.1410.040 

42.  Kuri BA, Chan SA, Smith CB (2009) PACAP regulates immediate catecholamine release from adrenal 

chromaffin cells in an activity-dependent manner through a protein kinase C-dependent pathway. J 

Neurochem 110 (4):1214-1225. doi:10.1111/j.1471-4159.2009.06206.x 

43.  Stroth N, Kuri BA, Mustafa T, Chan SA, Smith CB, Eiden LE (2013) PACAP controls adrenomedullary 

catecholamine secretion and expression of catecholamine biosynthetic enzymes at high splanchnic nerve 

firing rates characteristic of stress transduction in male mice. Endocrinology 154 (1):330-339. 

doi:10.1210/en.2012-1829 

44.  Colomer C, Olivos-Ore LA, Vincent A, McIntosh JM, Artalejo AR, Guerineau NC (2010) Functional 

characterization of alpha9-containing cholinergic nicotinic receptors in the rat adrenal medulla: 

implication in stress-induced functional plasticity. J Neurosci 30 (19):6732-6742. 

doi:10.1523/JNEUROSCI.4997-09.2010 

45.  Rodriguez H, Filippa V, Mohamed F, Dominguez S, Scardapane L (2007) Interaction between 

chromaffin and sustentacular cells in adrenal medulla of viscacha (Lagostomus maximus maximus). Anat 

Histol Embryol 36 (3):182-185. doi:10.1111/j.1439-0264.2006.00732.x 

46.  Belliveau DJ, Bani-Yaghoub M, McGirr B, Naus CC, Rushlow WJ (2006) Enhanced neurite outgrowth in 

PC12 cells mediated by connexin hemichannels and ATP. J Biol Chem 281 (30):20920-20931. 

doi:10.1074/jbc.M600026200 



 23 

47.  Schock SC, Leblanc D, Hakim AM, Thompson CS (2008) ATP release by way of connexin 36 

hemichannels mediates ischemic tolerance in vitro. Biochem Biophys Res Commun 368 (1):138-144. 

doi:10.1016/j.bbrc.2008.01.054 

48.  John SA, Kondo R, Wang SY, Goldhaber JI, Weiss JN (1999) Connexin-43 hemichannels opened by 

metabolic inhibition. J Biol Chem 274 (1):236-240 

49.  Wang N, De Bock M, Decrock E, Bol M, Gadicherla A, Vinken M, Rogiers V, Bukauskas FF, Bultynck 

G, Leybaert L (2013) Paracrine signaling through plasma membrane hemichannels. Biochim Biophys 

Acta 1828 (1):35-50. doi:10.1016/j.bbamem.2012.07.002 

50.  Sahu G, Sukumaran S, Bera AK (2014) Pannexins form gap junctions with electrophysiological and 

pharmacological properties distinct from connexins. Sci Rep 4:4955. doi:10.1038/srep04955 

51.  Momboisse F, Olivares MJ, Baez-Matus X, Guerra MJ, Flores-Munoz C, Saez JC, Martinez AD, 

Cardenas AM (2014) Pannexin 1 channels: new actors in the regulation of catecholamine release from 

adrenal chromaffin cells. Front Cell Neurosci 8:270. doi:10.3389/fncel.2014.00270 

52.  Vanden Abeele F, Bidaux G, Gordienko D, Beck B, Panchin YV, Baranova AV, Ivanov DV, Skryma R, 

Prevarskaya N (2006) Functional implications of calcium permeability of the channel formed by 

pannexin 1. J Cell Biol 174 (4):535-546. doi:10.1083/jcb.200601115 

53.  Iglesias R, Dahl G, Qiu F, Spray DC, Scemes E (2009) Pannexin 1: the molecular substrate of astrocyte 

"hemichannels". J Neurosci 29 (21):7092-7097. doi:10.1523/JNEUROSCI.6062-08.2009 

54.  Le Tissier PR, Hodson DJ, Lafont C, Fontanaud P, Schaeffer M, Mollard P (2012) Anterior pituitary cell 

networks. Front Neuroendocrinol 33 (3):252-266. doi:10.1016/j.yfrne.2012.08.002 

55.  Nakajima T, Yamaguchi H, Takahashi K (1980) S100 protein in folliculostellate cells of the rat pituitary 

anterior lobe. Brain Res 191 (2):523-531 

56.  Fauquier T, Lacampagne A, Travo P, Bauer K, Mollard P (2002) Hidden face of the anterior pituitary. 

Trends Endocrinol Metab 13 (7):304-309 

57.  Mollard P, Hodson DJ, Lafont C, Rizzoti K, Drouin J (2012) A tridimensional view of pituitary 

development and function. Trends Endocrinol Metab 23 (6):261-269. doi:10.1016/j.tem.2012.02.004 

58.  Hodson DJ, Mollard P (2012) Pituitary endocrine cell networks - 10 years and beyond. Ann Endocrinol 

(Paris) 73 (2):56-58. doi:10.1016/j.ando.2012.03.033 



 24 

59.  Hodson DJ, Romano N, Schaeffer M, Fontanaud P, Lafont C, Fiordelisio T, Mollard P (2012) 

Coordination of calcium signals by pituitary endocrine cells in situ. Cell Calcium 51 (3-4):222-230. 

doi:10.1016/j.ceca.2011.11.007 

60.  Hodson DJ, Mollard P (2013) Navigating pituitary structure and function - defining a roadmap for 

hormone secretion. J Neuroendocrinol 25 (7):674-675. doi:10.1111/jne.12041 

61.  Fauquier T, Guerineau NC, McKinney RA, Bauer K, Mollard P (2001) Folliculostellate cell network: a 

route for long-distance communication in the anterior pituitary. Proc Natl Acad Sci U S A 98 (15):8891-

8896. doi:10.1073/pnas.151339598 

62.  Bonnefont X, Lacampagne A, Sanchez-Hormigo A, Fino E, Creff A, Mathieu MN, Smallwood S, 

Carmignac D, Fontanaud P, Travo P, Alonso G, Courtois-Coutry N, Pincus SM, Robinson IC, Mollard P 

(2005) Revealing the large-scale network organization of growth hormone-secreting cells. Proc Natl Acad 

Sci U S A 102 (46):16880-16885. doi:10.1073/pnas.0508202102 

63.  Sanchez-Cardenas C, Fontanaud P, He Z, Lafont C, Meunier AC, Schaeffer M, Carmignac D, Molino F, 

Coutry N, Bonnefont X, Gouty-Colomer LA, Gavois E, Hodson DJ, Le Tissier P, Robinson IC, Mollard P 

(2010) Pituitary growth hormone network responses are sexually dimorphic and regulated by gonadal 

steroids in adulthood. Proc Natl Acad Sci U S A 107 (50):21878-21883. doi:10.1073/pnas.1010849107 

64.  Budry L, Lafont C, El Yandouzi T, Chauvet N, Conejero G, Drouin J, Mollard P (2011) Related pituitary 

cell lineages develop into interdigitated 3D cell networks. Proc Natl Acad Sci U S A 108 (30):12515-

12520. doi:10.1073/pnas.1105929108 

65.  Hodson DJ, Schaeffer M, Romano N, Fontanaud P, Lafont C, Birkenstock J, Molino F, Christian H, 

Lockey J, Carmignac D, Fernandez-Fuente M, Le Tissier P, Mollard P (2012) Existence of long-lasting 

experience-dependent plasticity in endocrine cell networks. Nat Commun 3:605. 

doi:10.1038/ncomms1612 

66.  Featherstone K, Harper CV, McNamara A, Semprini S, Spiller DG, McNeilly J, McNeilly AS, Mullins 

JJ, White MR, Davis JR (2011) Pulsatile patterns of pituitary hormone gene expression change during 

development. J Cell Sci 124 (Pt 20):3484-3491. doi:10.1242/jcs.088500 

67.  Sanchez-Cardenas C, Hernandez-Cruz A (2010) GnRH-Induced [Ca2+]i-signalling patterns in mouse 

gonadotrophs recorded from acute pituitary slices in vitro. Neuroendocrinology 91 (3):239-255. 

doi:10.1159/000274493 



 25 

68.  Schlegel W, Winiger BP, Mollard P, Vacher P, Wuarin F, Zahnd GR, Wollheim CB, Dufy B (1987) 

Oscillations of cytosolic Ca2+ in pituitary cells due to action potentials. Nature 329 (6141):719-721. 

doi:10.1038/329719a0 

69.  Mollard P, Schlegel W (1996) Why are endocrine pituitary cells excitable? Trends Endocrinol Metab 7 

(10):361-365 

70.  Stojilkovic SS, Tabak J, Bertram R (2010) Ion channels and signaling in the pituitary gland. Endocr Rev 

31 (6):845-915. doi:10.1210/er.2010-0005 

71.  Fletcher WH, Anderson NC, Jr., Everett JW (1975) Intercellular communication in the rat anterior 

pituitary gland. An in vivo and in vitro study. J Cell Biol 67 (2PT.1):469-476 

72.  Horvath E, Kovacs K, Ezrin C (1977) Junctional contract between lactotrophs and gonadotrophs in the rat 

pituitary. IRCS Med Sci 5:511 

73.  Soji T, Herbert DC (1989) Intercellular communication between rat anterior pituitary cells. Anat Rec 224 

(4):523-533. doi:10.1002/ar.1092240410 

74.  Guerineau NC, McKinney RA, Debanne D, Mollard P, Gahwiler BH (1997) Organotypic cultures of the 

rat anterior pituitary: morphology, physiology and cell-to-cell communication. J Neurosci Methods 73 

(2):169-176 

75.  Yamamoto T, Hossain MZ, Hertzberg EL, Uemura H, Murphy LJ, Nagy JI (1993) Connexin43 in rat 

pituitary: localization at pituicyte and stellate cell gap junctions and within gonadotrophs. Histochemistry 

100 (1):53-64 

76.  Belluardo N, Mudo G, Trovato-Salinaro A, Le Gurun S, Charollais A, Serre-Beinier V, Amato G, 

Haefliger JA, Meda P, Condorelli DF (2000) Expression of connexin36 in the adult and developing rat 

brain. Brain Res 865 (1):121-138 

77.  Morand I, Fonlupt P, Guerrier A, Trouillas J, Calle A, Remy C, Rousset B, Munari-Silem Y (1996) Cell-

to-cell communication in the anterior pituitary: evidence for gap junction-mediated exchanges between 

endocrine cells and folliculostellate cells. Endocrinology 137 (8):3356-3367 

78.  Guerineau NC, Bonnefont X, Stoeckel L, Mollard P (1998) Synchronized spontaneous Ca2+ transients in 

acute anterior pituitary slices. J Biol Chem 273 (17):10389-10395 

79.  Horiguchi K, Fujiwara K, Kouki T, Kikuchi M, Yashiro T (2008) Immunohistochemistry of connexin 43 

throughout anterior pituitary gland in a transgenic rat with green fluorescent protein-expressing folliculo-

stellate cells. Anat Sci Int 83 (4):256-260. doi:10.1111/j.1447-073X.2008.00239.x 



 26 

80.  Vitale ML, Cardin J, Gilula NB, Carbajal ME, Pelletier RM (2001) Dynamics of connexin 43 levels and 

distribution in the mink (Mustela vison) anterior pituitary are associated with seasonal changes in anterior 

pituitary prolactin content. Biol Reprod 64 (2):625-633 

81.  Stojilkovic SS (2001) A novel view of the function of pituitary folliculo-stellate cell network. Trends 

Endocrinol Metab 12 (9):378-380 

82.  Lewis BM, Pexa A, Francis K, Verma V, McNicol AM, Scanlon M, Deussen A, Evans WH, Rees DA, 

Ham J (2006) Adenosine stimulates connexin 43 expression and gap junctional communication in 

pituitary folliculostellate cells. FASEB J 20 (14):2585-2587. doi:10.1096/fj.06-6121fje 

83.  Castrique E, Fernandez-Fuente M, Le Tissier P, Herman A, Levy A (2012) Use of a prolactin-Cre/ROSA-

YFP transgenic mouse provides no evidence for lactotroph transdifferentiation after weaning, or increase 

in lactotroph/somatotroph proportion in lactation. J Endocrinol 205 (1):49-60. doi:10.1677/JOE-09-0414 

84.  Christian HC, Imirtziadis L, Tortonese D (2015) Ultrastructural changes in lactotrophs and folliculo-

stellate cells in the ovine pituitary during the annual reproductive cycle. J Neuroendocrinol. 

doi:10.1111/jne.12261 

85.  Winterhager E, Pielensticker N, Freyer J, Ghanem A, Schrickel JW, Kim JS, Behr R, Grummer R, Maass 

K, Urschel S, Lewalter T, Tiemann K, Simoni M, Willecke K (2007) Replacement of connexin43 by 

connexin26 in transgenic mice leads to dysfunctional reproductive organs and slowed ventricular 

conduction in the heart. BMC Dev Biol 7:26. doi:10.1186/1471-213X-7-26 

86.  Robinson ICAF, Hindmarsh PC (1999) The importance of the secretory pattern of growth hormone for 

statural growth. In: Kostyo JL (ed) Handbook of Physiology. Section 7: The endocrine system, vol 5. 

Hormonal control of growth. Oxford University Press, New York, pp 329-395 

87. R aisman G, Field PM (1973) Sexual dimorphism in the neuropil of the preoptic area of the rat and its 

dependence on neonatal androgen. Brain Res 54:1-29 

88. McArthur S, Robinson IC, Gillies GE (2011) Novel ontogenetic patterns of sexual differentiation in arcuate 

nucleus GHRH neurons revealed in GHRH-enhanced green fluorescent protein transgenic mice. 

Endocrinology 152 (2):607-617. doi:10.1210/en.2010-0798 

89. Waite E, Lafont C, Carmignac D, Chauvet N, Coutry N, Christian H, Robinson I, Mollard P, Le Tissier P 

(2010) Different degrees of somatotroph ablation compromise pituitary growth hormone cell network 

structure and other pituitary endocrine cell types. Endocrinology 151 (1):234-243. doi:10.1210/en.2009-

0539 



 27 

90.  Li S, Bjelobaba I, Yan Z, Kucka M, Tomic M, Stojilkovic SS (2011) Expression and roles of pannexins 

in ATP release in the pituitary gland. Endocrinology 152 (6):2342-2352. doi:10.1210/en.2010-1216 

91.  Sandilos JK, Bayliss DA (2012) Physiological mechanisms for the modulation of pannexin 1 channel 

activity. J Physiol 590 (Pt 24):6257-6266. doi:10.1113/jphysiol.2012.240911 

92.  Li S, Tomic M, Stojilkovic SS (2011) Characterization of novel Pannexin 1 isoforms from rat pituitary 

cells and their association with ATP-gated P2X channels. Gen Comp Endocrinol 174 (2):202-210. 

doi:10.1016/j.ygcen.2011.08.019 

93.  Tomic M, Jobin RM, Vergara LA, Stojilkovic SS (1996) Expression of purinergic receptor channels and 

their role in calcium signaling and hormone release in pituitary gonadotrophs. Integration of P2 channels 

in plasma membrane- and endoplasmic reticulum-derived calcium oscillations. J Biol Chem 271 

(35):21200-21208 

94.  Koshimizu T, Tomic M, Van Goor F, Stojilkovic SS (1998) Functional role of alternative splicing in 

pituitary P2X2 receptor-channel activation and desensitization. Mol Endocrinol 12 (7):901-913. 

doi:10.1210/mend.12.7.0129 

95.  He ML, Gonzalez-Iglesias AE, Stojilkovic SS (2003) Role of nucleotide P2 receptors in calcium 

signaling and prolactin release in pituitary lactotrophs. J Biol Chem 278 (47):46270-46277. 

doi:10.1074/jbc.M309005200 

96.  Stojilkovic SS, Zemkova H (2013) P2X receptor channels in endocrine glands. Wiley Interdiscip Rev 

Membr Transp Signal 2 (4):173-180. doi:10.1002/wmts.89 

97.  Daniel PM (1976) Anatomy of the hypothalamus and pituitary gland. J Clin Pathol Suppl (Assoc Clin 

Pathol) 7:1-7 

98.  Leng G, Brown CH, Russell JA (1999) Physiological pathways regulating the activity of magnocellular 

neurosecretory cells. Prog Neurobiol 57 (6):625-655 

99.  Brown CH, Bains JS, Ludwig M, Stern JE (2013) Physiological regulation of magnocellular 

neurosecretory cell activity: integration of intrinsic, local and afferent mechanisms. J Neuroendocrinol 25 

(8):678-710. doi:10.1111/jne.12051 

100.  Hatton GI (1988) Pituicytes, glia and control of terminal secretion. J Exp Biol 139:67-79 

101.  Arumugam H, Liu X, Colombo PJ, Corriveau RA, Belousov AB (2005) NMDA receptors regulate 

developmental gap junction uncoupling via CREB signaling. Nat Neurosci 8 (12):1720-1726. 

doi:10.1038/nn1588 



 28 

102.  Andrew RD, MacVicar BA, Dudek FE, Hatton GI (1981) Dye transfer through gap junctions between 

neuroendocrine cells of rat hypothalamus. Science 211 (4487):1187-1189 

103.  Yang QZ, Hatton GI (1988) Direct evidence for electrical coupling among rat supraoptic nucleus neurons. 

Brain Res 463 (1):47-56 

104.  Hatton GI, Yang QZ, Smithson KG (1988) Synaptic inputs and electrical coupling among magnocellular 

neuroendocrine cells. Brain Res Bull 20 (6):751-755 

105.  Westberg L, Sawa E, Wang AY, Gunaydin LA, Ribeiro AC, Pfaff DW (2009) Colocalization of connexin 

36 and corticotropin-releasing hormone in the mouse brain. BMC Neurosci 10:41. doi:10.1186/1471-

2202-10-41 

106.  Hosny S, Jennes L (1998) Identification of gap junctional connexin-32 mRNA and protein in 

gonadotropin-releasing hormone neurons of the female rat. Neuroendocrinology 67 (2):101-108 

107.  Tsukahara S, Maekawa F, Tsukamura H, Hirunagi K, Maeda K (1999) Morphological characterization of 

relationship between gap junctions and gonadotropin releasing hormone nerve terminals in the rat median 

eminence. Neurosci Lett 261 (1-2):105-108 

108.  Campbell RE, Ducret E, Porteous R, Liu X, Herde MK, Wellerhaus K, Sonntag S, Willecke K, Herbison 

AE (2011) Gap junctions between neuronal inputs but not gonadotropin-releasing hormone neurons 

control estrous cycles in the mouse. Endocrinology 152 (6):2290-2301. doi:10.1210/en.2010-1311 

109.  Allard C, Carneiro L, Grall S, Cline BH, Fioramonti X, Chretien C, Baba-Aissa F, Giaume C, Penicaud 

L, Leloup C (2014) Hypothalamic astroglial connexins are required for brain glucose sensing-induced 

insulin secretion. J Cereb Blood Flow Metab 34 (2):339-346. doi:10.1038/jcbfm.2013.206 

110.  Duan L, Yuan H, Su CJ, Liu YY, Rao ZR (2004) Ultrastructure of junction areas between neurons and 

astrocytes in rat supraoptic nuclei. World J Gastroenterol 10 (1):117-121 

111.  Sohl G, Maxeiner S, Willecke K (2005) Expression and functions of neuronal gap junctions. Nat Rev 

Neurosci 6 (3):191-200. doi:10.1038/nrn1627 

112.  Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in 

cultured astrocytes: long-range glial signaling. Science 247 (4941):470-473 

113.  Cobbett P, Hatton GI (1984) Dye coupling in hypothalamic slices: dependence on in vivo hydration state 

and osmolality of incubation medium. J Neurosci 4 (12):3034-3038 

114.  Micevych PE, Popper P, Hatton GI (1996) Connexin 32 mRNA levels in the rat supraoptic nucleus: up-

regulation prior to parturition and during lactation. Neuroendocrinology 63 (1):39-45 



 29 

115.  Hatton GI, Yang QZ, Cobbett P (1987) Dye coupling among immunocytochemically identified neurons 

in the supraoptic nucleus: increased incidence in lactating rats. Neuroscience 21 (3):923-930 

116.  Hatton GI, Yang QZ (1994) Incidence of neuronal coupling in supraoptic nuclei of virgin and lactating 

rats: estimation by neurobiotin and lucifer yellow. Brain Res 650 (1):63-69 

117.  Cobbett P, Yang QZ, Hatton GI (1987) Incidence of dye coupling among magnocellular paraventricular 

nucleus neurons in male rats is testosterone dependent. Brain Res Bull 18 (3):365-370 

118.  Hatton GI, Yang QZ, Koran LE (1992) Effects of ovariectomy and estrogen replacement on dye coupling 

among rat supraoptic nucleus neurons. Brain Res 572 (1-2):291-295 

119.  Orellana JA, Saez PJ, Cortes-Campos C, Elizondo RJ, Shoji KF, Contreras-Duarte S, Figueroa V, 

Velarde V, Jiang JX, Nualart F, Saez JC, Garcia MA (2012) Glucose increases intracellular free Ca(2+) in 

tanycytes via ATP released through connexin 43 hemichannels. Glia 60 (1):53-68. 

doi:10.1002/glia.21246 

120.  Giaume C, Leybaert L, Naus CC, Saez JC (2013) Connexin and pannexin hemichannels in brain glial 

cells: properties, pharmacology, and roles. Front Pharmacol 4:88. doi:10.3389/fphar.2013.00088 

121.  Langlet F, Levin BE, Luquet S, Mazzone M, Messina A, Dunn-Meynell AA, Balland E, Lacombe A, 

Mazur D, Carmeliet P, Bouret SG, Prevot V, Dehouck B (2013) Tanycytic VEGF-A boosts blood-

hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to 

fasting. Cell Metab 17 (4):607-617. doi:10.1016/j.cmet.2013.03.004 

122.  Jiang S, Yuan H, Duan L, Cao R, Gao B, Xiong YF, Rao ZR (2011) Glutamate release through connexin 

43 by cultured astrocytes in a stimulated hypertonicity model. Brain Res 1392:8-15. 

doi:10.1016/j.brainres.2011.03.056 

123.  Ye ZC, Wyeth MS, Baltan-Tekkok S, Ransom BR (2003) Functional hemichannels in astrocytes: a novel 

mechanism of glutamate release. J Neurosci 23 (9):3588-3596 

124.  Yuan H, Duan L, Qiu Y, Gao LZ, Zhang P, Cao R, Rao ZR (2004) Response of son astrocytes and 

neurons to hyperosmotic stimulation after carbenoxolone injection into the lateral ventricle. Acta 

Anatomica Sinica 35:127-131 

125.  Ray A, Zoidl G, Weickert S, Wahle P, Dermietzel R (2005) Site-specific and developmental expression 

of pannexin1 in the mouse nervous system. Eur J Neurosci 21 (12):3277-3290. doi:10.1111/j.1460-

9568.2005.04139.x 



 30 

126.  Ohbuchi T, Yokoyama T, Saito T, Ohkubo J, Suzuki H, Ishikura T, Katoh A, Fujihara H, Hashimoto H, 

Ueta Y (2011) Possible contribution of pannexin channel to ATP-induced currents in vitro in vasopressin 

neurons isolated from the rat supraoptic nucleus. Brain Res 1394:71-78. 

doi:10.1016/j.brainres.2011.04.017 

127.  Maronde E, Stehle JH (2007) The mammalian pineal gland: known facts, unknown facets. Trends 

Endocrinol Metab 18 (4):142-149. doi:10.1016/j.tem.2007.03.001 

128.  Berthoud VM, Hall DH, Strahsburger E, Beyer EC, Saez JC (2000) Gap junctions in the chicken pineal 

gland. Brain Res 861 (2):257-270 

129.  Krstic R (1974) Ultrastructure of rat pineal gland after preparation by freeze-etching technique. Cell 

Tissue Res 148 (3):371-379 

130.  Taugner R, Schiller A, Rix E (1981) Gap junctions between pinealocytes. A freeze-fracture study of the 

pineal gland in rats. Cell Tissue Res 218 (2):303-314 

131.  Condorelli DF, Belluardo N, Trovato-Salinaro A, Mudo G (2000) Expression of Cx36 in mammalian 

neurons. Brain Res Brain Res Rev 32 (1):72-85 

132.  Huang SK, Taugner R (1984) Gap junctions between guinea-pig pinealocytes. Cell Tissue Res 235 

(1):137-141 

133.  Ichimura T (1992) The ultrastructure of neuronal-pinealocytic interconnections in the monkey pineal. 

Microsc Res Tech 21 (2):124-135. doi:10.1002/jemt.1070210205 

134.  Moller M (1976) The ultrastructure of the human fetal pineal gland. II. Innervation and cell junctions. 

Cell Tissue Res 169 (1):7-21 

135.  Cieciura L, Krakowski G (1991) Junctional systems in the pineal gland of the Wistar rat (Ratus ratus). A 

freeze-fracture and thin section study. J Submicrosc Cytol Pathol 23 (2):327-330 

136.  Berthoud VM, Saez JC (1993) Changes in connexin43, the gap junction protein of astrocytes, during 

development of the rat pineal gland. J Pineal Res 14 (2):67-72 

137.  Saez JC, Berthoud VM, Kadle R, Traub O, Nicholson BJ, Bennett MV, Dermietzel R (1991) Pinealocytes 

in rats: connexin identification and increase in coupling caused by norepinephrine. Brain Res 568 (1-

2):265-275 

138.  Schenda J, Vollrath L (1999) An intrinsic neuronal-like network in the rat pineal gland. Brain Res 823 (1-

2):231-233 



 31 

139.  Giaume C, Tabernero A, Medina JM (1997) Metabolic trafficking through astrocytic gap junctions. Glia 

21 (1):114-123 

140.  Benarroch EE (2005) Neuron-astrocyte interactions: partnership for normal function and disease in the 

central nervous system. Mayo Clin Proc 80 (10):1326-1338. doi:10.4065/80.10.1326 

141.  Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C (2008) Astroglial metabolic networks sustain 

hippocampal synaptic transmission. Science 322 (5907):1551-1555. doi:10.1126/science.1164022 

142.  Lin H, Mitasikova M, Dlugosova K, Okruhlicova L, Imanaga I, Ogawa K, Weismann P, Tribulova N 

(2008) Thyroid hormones suppress epsilon-PKC signalling, down-regulate connexin-43 and increase 

lethal arrhythmia susceptibility in non-diabetic and diabetic rat hearts. J Physiol Pharmacol 59 (2):271-

285 

143.  Almeida NA, Cordeiro A, Machado DS, Souza LL, Ortiga-Carvalho TM, Campos-de-Carvalho AC, 

Wondisford FE, Pazos-Moura CC (2009) Connexin40 messenger ribonucleic acid is positively regulated 

by thyroid hormone (TH) acting in cardiac atria via the TH receptor. Endocrinology 150 (1):546-554. 

doi:10.1210/en.2008-0451 

144.  Mitasikova M, Lin H, Soukup T, Imanaga I, Tribulova N (2009) Diabetes and thyroid hormones affect 

connexin-43 and PKC-epsilon expression in rat heart atria. Physiol Res 58 (2):211-217 

145.  Potter E, Schoenermark M, Bock O, Hoang-Vu C, Munari-Silem Y, Rousset B, Brabant G (1996) Cell 

adhesion receptors and gap junctions in normal and neoplastic transformed thyrocytes. Exp Clin 

Endocrinol Diabetes 104 Suppl 4:24-28. doi:10.1055/s-0029-1211695 

146.  Darr EA, Patel AD, Yu G, Komorowski Z, McCormick S, Tiwari R, Schantz SP, Geliebter J (2011) 

Reduced Cx43 gap junction plaque expression differentiates thyroid carcinomas from benign disease. 

Arch Otolaryngol Head Neck Surg 137 (11):1161-1165. doi:10.1001/archoto.2011.186 

147.  Dominguez C, Karayan-Tapon L, Desurmont T, Gibelin H, Crespin S, Fromont G, Levillain P, Bouche 

G, Cantereau A, Mesnil M, Kraimps JL (2011) Altered expression of the gap junction protein connexin43 

is associated with papillary thyroid carcinomas when compared with other noncancer pathologies of the 

thyroid. Thyroid 21 (10):1057-1066. doi:10.1089/thy.2011.0041 

148.  Guerrier A, Fonlupt P, Morand I, Rabilloud R, Audebet C, Krutovskikh V, Gros D, Rousset B, Munari-

Silem Y (1995) Gap junctions and cell polarity: connexin32 and connexin43 expressed in polarized 

thyroid epithelial cells assemble into separate gap junctions, which are located in distinct regions of the 

lateral plasma membrane domain. J Cell Sci 108 ( Pt 7):2609-2617 



 32 

149.  Munari-Silem Y, Guerrier A, Fromaget C, Rabilloud R, Gros D, Rousset B (1994) Differential control of 

connexin-32 and connexin-43 expression in thyroid epithelial cells: evidence for a direct relationship 

between connexin-32 expression and histiotypic morphogenesis. Endocrinology 135 (2):724-734. 

doi:10.1210/endo.135.2.8033821 

150.  Kostrouch Z, Bernier-Valentin F, Munari-Silem Y, Rajas F, Rabilloud R, Rousset B (1993) 

Thyroglobulin molecules internalized by thyrocytes are sorted in early endosomes and partially recycled 

back to the follicular lumen. Endocrinology 132 (6):2645-2653. doi:10.1210/endo.132.6.8504765 

151.  Setoguti T, Inoue Y, Suematsu T (1982) Intercellular junctions of the hen parathyroid gland. A freeze-

fracture study. J Anat 135 (Pt 2):395-406 

152.  Green ST (1988) The electrophysiological properties of the parathyroid cell: results of a study employing 

Sprague-Dawley rats and a review of the literature. Biomed Pharmacother 42 (1):61-64 

153.  Tonoli H, Flachon V, Audebet C, Calle A, Jarry-Guichard T, Statuto M, Rousset B, Munari-Silem Y 

(2000) Formation of three-dimensional thyroid follicle-like structures by polarized FRT cells made 

communication competent by transfection and stable expression of the connexin-32 gene. Endocrinology 

141 (4):1403-1413. doi:10.1210/endo.141.4.7400 

154.  Statuto M, Audebet C, Tonoli H, Selmi-Ruby S, Rousset B, Munari-Silem Y (1997) Restoration of cell-

to-cell communication in thyroid cell lines by transfection with and stable expression of the connexin-32 

gene. Impact on cell proliferation and tissue-specific gene expression. J Biol Chem 272 (39):24710-24716 

155.  Flachon V, Tonoli H, Selmi-Ruby S, Durand C, Rabilloud R, Rousset B, Munari-Silem Y (2002) Thyroid 

cell proliferation in response to forced expression of gap junction proteins. Eur J Cell Biol 81 (5):243-

252. doi:10.1078/0171-9335-00245 

156.  Prost G, Bernier-Valentin F, Munari-Silem Y, Selmi-Ruby S, Rousset B (2008) Connexin-32 acts as a 

downregulator of growth of thyroid gland. Am J Physiol Endocrinol Metab 294 (2):E291-299. 

doi:10.1152/ajpendo.00281.2007 

157.  Cigliola V, Chellakudam V, Arabieter W, Meda P (2013) Connexins and beta-cell functions. Diabetes 

Res Clin Pract 99 (3):250-259. doi:10.1016/j.diabres.2012.10.016 

158.  Head WS, Orseth ML, Nunemaker CS, Satin LS, Piston DW, Benninger RK (2012) Connexin-36 gap 

junctions regulate in vivo first- and second-phase insulin secretion dynamics and glucose tolerance in the 

conscious mouse. Diabetes 61 (7):1700-1707. doi:10.2337/db11-1312 



 33 

159.  Pointis G, Fiorini C, Gilleron J, Carette D, Segretain D (2007) Connexins as precocious markers and 

molecular targets for chemical and pharmacological agents in carcinogenesis. Curr Med Chem 14 

(21):2288-2303 

160.  DeVries SH, Schwartz EA (1992) Hemi-gap-junction channels in solitary horizontal cells of the catfish 

retina. J Physiol 445:201-230 

161.  Bruzzone R, Hormuzdi SG, Barbe MT, Herb A, Monyer H (2003) Pannexins, a family of gap junction 

proteins expressed in brain. Proc Natl Acad Sci U S A 100 (23):13644-13649. 

doi:10.1073/pnas.2233464100 

162.  Degen J, Meier C, Van Der Giessen RS, Sohl G, Petrasch-Parwez E, Urschel S, Dermietzel R, Schilling 

K, De Zeeuw CI, Willecke K (2004) Expression pattern of lacZ reporter gene representing connexin36 in 

transgenic mice. J Comp Neurol 473 (4):511-525. doi:10.1002/cne.20085 

163.  Li X, Olson C, Lu S, Nagy JI (2004) Association of connexin36 with zonula occludens-1 in HeLa cells, 

betaTC-3 cells, pancreas, and adrenal gland. Histochem Cell Biol 122 (5):485-498. doi:10.1007/s00418-

004-0718-5 

164.  Nassar-Gentina V, Pollard HB, Rojas E (1988) Electrical activity in chromaffin cells of intact mouse 

adrenal gland. Am J Physiol 254 (5 Pt 1):C675-683 

165.  Moser T (1998) Low-conductance intercellular coupling between mouse chromaffin cells in situ. J 

Physiol 506 (Pt 1):195-205 

 

 

Figure legends 

Figure 1: Contribution of connexins and pannexins to adrenal catecholamine secretion. Under basal 

conditions (i.e. low hormonal need), connexin channels engaged in cell-cell coupling support information 

transfer (i.e. electrical and associated
 
calcium signals) from a stimulated cell to adjacent coupled cells, leading 

the latter to exocytose. Coupled chromaffin cells (i.e. grey cells versus light grey cells for non-coupled cells) 

exhibit either a weak coupling, which supports the propagation of small potential fluctuations, or a robust 

coupling, which allows action potentials to be fully reflected into the connected cells (i.e. red potential traces). In 

addition, pannexin channels, through their contribution to nicotine-evoked rise in intracellular calcium 

concentration, also contribute to catecholamine release. In response to an increased catecholamine demand (e.g. 

in stressful situations), the adrenal medulla gap junctional communication remodels such that both the number of 
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gap junction-coupled chromaffin cells and the coupling strength are enhanced (i.e. disappearance of a weak 

coupling in favor of a robust coupling). Because the robust coupling supports the propagation of action 

potentials (and ensuing rises in intracellular calcium concentration) between cells, it appears as a key 

determinant in the increased catecholamine secretion observed in response to stress. Data collected from 

experiments performed in rat [15,34], mouse [12] and bovine [51] adrenal medullary tissue. 

 

Figure 2: Connexin and pannexin function in the pituitary gland and hypothalamus. Connexin channels 

facilitate specific intercellular communication between pituitary cells and may be important for regulating 

hormone release during periods of demand or plasticity. By contrast, pannexin channels, through the liberation 

of ATP, may constitute an important mode of short-range paracrine signaling. In the hypothalamus, connexin 

channels couple neurosecretory neurons and have been shown to allow electrical synchronisation. This likely 

contributes to neuropeptide release, an important determinant of pituitary hormone release, as well as other 

downstream processes (e.g. lactation and hydration). Figure was produced using Servier Medical Art. 
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Table 1: Connexin expression profiles in the normal adrenal cortex 

 

 Cx26 Cx32 Cx43 Cx50 

species expression level references expression level references expression level references expression level references 

rat     + [8, 9, 13, 15]   

mouse     + [9, 12, 14, 27]   

guinea pig     + [9]   

cow     + [9, 10, 28]   

rhesus monkey     + [14]   

human + [7] + [7] + [7, 11, 28] + [7] 
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Table 2: Divergent Cx43 protein expression in the different cortical zones 

 

species capsula 
zona 

glomerulosa 

zona 

intermedia 

zona 

fasciculata 

zona 

reticularis 
references 

rat  

+/- 

+/- 

+/- 

 

 

 

+ 

 

+ 

++ 

+ 

++ 

++ 

++ 

[8] 

[13] 

[9] 

mouse 

 

 

+ 

+ 

+/- 

+/- 

- 

- 

no ZI 

 

+ 

 

+ 

+ 

++ 

+ 

++ 

+ 

+ 

++ 

[9] 

[27] 

[14] 

[12] 

guinea-

pig 
 +/- no ZI + + [9] 

cow  
 

+ 

 

 

+ 

+ 

 

+ 

[28] 

[9] 

rhesus 

monkey 
+ - + + + [14] 

human 
 

+ 

 

+/- 

 

 

+ 

+ 

+ 

+ 

[28] 

[11] 

+/-: sparse staining, +: moderate staining, ++: robust staining 
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 Table 3: Connexin expression in the normal adrenal medulla 

 

 Cx29 Cx36 Cx43 Cx50 

species 
expression 

level 
cell type references 

expression 

level 
cell type references 

expression 

level 
cell type references 

expression 

level 
cell type references 

rat 

   + CC [15, 34] + CC [15, 34]    

      +/- CC? [8]    

      +/- 

islets of 

cortical 

cells? 

[9]    

mouse 

+ 

S100-

positive 

cells 

(Schwann 

cells, ST 

cells?) 

[33] +  ND 
[12, 162, 

163] 
+/- ND [9, 12]    

+ ND 
[12, 162, 

163] 
+ CC [35] + CC [35]    

guinea 

pig 
      +/- ND [9]    

human          + CC [7] 

 +/-: sparse, +: abundant, ND: not determined, CC: chromaffin cells, ST cells: sustentacular cells 
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Table 4: Gender dimorphism in electrical coupling between rat and mouse chromaffin cells and connexin 

expression with changes in response to different physiological conditions 

species gender electrical coupling 
gap junction 

channels 

connexin 

hemichannels 
pannexin channels 

adult 

unstressed rat 

♂ +/- [34] +/- [34] ND ND 

♀ + [15] + [15] ND ND 

adult 

unstressed 

mouse 

♂ + [35] + [12, 35] ND ND 

♀ 
+/- [164, 165] 

++ [35] 
++ [35] ND ND 

adult stressed 

rat 

♂ ++ [34] ++ [34] ND ND 

♀ ND ND ND ND 

adult stressed 

mouse 

♂ ND ++ [12] ND ND 

♀ ND ND ND ND 

neonate rat ND ++ [39] ++ [38, 39] ND ND 

+/-: weak, +: moderate, ++: robust, ND: not determined 
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Table 5: Connexin expression in the anterior pituitary gland 

 

 Cx26 Cx36 Cx43 

 

species 

 

expression 

level 
cell type references 

expression 

level 
cell type references 

expression 

level 
cell type references 

rat 

+/- 
ND 

(secretory cells) 
[8] + ND [76] + 

ND 

(secretory cells) 
[8] 

      + FS cells [75] 

      +/- gonadotrophs [75] 

mouse       + 

TtT/GF 

immortalized 

FS cells 

[82] 

mink       + FS cells [80] 

sheep       + ND 

(DJ Hodson, 

personal 

observation) 

 +/-: sparse, +: abundant, ND: not determined, FS cells: folliculostellate cells 
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Table 6: Connexin expression in the hypothalamus and posterior pituitary 

 

 Cx30 Cx36 Cx43 

species 
expression 

level 
cell type references 

expression 

level 
cell type references 

expression 

level 
cell type references 

rat 

+/- 

ND 

throughout the 

mediobasal 

hypothalamus 

[109] + 

ND 

(disappears 

postnatally) 

[76] +/- 

gonadotropin-

releasing 

hormone-

containing cells 

[107] 

      + 

ND 

close to 

capillaries 

[109] 

      + 
pituitary 

pituicytes 
[75, 107] 

mouse 

   + 

corticotrophin-

releasing 

hormone-

containing cells 

[105]    

   + 
somatostatin- 

containing cells 
[105]    

   + 
kisspeptin- 

containing cells 
[108]    

 +/-: sparse, +: abundant, ND: not determined 


