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Dear Prof Xenophon E. Verykios and Reviewers, 

 

Thank you for your time and your valuable comments. We have revised the manuscript 

carefully according to Reviewers' comments.   

 

All major revisions were highlighted in the Revised Manuscript – Marked up. Please also 

find our responses to the comments point-by-point in the Response to Reviewers’ comments. 

 

In this paper, we demonstrated for the first time catalyst electrodes with PtPd nanodendrites 

for polymer electrolyte fuel cell (PEFC) applications. The originality and novelties of this 

work are listed as below: 

1) Direct catalyst electrode with PtPd nanodendrites. The PtPd nanodendrites themselves 

have been widely investigated in past decades. However, they are all focused on the pure 

materials research for fuel cell reactions, and none of them has been involved in the catalyst 

electrode of real fuel cells while which is the topic of this work. For the first time, we 

demonstrate the catalyst electrode from PtPd nanodendrites for PEFC applications in this 

work.  

2) In-situ growing PtPd nanodendrites on large-area carbon paper. The deposition of 

nanostructures on large-area direct component is highly preferred because they can be 

directly forwarded to application, but it’s much more difficult than the synthesis in solution or 

nanoparticle surface, e.g. CNTs or graphene, and still remains as a challenge. In this work, 

this was successfully achieved. Uniformly distributed PtPd nanodendrites are directly grown 

on the 16 cm
2
 gas diffusion layer carbon paper surface and used as PEFC catalyst electrodes. 

3) Direct evidences for the crystal growth mechanism. For PtPd nanodendrites, the 

crystal growth mechanism is usually inferred by their standard reduction potential in 

literature, and we provide more direct evidences here.  

 

In this case, this work specially relates to the scope of journal on 'New catalytic routes and 

processes for the production of clean energy'. 

 

We confirm that this manuscript has not been published elsewhere and is not under 

consideration by any other journals. All authors have approved the manuscript and agreed 

with this submission. The authors have no conflicts of interest to declare. 

 

Thank you for considering our manuscript.  
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Shangfeng Du 

 

Centre for Hydrogen and Fuel Cell Research 

School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK 

E-mail: s.du@bham.ac.uk 
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Reviewer #1:  The authors have made significant improvement of the manuscript 

over the previous draft. One last question before recommending this work for 

publication. Based on the experimental description, it seems that the catalysts grow 

on both sides of the GDL. If so, which side of GDL do you use for MEA? Does the 

metal NPs on the other side affect the mass transfer of oxygen? This at least might be 

mentioned in the text. 

 

Response: The catalysts only grow on the topside with MPL which is the side facing 

the polymer electrolyte membrane in the membrane electrode assembly. Due to the 

hydrophobic feature of GDL, reaction solution does not penetrate into the pores of 

GDLs so all catalysts only grow on the MPL surface. We’ve added one phrase to 

clear this point on Page 5 in the text.  
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Abstract 

PtPd bimetallic nanodendrites (NDs), with enhanced activities from PtPd over 

element Pt and unique anisotropic morphology, show potential as catalysts in fuel cell 

applications. However, the research has been limited to pure materials, and 

constructing a practical fuel cell catalyst electrode from PtPd NDs still remains as a 

challenge. In this paper, we demonstrated, for the first time, catalyst electrodes from 

PtPd NDs for polymer electrolyte fuel cell (PEFC) applications. PtPd NDs are in-situ 

grown on large-area carbon paper gas diffusion layers (GDLs) and directly employed 

as cathodes in H2/air PEFCs. The thin catalyst layer with PtPd nanodendrites 

significantly reduces mass transfer resistance and a higher power performance is 

achieved than those based on pure Pt nanowires and Pt/C nanoparticle electrocatalysts. 

The crystal growth mechanisms of this advanced nanostructure on large-area support 

are also detailed based on the time-dependent experiments and Pd content. 

 

Keywords: PtPd; nanodendrite; oxygen reduction reaction (ORR); catalyst; polymer 

electrolyte fuel cell (PEFC) 
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1. Introduction 

Due to unique properties, one-dimensional (1D) nanostructures such as nanodendrites 

(NDs), nanowires (NWs) and nanotubes (NTs) have been widely studied for their 

enhanced catalytic activities toward fuel cell reactions [1-4]. Compared with 

associated zero-dimensional (0D) nanoparticles (NPs), 1D nanostructures have more 

enhanced reaction kinetics on catalyst surface and are less vulnerable to dissolution 

and aggregation, which can potentially improve their catalytic activity and durability 

[5-7]. Benefiting from these advantages, three-dimensional (3D) nanostructures based 

on 1D Pt nanowire arrays have been fabricated by bottom-up design and 

demonstrated as effective catalyst electrodes to address some challenges faced by the 

conventional fuel cell electrodes with Pt-based NPs [8, 9]. These 3D catalyst 

electrodes have been confirmed with high performance in real fuel cells owing to a 

high catalyst utilisation ratio resulted from a significantly reduced mass transfer 

resistance induced by the thin and porous catalyst layer, as well as unique catalytic 

properties of single-crystal Pt NWs [10-12]. 

 

Although Pt is still the best electrocatalyst for the oxygen reduction reaction (ORR) in 

cathodes for polymer electrolyte fuel cells (PEFCs), the relative high cost, and in 

particular the poor stability are still the major limits for the successful 

commercialization of this technology [13, 14]. In order to improve the stability and 

reduce the loading of precious Pt while not compromising the activity, one promising 

strategy is to introduce other element into Pt to form alloy or hybrid catalysts [15, 16]. 

It is generally accepted that the incorporation of a second metal component can offer 

desired interactions with Pt to tune both electronic and surface effects, triggering 

enhanced effects to improve physical and chemical properties [17, 18]. Sitting in the 
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same periodic group as Pt and possessing a similar lattice space, Pd has been 

confirmed as a promising candidate [19, 20]. 1D Pt-Pd bimetallic electrocatalysts with 

various structures such as alloy [21], core-shell [22] and heterostructure as well as 

different morphologies like nanodendrites [23, 24], nanowires [21], nanotubes [22], 

nanorods [25] etc. have been reported. The advantages of the bimetallic feature and 

1D anisotropic properties lead to an improved catalysis process [26-28], resulting in a 

long-term stability and also superior activity toward ORR. Some references also 

indicated that the existence of Pd played a significant role on the morphology of Pt-Pd 

bimetallic nanostructures [28]. For example, Xia’s group [23] reported that in the 

presence of Pd, open branched PtPd dendrites were formed, otherwise only foam-like 

Pt aggregates were obtained. However, these investigations all focus only on the pure 

material research, and the real applications of 1D Pt-Pd bimetallic catalysts in 

practical fuel cells still remains as a challenge. 

 

Inspired by the 3D Pt-nanowire (PtNW) catalyst electrodes and considering the 

enhanced activity between Pd and Pt, in this work, direct catalyst electrodes with PtPd 

bimetallic NDs in-situ grown on 16 cm
2
 gas diffusion layers (GDLs) are demonstrated. 

The crystal growth mechanism and influence of Pd on the PtPd nanostructure are 

studied based on the time-dependent in-situ growing process and the Pd content. The 

fabricated gas diffusion electrodes (GDEs) with 3D PtPd bimetallic nanostructures are 

directly tested as cathodes in H2/air PEFCs. The polarization curves, electrochemical 

impedance spectra (EIS), cathode cyclic voltammograms (CVs) and accelerated 

degradation test (ADT) are performed in-situ in PEFCs to investigate the enhanced 

power performance and durability of PdPtND GDEs.  
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2. Experimental Section 

2.1 Chemicals and materials 

Hexachloroplatinic acid hexahydrate (H2PtCl6·6H2O, ≥37.50% Pt basis) and 

palladium(II) chloride (PdCl2, anhydrous, 60% Pd basis) from Sigma-Aldrich UK 

were used as metal precursors. Formic acid (CH2O2, 98+%) and isopropanol (IPA) 

(C3H8O, >99.5%) were obtained from Fisher Scientific UK. DuPont Nafion
®
 212 

membrane, Nafion
®
 solution (D1021, 10 wt%) and SIGRACET

®
 GDL 35 BC carbon 

paper were purchased from Ion Power Inc. 20 wt% Pt supported on Vulcan XC-72 

was purchased from Fuel Cell Store. All chemicals and materials were used as 

received without any further purification. The GDL 35 BC carbon paper was used as 

the direct substrate for PtPd nanostructure growth. Gas diffusion electrodes (GDEs) 

with Pt/C catalysts at a loading of 0.4 mgPt cm
–2

 printed on SIGRACET
®
 GDL 34 BC 

were obtained from Johnson Matthey Fuel Cells Ltd and used as anodes for 

fabricating single cells. Ultrapure water (18.2 MΩ cm) from a Millipore water system 

was used throughout. 

 

2.2 PtPd GDE preparation and physical characterization 

Pieces of 4×4 cm
2
 standard GDL 35 BC carbon paper was used as the substrate. It 

consists of a carbon fibre layer at the back and a top micro porous layer (MPL) from 

carbon spheres with a particle size of 50–100 nm. The GDL has been treated with 

polytetrafluoroethylene (PTFE) to give super hydrophobic property to prevent the 

water flooding in fuel cell operation. PtPd nanostructures with various molar ratios 

were grown on carbon paper at MPL surface by a modified wet chemical reduction 

method from our previous studies [31]. In a typical synthesis, to ensure the total metal 

loading of 0.4 mg cm
–2

 on a 16 cm
2
 carbon paper, a controlled amount of H2PtCl6 and 
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PdCl2 solution coupled with 0.53 mL formic acid were added to 10.6 mL water. Then 

the carbon paper was immersed in the mixed solution at the bottom in a 6 cm glass 

Petri dish and stored at room temperature for PtPd nanostructure growth. After the 

colour of the solution changed from yellow to colourless and the growth process was 

completed, the samples were rinsed using water and IPA, followed by drying at 40 
o
C 

overnight. The as-prepared carbon paper samples with in-situ grown PtPd 

nanostructures at various Pd atomic percentages of 50, 25, 10, 5, 2.5 and 0.5 were 

directly used as GDEs at cathode for PEFCs.  

 

The distribution and morphology of PtPd nanostructures in electrodes were 

characterized by a field emission scanning electron microscope (FE-SEM, JEOL 

7000F, operating at 20 kV) and a high-resolution transmission electron microscope 

(HR-TEM, Philips CM200 FEG). TEM samples were prepared by scraping catalysts 

from GDE surface and dispersed onto Cu grids. X-ray diffraction (XRD) patterns 

were recorded with a Siemens D5005 powder X-ray diffractometer operated at 40 kV 

and 30 mA using Cu Kα (λ= 0.15418 nm) radiation. X-ray photoelectron spectroscopy 

(XPS) characterization was conducted on an XPS spectrometer (K-Alpha, Thermo 

Scientific) with a micro-focussed monochromatized Al Kα radiation.  

 

2.3 Membrane electrode assembly (MEA) fabrication 

Membrane electrode assemblies (MEAs) with an active area of 16 cm
2
 were 

fabricated using the as-prepared PtPd GDEs as cathodes and the Pt nanoparticle 

GDEs from Johnson Matthey as anodes. GDEs were first coated with a thin layer of 

Nafion ionomer at a loading of 0.6 mg cm
–2

, and then sandwiched at both sides of a 

6×6 cm
2
 Nafion 212 membrane. After that, the assembly was hot pressed at 125

 o
C 
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under a pressure of 4.9 MPa for 2 min. An illustration of the MEA setup is shown in 

Fig. 1. For comparison, MEAs with cathodes based on Pt/C (20 wt%) nanoparticle 

catalysts and pure Pt nanowires at a Pt loading of 0.4 mgPt cm
–2

 were also fabricated 

simultaneously. 

 

2.4 Fuel cell tests 

The fabricated MEAs were tested in a PEFC test stand (PaxiTech-BioLogic FCT-50S, 

Fig. 1) with electrochemical impedance spectroscopy (EIS) capabilities. The gasket 

used in fuel cell testing was PTFE sheet with a thickness of 254 µm at both cathode 

and anode sides. All tests were conducted at 70
 o

C with fully humidified H2 and air 

fed at stoichiometry of 1.3/2.4 and backpressure of 2 bars at the anode and cathode, 

respectively. The MEAs were conditioned by a break-in at 0.6 V for 7 h, and after that 

polarization curves were recorded at a scan rate of 5 mV s
–1

 from 0.3 V to open 

circuit voltage (OCV). EIS measurements were performed in the frequency range 

from 10 kHz to 0.1 Hz with amplitudes of 0.05, 1 and 2 A at current densities of 0.05, 

0.5 and 1 A cm
-2

 for 16 cm
2
 PEFCs, respectively.  

 

Cathode cyclic voltammograms (CVs) were recorded using an EZstat-Pro system 

integrated with the test stand. The cell temperature and backpressure were 25
 o
C and 0 

bar, respectively. The cathode was fed with fully humidified N2 at 300 mL min
–1

, and 

the anode was fed with fully humidified pure H2 at 120 mL min
–1

 serving as both 

reference and counter electrodes, also called a dynamic hydrogen electrode (DHE). 

Then the cathode potential was cycled between 0.05 and 1.2 V versus DHE at 20 mV 

s
–1

 for 5 cycles, and the fifth cycle was recorded. Accelerated degradation test (ADT) 
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was undertaken by potential cycling between 0.6 and 1.2 V for 3000 cycles at a scan 

rate of 50 mV s
–1

.  

 

3. Results and discussion 

The controlled growth of PtPd nanostructures on 16 cm
2
 GDLs was realized by 

reducing H2PtCl6·6H2O and PdCl2 with formic acid in aqueous solution at room 

temperature [29, 30]. The composition of PtPd nanostructures was tuned by the 

amount of precursors added in the reaction system while keeping the total metal 

loading at 0.4 mg cm
–2

. Since the GDL surface consists of only the inert carbon 

spheres coated with hydrophobic PTFE, only limited rough sites of carbon sphere 

surface can serve as the main heterogeneous nucleation sites in the reduction. In our 

previous research it has also demonstrated that on this kind of surface, the edge area 

of GDL piece is usually easier to be wetted and provides more nucleation sites than 

the central region in an aqueous solution [11]. In this case, the population of Pt nuclei 

multiplies at the edge area while fewer are in the center; therefore more catalyst 

nanostructures are formed and accumulate at the edge of the GDL piece to form large 

agglomerates. Comparing with the standard reduction potential of PtCl6
2–

/Pt (0.73 V 

vs. standard hydrogen electrode (SHE)), the value for Pd
2+

/Pd couple is more positive 

(0.92 V vs. SHE), meaning that Pd nuclei can form on the GDL surface much easier 

than Pt [28]. This relative positive standard reduction potential enables the generated 

Pd nanoparticles distribute more uniformly on the inert surface, which then act as 

seeds to induce the co-reduction and further growth of PtPd nanostructures [24, 32]. 

Fig. 2 compares the surface at the edge and center area of a 16 cm
2
 PtNW GDE and 

PtPd GDE with 5 at% Pd. It can be seen that the distribution of PtPd nanostructures 

has much less difference at the edge and in the center area as compared to Pt. 
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Although the PtPd nanodendrites have been reported by many groups, including both 

in solutions [23, 28, 33] and on supports, e.g. on graphene [32, 34], the growth 

mechanism was all simply inferred based on the standard reduction potential. There is 

really not a lot of evidences for the crystal growth mechanism. To help clear this point, 

in this work, the time-dependent in-situ growing process was analysed for PtPd GDE 

with 5 at% Pd. The reaction solution from 0 to 92 hours was monitored by UV-Vis 

spectroscopy to evaluate qualitatively the remained metal ions which haven’t been 

reduced by formic acid. The absorption spectrum lines of the Pd and Pt precursors as 

well as that of the PtPd mixture at different time intervals are shown in Fig. S1. The 

results indicate that the reduction of Pd mainly happens at the initial stage of the 

reaction and nearly all Pd ions are reduced in the first 2 hours, but the whole reaction, 

in particular the reduction of Pt will not finished until 24 hours later.  

 

To further understand the crystal growth mechanism, the morphological evolution of 

PtPd nanostructure with 5 at% Pd on the GDL surface at various reaction periods 

were examined by TEM with EDX analysis (Fig. S2). The results show a very high 

Pd ratio in the beginning, followed by a fast dropping to a quite low level, suggesting 

that PtPd alloy nanoparticles with a dominated amount of Pd at the initial stage are 

formed at first, which are then working as seeds for the following growth to 

nanodendrites. The branches of nanodendrites are dominated by Pt due to most Pd has 

been reduced in the initial period in nanoparticle formation. These changes are 

consistent with that shown by UV-Vis spectra. The branch diameter of the as-obtained 

nanodendrites is ca. 4 nm, and the length is ca. 5–20 nm. The crystalline nature of 

final PtPd nanodendrites was elucidated by the selected-area electron diffraction 
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(SAED) pattern, and intense rings can be assigned to the (111), (200), (220) and (311) 

planes of the Pt face-centred cubic (fcc) crystals (inset in Fig. 3a). A HR-TEM image 

shown in Fig. 3b displays typical nanodendrites. The inset image indicates a lattice 

spacing distance of 0.22 nm for one branch of PtPd nanodendrites, which is slightly 

smaller than 0.23 nm of the {111} lattice spacing of the bulk Pt. This contraction of 

lattice caused by the addition of Pd is in line with the reported results in literature [35], 

which indicates the interactions between Pt and Pd atoms in the formed PtPd NDs. 

 

The fast reduction of Pd and their role as growing seeds on GDL surface indicates a 

non-negligible influence of the amount of Pd on the formation of the final 

nanostructures. Some early researches have been carried out by other groups to this 

synthesis for supported and un-supported catalysts [24, 28, 33]. But, all of them only 

focus on the pure material research, and none of them has demonstrated the real 

catalytic performance of these nanostructures in practical fuel cells. In particular, 

when this synthesis is conducted directly on the large-area GDL surface, the effect of 

Pd is thus different from that in solution or supported-catalysts. Fig. S3 shows TEM 

images of PtPd nanostructures with various Pd atomic contents. At a high Pd content 

of 50 at%, a high supersaturation of Pd atoms greatly lowers the free-energy barrier 

for heterogeneous nucleation and is responsible for the rapid nucleation rate of Pt with 

a vanishingly small growth rate [36]. Therefore, the main morphology obtained is 

spherical PtPd nanoparticle aggregate with an average particle size of ca. 5 nm (Fig. 

S3a). But, when pure Pd is used, rather than Pd nanoparticles obtained as those 

reported in literature [31, 33, 34], very large Pd crystal grains are observed (Fig. S3e 

and f). In one case, this indicates the important effects of the existing of Pt ions with 

Pd in the formation of nanoparticles on the GDL surface, as that with 50 at% Pd. On 
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the other hand, it suggests different crystal growth mechanisms on the large-area GDL 

as compared with those in solution or on supports. With the decrease of the Pd 

content, the nucleation sites provided are reduced, and accordingly, short 

nanodendrites (Fig. S3b) are formed through the reported particle attachment growth 

process [28]. Decreasing the Pd content to 10 at%, a high yield of nanodendrites is 

obtained. The branch shows a length of ca. 5–10 nm (Fig. S3c). With a further 

decrease in Pd, PtPd nanodendrites with longer and dense branches are obtained (i.e. 

Fig. 3 at 5 at%). At 2.5 at% Pd, the branch length increases to 10–20 nm (Fig. S3d). 

Therefore, in the presence of a high Pd content nanoparticles are inclined to form, and 

nanodendrites are achieved when the Pd content decreases.  

 

To further understand the crystal structure of the as-prepared PtPd nanostructures, 

XRD analysis was performed to the plain GDL 35BC, GDEs of Pt, Pd and PtPd 5 at% 

(Fig. S4). PtPd 5 at% NDs show the characteristic peaks locating between single Pt 

(JCPDS-04-0802 Pt) and Pd (JCPDS-46-1043 Pd) [37, 38], indicating the formation 

of the solid-solution PtPd alloy again, as supported by the HRTEM results (Fig. 3b). 

The much stronger intensity of the Pd peaks also confirms the very large crystal 

grains formed (Fig. S3e and f). XPS analysis was conducted to identify near-surface 

species involved in PtPd heterostructures (Fig. S5). It can be seen that, with the 

increase of Pd, the intensity of Pd 3d peaks becomes stronger while that of the Pt 4d 

peaks becomes weaker, and all peaks shift more positively compared with the 

monometallic Pt (4d3/2 at 331.6 eV) and Pd (3d5/2 and 3d3/2 at 335.2 and 340.5 eV, 

respectively), suggesting the PtPd interactions [39] change the atomic structure thus 

contributing to the enhanced activity in PtPd bimetallic hybrids [31]. 
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In order to understand the influence of Pd content on the catalytic performance of 

PtPd nanostructures in real fuel cell conditions, PtPd GDEs fabricated with different 

Pd contents were directly used as cathodes and tested in 16 cm
2
 hydrogen-air PEFCs. 

Cathode CVs were recorded in-situ in single cells to measure the electrochemical 

active specific area (ECSA) of catalysts within electrodes. From CVs in Fig. 4, 

normalized by the metal loading in precursors (checked by TGA shown in Fig. S6), 

ECSAs for PtPd GDEs with Pd atomic percentages of 50, 25, 10, 5, 2.5 and 0.5, as 

well as PtNW GDE are 0.49, 7.21, 11.59, 22.40, 18.76, 18.15 and 14.70 m
2
 g

–1
, 

respectively. The smallest ECSA value of PtPd 50 at% GDE can be ascribed to the 

nanoparticle aggregates formed on the GDL surface (Fig. S3a). This aggregation 

reduces contribution of catalysts to the three-phase boundary (TPB) in the electrodes 

and leads to a low catalyst utilisation ratio in fuel cell electrode [40]. Larger ECSA is 

obtained as aggregates reduce with a decreased Pd content. When the composition of 

Pd arrives at 5 at%, a larger ECSA is achieved as expected due to the more regular 

PtPd NDs achieved. The ECSA of PtPd 2.5 and 0.5 at% GDEs are slightly lower, 

which can be ascribed to the longer and denser nanodendrite branches (Fig. S3d) and 

their relative non-uniform distribution on GDLs (Fig. 2a and b). With a similar 

morphology, the larger ECSA of PtPdND GDEs at the low Pd content than that of 

PtNW GDE indicates that PtPdND GDE is more electrochemically accessible due to 

their better distribution on the GDL surface. However, the anisotropic morphology 

still results in a much lower ECSA for the PtPd ND GDE as compared to the 

commercial Pt/C nanoparticle catalysts (30.91 m
2
 g

–1
), which is in line with those 

reported in literature [10,29]. 
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Fig. 5 shows polarization curves and their power densities at 0.6 V of the MEAs with 

the as-prepared PtPd GDEs, as well as PtNW and Pt/C GDEs. The comparison is 

conducted at 0.6 V because this is the common voltage used in practical operational 

conditions of PEFCs. Although a much larger ECSA is observed for Pt/C 

nanoparticles, the power performance obtained is much lower, and the power density 

at 0.6 V is only 0.55 W cm
–2

, while PtNW GDE exhibits a higher value of 0.64 W 

cm
–2

. Regarding PtPd GDEs, at a high Pd amount, e.g. 50%, the lower catalyst 

utilisation ratio from the aggregated nanoparticles finally results in a poor electrode 

performance. With decrease of the Pd content, a better performance is obtained, 

reaching the maximum value at 5 at%. At this optimal Pd content, the uniform 

distribution of NDs enables a more porous catalyst layer, which facilitates oxygen 

diffusion to the catalyst surface to achieve a reduced mass transfer loss and a higher 

catalyst utilization ratio, thus a better catalytic performance is expected. Further 

decrease of the Pd content leads to PtPd NDs with longer and dense branches, as well 

as the relative non-uniform distribution on GDL surface (Fig. 2 and S3), finally 

resulting in a lower catalyst utilization ratio and thus a decline of the electrode 

performance. The power performance of PtPdND GDE with 5 at% Pd exhibits the 

highest power density of 0.73 W cm
–2 

at 0.6 V, better than those of both PtNP/C and 

PtNW GDEs, demonstrating the advantages from both the 1D morphology over the 

0D nanoparticles and the PtPd hybriding over pure Pt nanowires.  

 

To further understand the effect of the behaviour of PtPd nanostructures on power 

performance, EIS measurements were conducted at three current densities for PtPd 

GDEs with different compositions as well as to the Pt/C and PtNW GDEs (Fig. 6). At 

a low current density of 0.05 A cm
-2

, the impedance represented by the diameter of 
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the semi-circle is mainly contributed by charge transfer resistance, indicating ORR 

catalytic kinetic performance.  Fig. 6a shows the largest impedance with the PtPdND 

GDE with 50 at% Pd. The smallest semicircle is observed for the PtPd GDE with 5 

at% Pd, indicating the lowest charge transfer resistance and thus the best ORR 

catalytic kinetic performance. However, all PtPd GDEs with medium and low Pd 

contents together with Pt/C and PtNW GDEs show similar impedances, implying a 

close ORR catalytic kinetic performance for all of them. This is slightly different 

from those reported higher catalytic activities from the enhanced effect of PtPd over 

Pt by the measurement conducted in liquid electrolytes [20]. Although the clear 

mechanism is still not clear now, it can possibly ascribed to the much complex test 

environment in practical fuel cells compared with that in the liquid electrolyte. Here, 

besides the intrinsic catalytic activities, the catalyst behaviour and their surrounding 

environment in electrode together determine the final performance in fuel cells. With 

the increase of the current density (Fig. 6b and c), the 2
nd

 semicircle appears on EIS 

which mainly represents mass transfer resistance within electrodes. PtPdND GDE 

with 5 at% Pd still shows the smallest charge and mass transfer resistance, while the 

GDEs with Pt/C nanoparticles and PtPd GDE 50 at% exhibit very large resistances 

due to their dense electrode structure.  These EIS measurement results demonstrate 

the much reduced mass transfer loss in the PtNW GDE as compared with those from 

both PtPd and Pt nanoparticles, and a further improvement can also be achieved by 

introducing a small amount of Pd to optimise their distribution on GDL surface.  

 

Besides catalytic activities, a high stability is also usually reported for PtPd hybrid 

structures over Pt [41], which is based on the enhanced effect of Pd and Pt preventing 

the dissolution of catalysts during the potential cycling. To check the effect of 
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introducing Pd to the as-prepared PtPd NDs on the GDE performance in fuel cells, an 

accelerated degradation test (ADT) was carried out by 3000 potential sweeping cycles 

in the single cell at room temperature. Cathode CVs after the ADT test are displayed 

with the initial curves and compared with those of PtNWs and Pt/C nanoparticles in 

Fig. 7a. After the ADT, all GDEs exhibit a big decline of their ECSAs, and a lower 

ratio is observed to the PtPdND GDE as compared with PtNW one, which agrees well 

with those reported in literature [37, 38], but the one from Pt/C shows the least drop. 

The remaining values of PtNW, PtPdND and Pt/C GDEs are 5.55, 11.96 and 21.25 m
2
 

g
–1

, corresponding to 62.2%, 46.6% and 31.2% loss of their initial ECSAs, 

respectively (Fig. 7c). Fig. 7b shows polarization curves for all GDEs after the ADT. 

It can be seen that the PtPdND GDE still exhibits a higher power performance than 

the PtNW GDE at 0.6 V, and the Pt/C GDE shows a very low performance, 

corresponding to degradation ratios of 19.9%, 12.7% and 27.5% (Fig. 7d), 

respectively. At the high voltage region (>0.7V), PtNW GDE presents a higher power 

performance, indicating a better kinetic activity than PtPdND GDE, which can be 

explained by the higher mass activity remained after the ADT [11,40]. The larger 

ratio of ECSA loss than the lower degradation percentage of power performance 

indicates the increase in the specific area activity of catalysts [42], and the result 

shown here indicates this improvement becomes larger with the increase of the aspect 

ratio from nanoparticles, NDs to NWs. Although the detailed mechanisms are still not 

clear at the moment [1], this phenomenon further demonstrates advantages of 1D 

nanostructured catalysts for PEFC applications.  

 

4. Conclusions 
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In summary, we have demonstrated a catalyst electrode from PtPd nanodendrites in-

situ grown on large-area gas diffusion layer carbon paper surface by a facile wet 

chemical procedure. The experimental results show that the content of Pd greatly 

influences the final morphology and distribution of PtPd nanostructures on GDL 

surfaces, which together determines the final power performance in PEFC 

applications. The introducing of an optimal amount of Pd, i.e. 5 at% to Pt nanowire 

growth leads to more uniform distributed PtPd nanodendrites on the GDL surface, 

reducing the mass transfer resistance within the electrode to achieve a high power 

performance. Besides, PtPd NDs exhibit a higher power performance over Pt NWs 

even after the durability test in PEFCs, showing a lower loss of ECSA but a higher 

degradation percentage of power performance. Due to an analogous catalyst electrode 

could be formed based on other hybrid anisotropic nanostructures, the results here 

point to new electrode preparation strategies that leverage both the catalyst intrinsic 

activity and the electrode structure for high performance PEFCs.  

 

Acknowledgements 

YX Lu was supported by a joint Li Siguang Scholarship from the University of 

Birmingham (UoB) and the China Scholarship Council (CSC). TEM analysis was 

performed at Leeds EPSRC Nanoscience and Nanotechnology Research Equipment 

Facility funded by EPSRC Grant EP/F056311/1 and the University of Leeds 

(LENNF). X-ray photoelectron spectra were obtained at the National EPSRC XPS 

User’s Service (NEXUS) at Newcastle University, an EPSRC Mid-Range Facility 

(NEXUS). 

 

Supporting Information  



17 
 

Supporting information includes additional information on the UV-Vis spectra, EDX 

analysis results, SEM images of Pd grown on GDL, TGA curves and a comparison of 

polarization curves of PtPd GDE fabricated by two growing procedures.  

 

References 

[1] C. Koenigsmann, S.S. Wong, Energ Environ Sci 4 (2011) 1161-1176. 

[2] G. Zhang, S. Sun, M. Cai, Y. Zhang, R. Li, X. Sun, Sci Rep 3 (2013) 1526. 

[3] S. Sun, G. Zhang, D. Geng, Y. Chen, R. Li, M. Cai, X. Sun, Angewandte Chemie Int 

Ed 50 (2011) 422-426. 

[4] S.M. Alia, G. Zhang, D. Kisailus, D. Li, S. Gu, K. Jensen, Y. Yan, Adv Funct Mater 20 

(2010) 3742-3746. 

[5] B.Y. Xia, W.T. Ng, H.B. Wu, X. Wang, X.W. Lou, Angew Chem Int Ed 51 (2012) 

7213–7216. 

[6] L.Y. Ruan, E.B. Zhu, Y. Chen, Z.Y. Lin, X.Q. Huang, X.F. Duan, Y. Huang, Angew 

Chem Int Edit 52 (2013) 12577-12581. 

[7] S. Du, Int J Low-Carbon Tech 7 (2012) 44-54. 

[8] S. Sun, G. Zhang, D. Geng, Y. Chen, M.N. Banis, R. Li, M. Cai, X. Sun, Chem –Eur J 

16 (2010) 829-835. 

[9] S.F. Du, J. Power Sources 195 (2010) 289-292. 

[10] S.F. Du, K.J. Lin, S.K. Malladi, Y.X. Lu, S.H. Sun, Q. Xu, R. Steinberger-Wilckens, 

H.S. Dong, Sci Rep 4 (2014) 6439. 

[11] Y.X. Lu, S.F. Du, R. Steinberger-Wilckens, Appl Catal B-Environ 164 (2015) 389-395. 

[12] X.Y. Yao, K.H. Su, S. Sui, L.W. Mao, A. He, J.L. Zhang, S.F. Du, Int J Hydrogen 

Energ 38 (2013) 12374-12378. 

[13] L. Su, S. Shrestha, Z. Zhang, W. Mustain, Y. Lei, J Mater Chem A 1 (2013) 12293-

12301. 



18 
 

[14] I.E.L. Stephens, A.S. Bondarenko, U. Gronbjerg, J. Rossmeisl, I. Chorkendorff, Energ 

Environ Sci 5 (2012) 6744-6762. 

[15] J. Greeley, I.E.L. Stephens, A.S. Bondarenko, T.P. Johansson, H.A. Hansen, T.F. 

Jaramillo, J. Rossmeisl, I. Chorkendorff, J.K. Norskov, Nat Chem 1 (2009) 552-556. 

[16] Y.H. Bing, H.S. Liu, L. Zhang, D. Ghosh, J.J. Zhang, Chem Soc Rev 39 (2010) 2184-

2202. 

[17] W.T. Yu, M.D. Porosoff, J.G.G. Chen, Chem Rev 112 (2012) 5780-5817. 

[18] C. Koenigsmann, S.S. Wong, ACS Catal 3 (2013) 2031-2040. 

[19] Y.J. Deng, N. Tian, Z.Y. Zhou, R. Huang, Z.L. Liu, J. Xiao, S.-G. Sun, Chem Sci 3 

(2012) 1157-1161. 

[20] H. Zhang, M.S. Jin, Y.N. Xia, Chem Soc Rev 41 (2012) 8035-8049. 

[21] Z. Zhu, Y. Zhai, C. Zhu, Z. Wang, S. Dong, Electrochem Commun 36 (2013) 22-25. 

[22] S.M. Alia, K.O. Jensen, B.S. Pivovar, Y. Yan, ACS Catal 2 (2012) 858-863. 

[23] B. Lim, M. Jiang, T. Yu, P.C. Camargo, Y. Xia, Nano Res 3 (2010) 69-80. 

[24] S. Ghosh, S. Mondal, C. Retna Raj, J Mater Chem A 2 (2014) 2233-2239. 

[25] Y.Z. Lu, Y.Y. Jiang, W. Chen, Nano Energy 2 (2013) 836-844. 

[26] C. Zhu, S. Guo, S. Dong, Adv Mater 24 (2012) 2326-2331. 

[27] S.J. Guo, S.J. Dong, E.K. Wang, Chem Commun 46 (2010) 1869-1871. 

[28] J.-J. Lv, J.-N. Zheng, S.-S. Li, L.-L. Chen, A.-J. Wang, J.-J. Feng, J Mater Chem A 2 

(2014) 4384-4390. 

[29] S.H. Sun, F. Jaouen, J.P. Dodelet, Adv Mater 20 (2008) 3900-3904. 

[30] S.H. Sun, D.Q. Yang, D. Villers, G.X. Zhang, E. Sacher, J.P. Dodelet, Adv Mater 20 

(2008) 571-574. 

[31] S. Du, Y. Lu, R. Steinberger-Wilckens, Carbon 79 (2014) 346-353. 

[32] X. Chen, Z. Cai, X. Chen, M. Oyama, J Mater Chem A 2 (2014) 315. 

[33] L. Wang, Y. Yamauchi, Chem-Asian J 5 (2010) 2493-2498. 

[34] S.J. Guo, S.J. Dong, E.K. Wang, ACS Nano 4 (2010) 547-555. 



19 
 

[35] Y. Kim, Y. Noh, E.J. Lim, S. Lee, S.M. Choi, W.B. Kim, J Mater Chem A 2 (2014) 

6976-6986. 

[36] A. Cacciuto, S. Auer, D. Frenkel, Nature 428 (2004) 404-406. 

[37] X. Yang, Q.D. Yang, J. Xu, C.S. Lee, J Mater Chem 22 (2012) 8057-8062. 

[38] Y.C. Tseng, H.S. Chen, C.W. Liu, T.H. Yeh, K.W. Wang, J Mater Chem A 2 (2014) 

4270-4275. 

[39] C.Z. Zhu, S.J. Guo, S.J. Dong, Adv Mater 24 (2012) 2326-2331. 

[40] H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Appl Catal B-Environ 56 (2005) 

9-35. 

[41] L.X. Ding, C.L. Liang, H. Xu, A.L. Wang, Y.X. Tong, G.R. Li, Adv Mater Interfaces  

(2014) 1400005. 

[42] P. Hernandez-Fernandez, F. Masini, D.N. McCarthy, C.E. Strebel, D. Friebel, D. 

Deiana, P. Malacrida, A. Nierhoff, A. Bodin, A.M. Wise, J.H. Nielsen, T.W. Hansen, A. 

Nilsson, I.E.L. Stephens, I. Chorkendorff, Nat Chem 6 (2014) 732-738. 

  



20 
 

Figure captions:  

 

Fig. 1 Illustration of fuel cell setup. 

Fig. 2 SEM images of (a, b) PtNW GDE and (c, d) PtPd GDE with 5 at% Pd. (a, c) 

and (b, d) show the edge and center area of the two GDE pieces, respectively. 

Fig. 3 TEM images of PtPd nanostructures with 5 at% Pd in-situ grown on GDL 

surface. Insets in (a) and (b) show the SAED pattern and HR-TEM image of one 

branch, respectively. 

Fig. 4 Cathode CVs for GDEs from Pt/C, PtNWs and PtPdNDs with different 

compositions. 

Fig. 5 (a) Polarization curves and (b) the trend of the power density at 0.6 V for PtPd 

GDEs with different Pd contents and PtNW and Pt/C GDEs.  

Fig. 6 EIS measured at (a) 0.05, (b) 0.5 and (c) 1.0 A cm
–2

 for PtPdND GDEs with 

various Pd contents, PtNW and Pt/C GDEs. 

Fig. 7 (a) CVs, (b) polarization curves, (c) ECSAs and (d) power densities at 0.6 V 

for GDEs from PtPdNDs with 5 at% Pd, PtNWs and Pt/C nanoparticles before and 

after the ADT test. 
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Abstract 

PtPd bimetallic nanodendrites (NDs), with enhanced activities from PtPd over 

element Pt and unique anisotropic morphology, show potential as catalysts in fuel cell 

applications. However, the research has been limited to pure materials, and 

constructing a practical fuel cell catalyst electrode from PtPd NDs still remains as a 

challenge. In this paper, we demonstrated, for the first time, catalyst electrodes from 

PtPd NDs for polymer electrolyte fuel cell (PEFC) applications. PtPd NDs are in-situ 

grown on large-area carbon paper gas diffusion layers (GDLs) and directly employed 

as cathodes in H2/air PEFCs. The thin catalyst layer with PtPd nanodendrites 

significantly reduces mass transfer resistance and a higher power performance is 

achieved than those based on pure Pt nanowires and Pt/C nanoparticle electrocatalysts. 

The crystal growth mechanisms of this advanced nanostructure on large-area support 

are also detailed based on the time-dependent experiments and Pd content. 

 

Keywords: PtPd; nanodendrite; oxygen reduction reaction (ORR); catalyst; polymer 

electrolyte fuel cell (PEFC) 
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1. Introduction 

Due to unique properties, one-dimensional (1D) nanostructures such as nanodendrites 

(NDs), nanowires (NWs) and nanotubes (NTs) have been widely studied for their 

enhanced catalytic activities toward fuel cell reactions [1-4]. Compared with 

associated zero-dimensional (0D) nanoparticles (NPs), 1D nanostructures have more 

enhanced reaction kinetics on catalyst surface and are less vulnerable to dissolution 

and aggregation, which can potentially improve their catalytic activity and durability 

[5-7]. Benefiting from these advantages, three-dimensional (3D) nanostructures based 

on 1D Pt nanowire arrays have been fabricated by bottom-up design and 

demonstrated as effective catalyst electrodes to address some challenges faced by the 

conventional fuel cell electrodes with Pt-based NPs [8, 9]. These 3D catalyst 

electrodes have been confirmed with high performance in real fuel cells owing to a 

high catalyst utilisation ratio resulted from a significantly reduced mass transfer 

resistance induced by the thin and porous catalyst layer, as well as unique catalytic 

properties of single-crystal Pt NWs [10-12]. 

 

Although Pt is still the best electrocatalyst for the oxygen reduction reaction (ORR) in 

cathodes for polymer electrolyte fuel cells (PEFCs), the relative high cost, and in 

particular the poor stability are still the major limits for the successful 

commercialization of this technology [13, 14]. In order to improve the stability and 

reduce the loading of precious Pt while not compromising the activity, one promising 

strategy is to introduce other element into Pt to form alloy or hybrid catalysts [15, 16]. 

It is generally accepted that the incorporation of a second metal component can offer 

desired interactions with Pt to tune both electronic and surface effects, triggering 

enhanced effects to improve physical and chemical properties [17, 18]. Sitting in the 
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same periodic group as Pt and possessing a similar lattice space, Pd has been 

confirmed as a promising candidate [19, 20]. 1D Pt-Pd bimetallic electrocatalysts with 

various structures such as alloy [21], core-shell [22] and heterostructure as well as 

different morphologies like nanodendrites [23, 24], nanowires [21], nanotubes [22], 

nanorods [25] etc. have been reported. The advantages of the bimetallic feature and 

1D anisotropic properties lead to an improved catalysis process [26-28], resulting in a 

long-term stability and also superior activity toward ORR. Some references also 

indicated that the existence of Pd played a significant role on the morphology of Pt-Pd 

bimetallic nanostructures [28]. For example, Xia’s group [23] reported that in the 

presence of Pd, open branched PtPd dendrites were formed, otherwise only foam-like 

Pt aggregates were obtained. However, these investigations all focus only on the pure 

material research, and the real applications of 1D Pt-Pd bimetallic catalysts in 

practical fuel cells still remains as a challenge. 

 

Inspired by the 3D Pt-nanowire (PtNW) catalyst electrodes and considering the 

enhanced activity between Pd and Pt, in this work, direct catalyst electrodes with PtPd 

bimetallic NDs in-situ grown on 16 cm
2
 gas diffusion layers (GDLs) are demonstrated. 

The crystal growth mechanism and influence of Pd on the PtPd nanostructure are 

studied based on the time-dependent in-situ growing process and the Pd content. The 

fabricated gas diffusion electrodes (GDEs) with 3D PtPd bimetallic nanostructures are 

directly tested as cathodes in H2/air PEFCs. The polarization curves, electrochemical 

impedance spectra (EIS), cathode cyclic voltammograms (CVs) and accelerated 

degradation test (ADT) are performed in-situ in PEFCs to investigate the enhanced 

power performance and durability of PdPtND GDEs.  
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2. Experimental Section 

2.1 Chemicals and materials 

Hexachloroplatinic acid hexahydrate (H2PtCl6·6H2O, ≥37.50% Pt basis) and 

palladium(II) chloride (PdCl2, anhydrous, 60% Pd basis) from Sigma-Aldrich UK 

were used as metal precursors. Formic acid (CH2O2, 98+%) and isopropanol (IPA) 

(C3H8O, >99.5%) were obtained from Fisher Scientific UK. DuPont Nafion
®
 212 

membrane, Nafion
®
 solution (D1021, 10 wt%) and SIGRACET

®
 GDL 35 BC carbon 

paper were purchased from Ion Power Inc. 20 wt% Pt supported on Vulcan XC-72 

was purchased from Fuel Cell Store. All chemicals and materials were used as 

received without any further purification. The GDL 35 BC carbon paper was used as 

the direct substrate for PtPd nanostructure growth. Gas diffusion electrodes (GDEs) 

with Pt/C catalysts at a loading of 0.4 mgPt cm
–2

 printed on SIGRACET
®
 GDL 34 BC 

were obtained from Johnson Matthey Fuel Cells Ltd and used as anodes for 

fabricating single cells. Ultrapure water (18.2 MΩ cm) from a Millipore water system 

was used throughout. 

 

2.2 PtPd GDE preparation and physical characterization 

Pieces of 4×4 cm
2
 standard GDL 35 BC carbon paper was used as the substrate. It 

consists of a carbon fibre layer at the back and a top micro porous layer (MPL) from 

carbon spheres with a particle size of 50–100 nm. The GDL has been treated with 

polytetrafluoroethylene (PTFE) to give super hydrophobic property to prevent the 

water flooding in fuel cell operation. PtPd nanostructures with various molar ratios 

were grown on carbon paper at MPL surface by a modified wet chemical reduction 

method from our previous studies [31]. In a typical synthesis, to ensure the total metal 

loading of 0.4 mg cm
–2

 on a 16 cm
2
 carbon paper, a controlled amount of H2PtCl6 and 
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PdCl2 solution coupled with 0.53 mL formic acid were added to 10.6 mL water. Then 

the carbon paper was immersed in the mixed solution at the bottom in a 6 cm glass 

Petri dish and stored at room temperature for PtPd nanostructure growth. After the 

colour of the solution changed from yellow to colourless and the growth process was 

completed, the samples were rinsed using water and IPA, followed by drying at 40 
o
C 

overnight. The as-prepared carbon paper samples with in-situ grown PtPd 

nanostructures at various Pd atomic percentages of 50, 25, 10, 5, 2.5 and 0.5 were 

directly used as GDEs at cathode for PEFCs.  

 

The distribution and morphology of PtPd nanostructures in electrodes were 

characterized by a field emission scanning electron microscope (FE-SEM, JEOL 

7000F, operating at 20 kV) and a high-resolution transmission electron microscope 

(HR-TEM, Philips CM200 FEG). TEM samples were prepared by scraping catalysts 

from GDE surface and dispersed onto Cu grids. X-ray diffraction (XRD) patterns 

were recorded with a Siemens D5005 powder X-ray diffractometer operated at 40 kV 

and 30 mA using Cu Kα (λ= 0.15418 nm) radiation. X-ray photoelectron spectroscopy 

(XPS) characterization was conducted on an XPS spectrometer (K-Alpha, Thermo 

Scientific) with a micro-focussed monochromatized Al Kα radiation.  

 

2.3 Membrane electrode assembly (MEA) fabrication 

Membrane electrode assemblies (MEAs) with an active area of 16 cm
2
 were 

fabricated using the as-prepared PtPd GDEs as cathodes and the Pt nanoparticle 

GDEs from Johnson Matthey as anodes. GDEs were first coated with a thin layer of 

Nafion ionomer at a loading of 0.6 mg cm
–2

, and then sandwiched at both sides of a 

6×6 cm
2
 Nafion 212 membrane. After that, the assembly was hot pressed at 125

 o
C 
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under a pressure of 4.9 MPa for 2 min. An illustration of the MEA setup is shown in 

Fig. 1. For comparison, MEAs with cathodes based on Pt/C (20 wt%) nanoparticle 

catalysts and pure Pt nanowires at a Pt loading of 0.4 mgPt cm
–2

 were also fabricated 

simultaneously. 

 

2.4 Fuel cell tests 

The fabricated MEAs were tested in a PEFC test stand (PaxiTech-BioLogic FCT-50S, 

Fig. 1) with electrochemical impedance spectroscopy (EIS) capabilities. The gasket 

used in fuel cell testing was PTFE sheet with a thickness of 254 µm at both cathode 

and anode sides. All tests were conducted at 70
 o

C with fully humidified H2 and air 

fed at stoichiometry of 1.3/2.4 and backpressure of 2 bars at the anode and cathode, 

respectively. The MEAs were conditioned by a break-in at 0.6 V for 7 h, and after that 

polarization curves were recorded at a scan rate of 5 mV s
–1

 from 0.3 V to open 

circuit voltage (OCV). EIS measurements were performed in the frequency range 

from 10 kHz to 0.1 Hz with amplitudes of 0.05, 1 and 2 A at current densities of 0.05, 

0.5 and 1 A cm
-2

 for 16 cm
2
 PEFCs, respectively.  

 

Cathode cyclic voltammograms (CVs) were recorded using an EZstat-Pro system 

integrated with the test stand. The cell temperature and backpressure were 25
 o
C and 0 

bar, respectively. The cathode was fed with fully humidified N2 at 300 mL min
–1

, and 

the anode was fed with fully humidified pure H2 at 120 mL min
–1

 serving as both 

reference and counter electrodes, also called a dynamic hydrogen electrode (DHE). 

Then the cathode potential was cycled between 0.05 and 1.2 V versus DHE at 20 mV 

s
–1

 for 5 cycles, and the fifth cycle was recorded. Accelerated degradation test (ADT) 
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was undertaken by potential cycling between 0.6 and 1.2 V for 3000 cycles at a scan 

rate of 50 mV s
–1

.  

 

3. Results and discussion 

The controlled growth of PtPd nanostructures on 16 cm
2
 GDLs was realized by 

reducing H2PtCl6·6H2O and PdCl2 with formic acid in aqueous solution at room 

temperature [29, 30]. The composition of PtPd nanostructures was tuned by the 

amount of precursors added in the reaction system while keeping the total metal 

loading at 0.4 mg cm
–2

. Since the GDL surface consists of only the inert carbon 

spheres coated with hydrophobic PTFE, only limited rough sites of carbon sphere 

surface can serve as the main heterogeneous nucleation sites in the reduction. In our 

previous research it has also demonstrated that on this kind of surface, the edge area 

of GDL piece is usually easier to be wetted and provides more nucleation sites than 

the central region in an aqueous solution [11]. In this case, the population of Pt nuclei 

multiplies at the edge area while fewer are in the center; therefore more catalyst 

nanostructures are formed and accumulate at the edge of the GDL piece to form large 

agglomerates. Comparing with the standard reduction potential of PtCl6
2–

/Pt (0.73 V 

vs. standard hydrogen electrode (SHE)), the value for Pd
2+

/Pd couple is more positive 

(0.92 V vs. SHE), meaning that Pd nuclei can form on the GDL surface much easier 

than Pt [28]. This relative positive standard reduction potential enables the generated 

Pd nanoparticles distribute more uniformly on the inert surface, which then act as 

seeds to induce the co-reduction and further growth of PtPd nanostructures [24, 32]. 

Fig. 2 compares the surface at the edge and center area of a 16 cm
2
 PtNW GDE and 

PtPd GDE with 5 at% Pd. It can be seen that the distribution of PtPd nanostructures 

has much less difference at the edge and in the center area as compared to Pt. 
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Although the PtPd nanodendrites have been reported by many groups, including both 

in solutions [23, 28, 33] and on supports, e.g. on graphene [32, 34], the growth 

mechanism was all simply inferred based on the standard reduction potential. There is 

really not a lot of evidences for the crystal growth mechanism. To help clear this point, 

in this work, the time-dependent in-situ growing process was analysed for PtPd GDE 

with 5 at% Pd. The reaction solution from 0 to 92 hours was monitored by UV-Vis 

spectroscopy to evaluate qualitatively the remained metal ions which haven’t been 

reduced by formic acid. The absorption spectrum lines of the Pd and Pt precursors as 

well as that of the PtPd mixture at different time intervals are shown in Fig. S1. The 

results indicate that the reduction of Pd mainly happens at the initial stage of the 

reaction and nearly all Pd ions are reduced in the first 2 hours, but the whole reaction, 

in particular the reduction of Pt will not finished until 24 hours later.  

 

To further understand the crystal growth mechanism, the morphological evolution of 

PtPd nanostructure with 5 at% Pd on the GDL surface at various reaction periods 

were examined by TEM with EDX analysis (Fig. S2). The results show a very high 

Pd ratio in the beginning, followed by a fast dropping to a quite low level, suggesting 

that PtPd alloy nanoparticles with a dominated amount of Pd at the initial stage are 

formed at first, which are then working as seeds for the following growth to 

nanodendrites. The branches of nanodendrites are dominated by Pt due to most Pd has 

been reduced in the initial period in nanoparticle formation. These changes are 

consistent with that shown by UV-Vis spectra. The branch diameter of the as-obtained 

nanodendrites is ca. 4 nm, and the length is ca. 5–20 nm. The crystalline nature of 

final PtPd nanodendrites was elucidated by the selected-area electron diffraction 
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(SAED) pattern, and intense rings can be assigned to the (111), (200), (220) and (311) 

planes of the Pt face-centred cubic (fcc) crystals (inset in Fig. 3a). A HR-TEM image 

shown in Fig. 3b displays typical nanodendrites. The inset image indicates a lattice 

spacing distance of 0.22 nm for one branch of PtPd nanodendrites, which is slightly 

smaller than 0.23 nm of the {111} lattice spacing of the bulk Pt. This contraction of 

lattice caused by the addition of Pd is in line with the reported results in literature [35], 

which indicates the interactions between Pt and Pd atoms in the formed PtPd NDs. 

 

The fast reduction of Pd and their role as growing seeds on GDL surface indicates a 

non-negligible influence of the amount of Pd on the formation of the final 

nanostructures. Some early researches have been carried out by other groups to this 

synthesis for supported and un-supported catalysts [24, 28, 33]. But, all of them only 

focus on the pure material research, and none of them has demonstrated the real 

catalytic performance of these nanostructures in practical fuel cells. In particular, 

when this synthesis is conducted directly on the large-area GDL surface, the effect of 

Pd is thus different from that in solution or supported-catalysts. Fig. S3 shows TEM 

images of PtPd nanostructures with various Pd atomic contents. At a high Pd content 

of 50 at%, a high supersaturation of Pd atoms greatly lowers the free-energy barrier 

for heterogeneous nucleation and is responsible for the rapid nucleation rate of Pt with 

a vanishingly small growth rate [36]. Therefore, the main morphology obtained is 

spherical PtPd nanoparticle aggregate with an average particle size of ca. 5 nm (Fig. 

S3a). But, when pure Pd is used, rather than Pd nanoparticles obtained as those 

reported in literature [31, 33, 34], very large Pd crystal grains are observed (Fig. S3e 

and f). In one case, this indicates the important effects of the existing of Pt ions with 

Pd in the formation of nanoparticles on the GDL surface, as that with 50 at% Pd. On 
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the other hand, it suggests different crystal growth mechanisms on the large-area GDL 

as compared with those in solution or on supports. With the decrease of the Pd 

content, the nucleation sites provided are reduced, and accordingly, short 

nanodendrites (Fig. S3b) are formed through the reported particle attachment growth 

process [28]. Decreasing the Pd content to 10 at%, a high yield of nanodendrites is 

obtained. The branch shows a length of ca. 5–10 nm (Fig. S3c). With a further 

decrease in Pd, PtPd nanodendrites with longer and dense branches are obtained (i.e. 

Fig. 3 at 5 at%). At 2.5 at% Pd, the branch length increases to 10–20 nm (Fig. S3d). 

Therefore, in the presence of a high Pd content nanoparticles are inclined to form, and 

nanodendrites are achieved when the Pd content decreases.  

 

To further understand the crystal structure of the as-prepared PtPd nanostructures, 

XRD analysis was performed to the plain GDL 35BC, GDEs of Pt, Pd and PtPd 5 at% 

(Fig. S4). PtPd 5 at% NDs show the characteristic peaks locating between single Pt 

(JCPDS-04-0802 Pt) and Pd (JCPDS-46-1043 Pd) [37, 38], indicating the formation 

of the solid-solution PtPd alloy again, as supported by the HRTEM results (Fig. 3b). 

The much stronger intensity of the Pd peaks also confirms the very large crystal 

grains formed (Fig. S3e and f). XPS analysis was conducted to identify near-surface 

species involved in PtPd heterostructures (Fig. S5). It can be seen that, with the 

increase of Pd, the intensity of Pd 3d peaks becomes stronger while that of the Pt 4d 

peaks becomes weaker, and all peaks shift more positively compared with the 

monometallic Pt (4d3/2 at 331.6 eV) and Pd (3d5/2 and 3d3/2 at 335.2 and 340.5 eV, 

respectively), suggesting the PtPd interactions [39] change the atomic structure thus 

contributing to the enhanced activity in PtPd bimetallic hybrids [31]. 
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In order to understand the influence of Pd content on the catalytic performance of 

PtPd nanostructures in real fuel cell conditions, PtPd GDEs fabricated with different 

Pd contents were directly used as cathodes and tested in 16 cm
2
 hydrogen-air PEFCs. 

Cathode CVs were recorded in-situ in single cells to measure the electrochemical 

active specific area (ECSA) of catalysts within electrodes. From CVs in Fig. 4, 

normalized by the metal loading in precursors (checked by TGA shown in Fig. S6), 

ECSAs for PtPd GDEs with Pd atomic percentages of 50, 25, 10, 5, 2.5 and 0.5, as 

well as PtNW GDE are 0.49, 7.21, 11.59, 22.40, 18.76, 18.15 and 14.70 m
2
 g

–1
, 

respectively. The smallest ECSA value of PtPd 50 at% GDE can be ascribed to the 

nanoparticle aggregates formed on the GDL surface (Fig. S3a). This aggregation 

reduces contribution of catalysts to the three-phase boundary (TPB) in the electrodes 

and leads to a low catalyst utilisation ratio in fuel cell electrode [40]. Larger ECSA is 

obtained as aggregates reduce with a decreased Pd content. When the composition of 

Pd arrives at 5 at%, a larger ECSA is achieved as expected due to the more regular 

PtPd NDs achieved. The ECSA of PtPd 2.5 and 0.5 at% GDEs are slightly lower, 

which can be ascribed to the longer and denser nanodendrite branches (Fig. S3d) and 

their relative non-uniform distribution on GDLs (Fig. 2a and b). With a similar 

morphology, the larger ECSA of PtPdND GDEs at the low Pd content than that of 

PtNW GDE indicates that PtPdND GDE is more electrochemically accessible due to 

their better distribution on the GDL surface. However, the anisotropic morphology 

still results in a much lower ECSA for the PtPd ND GDE as compared to the 

commercial Pt/C nanoparticle catalysts (30.91 m
2
 g

–1
), which is in line with those 

reported in literature [10,29]. 
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Fig. 5 shows polarization curves and their power densities at 0.6 V of the MEAs with 

the as-prepared PtPd GDEs, as well as PtNW and Pt/C GDEs. The comparison is 

conducted at 0.6 V because this is the common voltage used in practical operational 

conditions of PEFCs. Although a much larger ECSA is observed for Pt/C 

nanoparticles, the power performance obtained is much lower, and the power density 

at 0.6 V is only 0.55 W cm
–2

, while PtNW GDE exhibits a higher value of 0.64 W 

cm
–2

. Regarding PtPd GDEs, at a high Pd amount, e.g. 50%, the lower catalyst 

utilisation ratio from the aggregated nanoparticles finally results in a poor electrode 

performance. With decrease of the Pd content, a better performance is obtained, 

reaching the maximum value at 5 at%. At this optimal Pd content, the uniform 

distribution of NDs enables a more porous catalyst layer, which facilitates oxygen 

diffusion to the catalyst surface to achieve a reduced mass transfer loss and a higher 

catalyst utilization ratio, thus a better catalytic performance is expected. Further 

decrease of the Pd content leads to PtPd NDs with longer and dense branches, as well 

as the relative non-uniform distribution on GDL surface (Fig. 2 and S3), finally 

resulting in a lower catalyst utilization ratio and thus a decline of the electrode 

performance. The power performance of PtPdND GDE with 5 at% Pd exhibits the 

highest power density of 0.73 W cm
–2 

at 0.6 V, better than those of both PtNP/C and 

PtNW GDEs, demonstrating the advantages from both the 1D morphology over the 

0D nanoparticles and the PtPd hybriding over pure Pt nanowires.  

 

To further understand the effect of the behaviour of PtPd nanostructures on power 

performance, EIS measurements were conducted at three current densities for PtPd 

GDEs with different compositions as well as to the Pt/C and PtNW GDEs (Fig. 6). At 

a low current density of 0.05 A cm
-2

, the impedance represented by the diameter of 
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the semi-circle is mainly contributed by charge transfer resistance, indicating ORR 

catalytic kinetic performance.  Fig. 6a shows the largest impedance with the PtPdND 

GDE with 50 at% Pd. The smallest semicircle is observed for the PtPd GDE with 5 

at% Pd, indicating the lowest charge transfer resistance and thus the best ORR 

catalytic kinetic performance. However, all PtPd GDEs with medium and low Pd 

contents together with Pt/C and PtNW GDEs show similar impedances, implying a 

close ORR catalytic kinetic performance for all of them. This is slightly different 

from those reported higher catalytic activities from the enhanced effect of PtPd over 

Pt by the measurement conducted in liquid electrolytes [20]. Although the clear 

mechanism is still not clear now, it can possibly ascribed to the much complex test 

environment in practical fuel cells compared with that in the liquid electrolyte. Here, 

besides the intrinsic catalytic activities, the catalyst behaviour and their surrounding 

environment in electrode together determine the final performance in fuel cells. With 

the increase of the current density (Fig. 6b and c), the 2
nd

 semicircle appears on EIS 

which mainly represents mass transfer resistance within electrodes. PtPdND GDE 

with 5 at% Pd still shows the smallest charge and mass transfer resistance, while the 

GDEs with Pt/C nanoparticles and PtPd GDE 50 at% exhibit very large resistances 

due to their dense electrode structure.  These EIS measurement results demonstrate 

the much reduced mass transfer loss in the PtNW GDE as compared with those from 

both PtPd and Pt nanoparticles, and a further improvement can also be achieved by 

introducing a small amount of Pd to optimise their distribution on GDL surface.  

 

Besides catalytic activities, a high stability is also usually reported for PtPd hybrid 

structures over Pt [41], which is based on the enhanced effect of Pd and Pt preventing 

the dissolution of catalysts during the potential cycling. To check the effect of 
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introducing Pd to the as-prepared PtPd NDs on the GDE performance in fuel cells, an 

accelerated degradation test (ADT) was carried out by 3000 potential sweeping cycles 

in the single cell at room temperature. Cathode CVs after the ADT test are displayed 

with the initial curves and compared with those of PtNWs and Pt/C nanoparticles in 

Fig. 7a. After the ADT, all GDEs exhibit a big decline of their ECSAs, and a lower 

ratio is observed to the PtPdND GDE as compared with PtNW one, which agrees well 

with those reported in literature [37, 38], but the one from Pt/C shows the least drop. 

The remaining values of PtNW, PtPdND and Pt/C GDEs are 5.55, 11.96 and 21.25 m
2
 

g
–1

, corresponding to 62.2%, 46.6% and 31.2% loss of their initial ECSAs, 

respectively (Fig. 7c). Fig. 7b shows polarization curves for all GDEs after the ADT. 

It can be seen that the PtPdND GDE still exhibits a higher power performance than 

the PtNW GDE at 0.6 V, and the Pt/C GDE shows a very low performance, 

corresponding to degradation ratios of 19.9%, 12.7% and 27.5% (Fig. 7d), 

respectively. At the high voltage region (>0.7V), PtNW GDE presents a higher power 

performance, indicating a better kinetic activity than PtPdND GDE, which can be 

explained by the higher mass activity remained after the ADT [11,40]. The larger 

ratio of ECSA loss than the lower degradation percentage of power performance 

indicates the increase in the specific area activity of catalysts [42], and the result 

shown here indicates this improvement becomes larger with the increase of the aspect 

ratio from nanoparticles, NDs to NWs. Although the detailed mechanisms are still not 

clear at the moment [1], this phenomenon further demonstrates advantages of 1D 

nanostructured catalysts for PEFC applications.  

 

4. Conclusions 
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In summary, we have demonstrated a catalyst electrode from PtPd nanodendrites in-

situ grown on large-area gas diffusion layer carbon paper surface by a facile wet 

chemical procedure. The experimental results show that the content of Pd greatly 

influences the final morphology and distribution of PtPd nanostructures on GDL 

surfaces, which together determines the final power performance in PEFC 

applications. The introducing of an optimal amount of Pd, i.e. 5 at% to Pt nanowire 

growth leads to more uniform distributed PtPd nanodendrites on the GDL surface, 

reducing the mass transfer resistance within the electrode to achieve a high power 

performance. Besides, PtPd NDs exhibit a higher power performance over Pt NWs 

even after the durability test in PEFCs, showing a lower loss of ECSA but a higher 

degradation percentage of power performance. Due to an analogous catalyst electrode 

could be formed based on other hybrid anisotropic nanostructures, the results here 

point to new electrode preparation strategies that leverage both the catalyst intrinsic 

activity and the electrode structure for high performance PEFCs.  
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Figure captions:  

 

Fig. 1 Illustration of fuel cell setup. 

Fig. 2 SEM images of (a, b) PtNW GDE and (c, d) PtPd GDE with 5 at% Pd. (a, c) 

and (b, d) show the edge and center area of the two GDE pieces, respectively. 

Fig. 3 TEM images of PtPd nanostructures with 5 at% Pd in-situ grown on GDL 

surface. Insets in (a) and (b) show the SAED pattern and HR-TEM image of one 

branch, respectively. 

Fig. 4 Cathode CVs for GDEs from Pt/C, PtNWs and PtPdNDs with different 

compositions. 

Fig. 5 (a) Polarization curves and (b) the trend of the power density at 0.6 V for PtPd 

GDEs with different Pd contents and PtNW and Pt/C GDEs.  

Fig. 6 EIS measured at (a) 0.05, (b) 0.5 and (c) 1.0 A cm
–2

 for PtPdND GDEs with 

various Pd contents, PtNW and Pt/C GDEs. 

Fig. 7 (a) CVs, (b) polarization curves, (c) ECSAs and (d) power densities at 0.6 V 

for GDEs from PtPdNDs with 5 at% Pd, PtNWs and Pt/C nanoparticles before and 

after the ADT test. 


