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Large-scale assessment of polyglutamine
repeat expansions in Parkinson disease

ABSTRACT

Objectives: We aim to clarify the pathogenic role of intermediate size repeat expansions of SCA2,
SCA3, SCA6, and SCA17 as risk factors for idiopathic Parkinson disease (PD).

Methods: We invited researchers from the Genetic Epidemiology of Parkinson’s Disease Consor-
tium to participate in the study. There were 12,346 cases and 8,164 controls genotyped, for a
total of 4 repeats within the SCA2, SCA3, SCA6, and SCA17 genes. Fixed- and random-effects
models were used to estimate the summary risk estimates for the genes. We investigated
between-study heterogeneity and heterogeneity between different ethnic populations.

Results: We did not observe any definite pathogenic repeat expansions for SCA2, SCA3, SCA6,
and SCA17 genes in patients with idiopathic PD from Caucasian and Asian populations. Further-
more, overall analysis did not reveal any significant association between intermediate repeats and
PD. The effect estimates (odds ratio) ranged from 0.93 to 1.01 in the overall cohort for the SCA2,
SCA3, SCA6, and SCA17 loci.

Conclusions: Our study did not support a major role for definite pathogenic repeat expansions in
SCA2, SCA3, SCA6, and SCA17 genes for idiopathic PD. Thus, results of this large study do
not support diagnostic screening of SCA2, SCA3, SCA6, and SCA17 gene repeats in the com-
mon idiopathic form of PD. Likewise, this largest multicentered study performed to date ex-
cludes the role of intermediate repeats of these genes as a risk factor for PD. Neurology®

2015;85:1283–1292

GLOSSARY
AAO 5 age at onset; CI 5 confidence interval; GEO-PD 5 Genetic Epidemiology of Parkinson’s Disease; PD 5 Parkinson
disease; SCA 5 spinocerebellar ataxia.

Spinocerebellar ataxias (SCAs) represent a clinically and genetically diverse group of neurode-
generative diseases, which share degeneration of the cerebellum and its afferent and efferent con-
nections, besides variable degeneration of multiple neurologic systems.1 Expansions of
trinucleotide repeats in the coding or untranslated regions of various genes cause several SCAs;
these expansions also account for most of the clinical and genetic heterogeneity.2 Emerging
evidence provides tangible support to the growing consensus that clinically heterogeneous yet
biologically overlapping late-onset neurodegenerative disorders may have common genetic risk
factors that might change predisposition to the diseases.2,3

Whether polyglutamine repeat expansions in SCA genes such as SCA2, SCA3, SCA6,
and SCA17 wield a similar effect in idiopathic Parkinson disease (PD) needs to be deter-
mined. Previous clinical and pathologic findings emphasize the need to evaluate the signif-
icance of polyglutamine repeat expansions of these genes in PD worldwide.4–9 Most studies
performed to date, including this study, are biased by case selection at specialist movement
disorders clinics. However, to get a better estimate of the frequency of repeat expansions in
such a setting, their relative contribution to disease worldwide, we performed a large
multicenter study with members of the Genetic Epidemiology of Parkinson’s Disease
(GEO-PD) Consortium.
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METHODS Participants and samples. The GEO-PD

Consortium includes researchers from 59 investigative sites,

across 30 countries and 6 continents (http://www.geopd.org/

about/); we invited all sites to participate in the study. Twenty-

five sites from 20 countries and 4 continents contributed DNA

samples and clinical data, resulting in 20,528 participants.

Patients were diagnosed with PD by a movement disorders

specialist using the standard criteria.10–12 Controls at the date of

examination were neurologically healthy, unrelated individuals

free of PD or another associated movement disorder. Local sites

collected demographically similar and sex-, age-matched

neurologically healthy individuals as controls. Not all controls

were given a detailed neurologic examination, but all were

questioned about previous diagnoses or familial history of a

neurologic disease. After quality control of data, a total of

20,510 samples were included (12,346 cases, 8,164 controls).

The Caucasian series consisted of 16,819 (10,204 cases and

6,615 controls), and the Asian series consisted of 3,691 patients

(2,142 cases and 1,549 controls). Patients with missing data were

excluded from the relevant analysis. There were a total of 508

patients missing SCA2 genotype information, 445 missing SCA3,

861 missing SCA6, and 608 missing SCA17.

Genotyping. The SCA2, SCA3, SCA6, and SCA17 loci con-

taining the CAG repeats were amplified with PCR using fluores-

cently labeled primers (primer sequences are available upon

request). PCRs for SCA2, SCA3, and SCA17 were performed

in one multiplex assay, SCA6 in a singleplex. All amplicons of

one individual were pooled and separated by size using capillary

electrophoresis on an ABI3730 sequencer. Data analysis was per-

formed with GeneMapper 4.0 software. This included automatic

sizing and allele calling. A total of 8 individuals (2 for each locus)

were Sanger sequenced and the number of triplet repeats was

counted. This information was used to convert amplicon lengths

to repeat numbers.

Standard protocol approvals, registrations, and patient
consents. The local ethics committee approved the study. All

participants signed an informed consent.

Statistical analysis. We first generated distribution plots for

SCA2, SCA3, SCA6, and SCA17 genes (see figure e-1 on the

Neurology® Web site at Neurology.org) to estimate the repeats’

cutoffs in our cohort. Based on our observation, expanding

repeats for each gene were categorized into short, intermediate,

and long repeats. Using the Monte Carlo simulation method

(1,000 simulations) as implemented in the CLUMP, we

compared the distribution of allele length of SCA genes to

determine the significance of departure from the expected

values between cases and controls.13 Because CLUMP uses the

Monte Carlo simulation method, all significances should be

unbiased and robust to small expected values or continuity

corrections.13 We also assessed the correlation between age at

onset (AAO) (5,310 cases) and polyglutamine repeats in our

cohort. Likewise, in a subset of the data with the age at study

available (14 sites, 4,400 controls, 5,310 cases), we analyzed the

data with age at study as a covariate in the models. Finally, the

association between SCA CAG expansion repeats and PD was

evaluated using a logistic regression model with sex included as a

covariate. Datasets from countries that included only cases were

not included in the modeling because they lacked a proper

control set, and thus could not be modeled using logistic

regression. Fixed- and random-effects models estimated the

odds ratios. Fixed-effect models assume that populations from

different sites have the same risk effect from the repeat

expansions and that observed differences are due to random

chance. For datasets containing between-study heterogeneity,

fixed-effect estimates provide smaller confidence intervals (CIs)

and p values, relative to random-effects models.14–16 If, however,

heterogeneity exists, the effects may diverge substantially across

the populations. Random-effects models allow for random

variation between the sites, therefore adjusting for genuine

heterogeneity that may exist across different sites. We used the

inverse variance method for fixed-effects models and the

DerSimonian and Laird method for random-effects models.17

To evaluate the between-site heterogeneity, we used the

Cochran Q test of homogeneity and the I2 metric. The I2

parameter is bounded by 0 and 1 and estimates the proportion

of heterogeneity that is highly unlikely due to random variation.

A larger I2 value implies more heterogeneity, with I2 more than 0.

75 or 75% indicating large heterogeneity. However, given that

there exists significant imprecision in the estimation of I2,
particularly for variants with low minor allele frequency, we

also provided the 95% CI of I2.16 The overall analysis

considered all sites and populations regardless of ancestry. We

then separately modeled the Caucasian and Asian sites. All

statistical analyses were performed using R version 3.0.2, with

package “metafor” for the random-effects logistic regression

models. The p values are 2-tailed.

RESULTS A total of 25 sites contributed 12,346 pa-
tients with PD and 8,164 neurologically normal con-
trols. Table 1 displays the characteristics of all
participating sites. Nineteen sites contributed patients
of Caucasian descent; 6 sites were from countries of
Asian descent. The proportion of males ranged from
46% to 63% over the participating sites (table 1). The
mean AAO of PD in this investigated population was 60
years. We excluded 2 sites that contributed only cases to
avoid the influence of population substructuring (Japan
and South Africa, 519 patients). Nevertheless, these 2
sites were analyzed independently to assess the expanded
repeats. One German site contributed only cases, and
allelic repeat density analysis did not show differences in
repeat length between different German sites. There-
fore, we decided to merge German sites into one data
site titled “Germany” for further analyses, thus combin-
ing data from Deutschländer, Klein, and Gasser sites.

Expanding repeats of SCA genes in PD. Of 20,528 par-
ticipants who were successfully genotyped, we did not
observe any definite pathogenic repeat expansion for
SCA2 (.32), SCA3 (.61), SCA6 (.19), and
SCA17 (.47) genes in our cohort, thus excluding
the role of definite pathogenic repeat expansion of
these genes in PD.

Intermediate repeats and PD. The distribution of the
cutoff repeat length of SCA genes as observed in the den-
sity distribution plots in our study is in agreement with
previously published studies.2,18–20 Furthermore, the his-
togram plots showed that the distribution of intermedi-
ate repeat length are similar for SCA2, SCA3, SCA6,
and SCA17 genes independent of ethnicities.20

Using CLUMP, we did not observe differences in
allele length distribution between cases and controls
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in the overall cohort (table e-1). Likewise, stratifying the
analysis by ethnicity did not reveal associations; this
suggests that intermediate repeats in SCA2, SCA3,
SCA6, and SCA17 genes are not a major risk factor
for PD (table e-2A).

Overall analysis. In the overall cohort, we observed no
statistically significant associations between PD and

intermediate repeat length for the SCA2, SCA3,
SCA6, and SCA17 genes. The odds ratio ranged from
0.93 to 1.01 in the overall cohort (table 2, figure 1).
We observed no heterogeneity for SCA3, SCA6, and
SCA17 loci in our cohort, while SCA2 showed mod-
erate heterogeneity; however, all heterogeneity 95%
CIs contained 0 (table 2). Of note, we observed a
p value of 0.013 (uncorrected) in our CLUMP

Table 1 Characterization of sites and overall database

Site Country Total Cases Controls Male (%) Mean AAO Diagnostic criteria

Annesi Italy 394 197 197 204 (51.8) 61.5 UKPDBB

Bardien/Carr South Africa 398 398 0 246 (61.2) UKPDBB

Bozi Greece 218 114 104 105 (46.1) 69.9 UKPDBB

Brice France 504 272 232 301 (59.7) 47.6 UKPDBB

Chung Korea 1,900 1,200 700 876 (46.1) UKPDBB

Deutschländer Germany 140 70 70 80 (57.1) 69.7 UKPDBB

Garraux Belgium 77 64 13 40 (51.9) 62.1 UKPDBB

Goldwurm Italy 3,798 2,795 1,003 1,992 (52.4) UKPDBB

Hadjigeorgiou Greece 641 313 328 339 (52.9) 63.4 UKPDBB

Hattori Japan 121 121 0 62 (51.2) UKPDBB

Jeon Korea 737 397 340 427 (57.9) UKPDBB

Klein Germany 320 317 3 185 (59.3) UKPDBB

Krüger/Sharma/Gasser Germany 1,909 1,219 690 1,149 (60.4) UKPDBB

Lin Taiwan 320 160 160 160 (50.0) 62.0 UKPDBB

Lynch/Ross Ireland 700 339 361 322 (46.0) 50.5 UKPDBB

Mellick Australia 1,809 893 916 929 (51.4) 59.0 Bower

Mok China 390 214 176 232 (60.1) UKPDBB

Morrison United Kingdom 1,072 723 349 577 (53.9) 66.1 UKPDBB

Opala/Ross Poland 614 352 262 358 (58.3) 50.2 UKPDBB

Rogaeva Canada 562 391 171 296 (53.7) 49.7 UKPDBB

Tan Singapore 344 171 173 217 (63.1) 59.7 UKPDBB

Toft Norway 816 364 452 484 (59.3) UKPBDD

Van Broeckhoven Belgium 1,011 501 510 500 (49.6) 60.5 Pals/Gelb

Wirdefeldt Sweden 260 67 193 128 (49.2) 65.8 Gelb

Wszolek/Ross United States 1,455 69,4 761 764 (52.5) 64.4 UKPDBB

Total 20,510 12,346 8,164

Abbreviations: AAO 5 age at onset; UKPDBB 5 United Kingdom Parkinson’s Disease Brain Bank.

Table 2 Overall analysis irrespective of ethnicity and influence of between-study heterogeneity

Locus Gene name Q test p value OR (95% CI) I2 RE p value FE p value

SCA2 ATXN2 0.03 1.01 (0.78, 1.28) 37 (0, 82) 0.93 0.76

SCA3 ATXN3 0.66 0.93 (0.69, 1.26) 0 (0, 63) 0.64 0.64

SCA6 CACNA1A 0.87 1.00 (0.93, 1.06) 0 (0, 26) 0.90 0.90

SCA17 TBP 0.97 0.97 (0.56, 1.70) 0 (0, 6) 0.92 0.92

Abbreviations: ATXN25 ataxin 2; ATXN35 ataxin 3; CACAN1A5 calcium channel, voltage dependent, P/Q type, alpha 1A
subunit; CI 5 confidence interval; FE 5 fixed effects; OR 5 odds ratio; RE 5 random effects; TBP 5 TATA box binding
protein.
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analysis for SCA6 in the overall cohort, but it was not
significant after correcting for multiple testing (table
e-1). The I2 estimates ranged from 0% to 37% in the
overall cohort. The Q test was not statistically signif-
icant for all SCA loci (table 2). Restricting the analysis
to the Caucasian and Asian populations did not reveal

an association between PD and intermediate repeat
length. The odds ratio ranged from 0.97 to 1.09 for
the Caucasian population, while for the Asian popu-
lation, effect estimates ranged from 0.52 to 1.04 for
SCA loci (figures 2 and 3 and table e-2A). We
observed a trend for association for the SCA2 locus

Figure 1 Forest plot of effect sizes of SCA2, SCA3, SCA6, and SCA17 loci in the overall cohort

Boxes indicate the summary effect estimate. Germany site is a combination of Deutschländer, Klein, and Gasser sites. Axis scaled in relation to CIs. CI 5
confidence interval; OR 5 odds ratio; RE 5 random effects.
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only in the Asian population with large heterogeneity,
but this was not significant (table e-2A).

AAO analysis. In a subset of data with AAO available,
we did not find any significance correlation
between the SCA2, SCA3, SCA6, or SCA17 re-
peats and the AAO of PD (table e-2D). Likewise,
stratifying by ethnicity, we did not observe any
association between intermediate repeats. The
effect estimates of SCA loci on AAO ranged
from 20.79 to 2.13 for the overall cohort, and
for the Caucasian population, effect estimates
ranged from 20.13 to 4.76 (table e-2D). In addi-
tion, the age-adjusted analysis did not yield any
significant association between SCA repeats and PD
(table e-2C). We also performed random-effects
models with the Student t test comparing the mean
repeat length between cases and controls, and logistic
regression models using repeat length as a quantitative

trait. We did not observe a significant association
between disease and repeat length (p . 0.05).

DISCUSSION The expansion of trinucleotide repeats
has provided mechanistic explanations for human dis-
orders. Besides defining autosomal dominantly inher-
ited disease genes, variability in the distribution of
repeat length as well as composition has remarkable
influence on the disease phenotype; the longer the
expansion, the earlier the AAO and the more aggres-
sive the disease course.1 Therefore, we performed a
large-scale multicenter evaluation to assess the role of
SCA2, SCA3, SCA6, and SCA17 gene repeats in PD.
Our study excluded a major role of poly-(Q) repeat
expansions for these genes in the causation of PD, at
least in typical PD.

So far, there is no clear consensus on the appro-
priate threshold to understand the influence of

Figure 2 Forest plot of SCA2, SCA3, SCA6, and SCA17 loci in the Asian population

Boxes indicate the summary effect estimate. Germany site is a combination of Deutschländer, Klein, and Gasser sites. Axis scaled in relation to CIs. CI 5
confidence interval; OR 5 odds ratio; RE 5 random effects.
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intermediate repeat expansions in PD. We used our
large cohort to estimate the global distribution of
repeat length for SCA genes in PD. The allelic
density as well as histogram distribution plots
showed the threshold for intermediate repeats

ranges from 24 to 32 for SCA2, 36 to 61 for SCA3,
11 to 19 for SCA6, and 42 to 47 for SCA17 in
the PD cases. The intermediate range as observed in
our study is in agreement with previously published
studies.21–26

Figure 3 Forest plot showing the comparison of effect of SCA2, SCA3, SCA6, and SCA17 loci in the Caucasian population

Boxes indicate the summary effect estimate. Germany site is a combination of Deutschländer, Klein, and Gasser sites. Axis scaled in relation to CIs. CI 5
confidence interval; OR 5 odds ratio; RE 5 random effects.
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In contrast, a recently published study from a Japa-
nese population suggested that a population-specific
SCA2 intermediate repeat cutoff length could influence
the PD outcome.27 Using a cutoff of 25, the authors
observed a significant association for the autosomal
dominant form of PD in their population.27 By using
this repeat length cutoff, as suggested by Yamashita
et al.,27 we did not observe significant association for
the SCA2 locus, and thus our study did not support the
notion that variability in cutoff repeat length varies
from population to population (table e-2B). Likewise,
our study excluded the role of population-specific inter-
mediate repeat length variability on the risk of PD, at
least in sporadic forms of PD. Of note, using the cutoff
as observed in our study, we observed a trend (nonsig-
nificant) for SCA2 locus in the Asian population. The
proportion of intermediate carriers for SCA2 in our
Asian population cohort is small (1.5%) and thus these
results need to be interpreted cautiously.

Most, if not all, studies that have been published
so far screened the SCA2, SCA3, SCA6, and SCA17
genes only in cohorts of autosomal dominant forms
of PD,21–26 and identified carriers for SCA2, SCA3,
SCA6, and SCA17 repeats in different ethnic pop-
ulations, which suggests that intermediate repeat
structure influenced the clinical variability in auto-
somal dominant forms of PD and autosomal domi-
nant cerebellar ataxia. For example, a previous
French study identified 9 patients with PD who
are carriers for SCA2 repeats.28 They observed inter-
rupted repeats for SCA2 as compared to the patients
with autosomal dominant cerebellar ataxia who carry
pure CAG repeats suggesting that differences in the
repeat structure may lead to different phenotypes.
Likewise, a study in Asian patients identified 7
SCA2 carriers that showed overlapping phenotype
with ataxia such as dysarthria and postural instabil-
ity.7 However, such patients would not have been
included in this study because the inclusion criterion
was diagnosis of PD. Our study also did not inves-
tigate the role of interruptions in the repeats on PD,
thus we cannot draw any conclusions for this sub-
category of patients. It is worthwhile to mention that
most of the participants in our cohort showed inter-
mediate repeats in the normal range, and hence it
will be unlikely that intermediate repeats will have
an important role in PD. Nevertheless, deep
sequencing of intermediate repeats should be pur-
sued to resolve the role of intermediate repeats in
PD, as emerging evidence has shown that genetic
variations in these regions have an important role
in explaining the missing heritability.29,30

Taken together, we examined the role of poly-(Q)
repeats in PD using the largest sample size until now,
and our results unequivocally show that polyglutamine
repeats in SCA2, SCA3, SCA6, and SCA17 are

unlikely to be clinically important risk factors for typi-
cal, idiopathic PD, without evidence of a family history
of neurodegenerative disease (parkinsonism) or atypical
signs (e.g., ataxia). Nevertheless, emerging genetic and
functional evidence suggest that further studies of these
genes in the context of other neurodegenerative diseases
are justified.
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