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This paper presents a method to predict the probability of structural failure of road pavements using information

contained in road data sets. Expert knowledge was used to develop failure charts to identify the potential

factors that may contribute towards pavement failure. A computational technique (a support vector machine)

was built to use this information to determine, from the data sets, the probability of failure of individual road

sections. With this prediction comes an indication of the predominant failure types, the causes of structural

failure and the risk profile of a road network. The usefulness of the approach was demonstrated on a data set

taken from the New Zealand long-term pavement performance study of state highways. Analysis of the data set

showed that the network was in good condition, but a small number of pavement sections with a high

likelihood of failure were identified. Furthermore, the application of the failure paths examined the three

predominant failure types occurring on the network and identified their possible causes. Rutting appears to be

significantly influenced by the road pavement strength, fatigue cracking seems to be affected notably by the

environment (i.e. water ingress) and shear failure is caused primarily by the combination of traffic, pavement

composition and strength. In addition, it was confirmed that measured functional pavement condition alone is

not a good identifier of failure and that the inclusion of a parameter related to strength, such as pavement

deflection, is essential.

Notation
b bias for the SVM model, defined by the research

data (no units)

FN number of predicted false negatives

FP number of predicted false positives

NTotal total number of predictions

N1 total number of predicted non-failures

N2 total number of predicted failures

N3 total number of actual non-failures

N4 total number of actual failures

PActual actual failure probabilities, from the research data

set (binary output)

PFailure overall failure probability, predicted by the trained

SVM model

PPredicted predicted probabilities

P(A) predicted probability of failure for failure type A

P(B) predicted probability of failure for failure type B

P(N) predicted probability of failure for failure type N

TN number of predicted true negatives

TP number of predicted true positives

w weight vector for the SVM model, defined by the

research data (no units)

x1, x2 closest points (vectors) to the decision boundary in

the SVM model

ª margin from the SVM decision boundary to the

closest point, namely the support vectors

2ª SVM margin calculated in the machine learning task

1. Introduction
Road asset managers with limited road maintenance budgets are

faced with the challenging task of prioritising maintenance

expenditure on road networks thereby ensuring that the structural

integrity of the network is preserved over time (Robinson et al.,

1998). Once a failed road pavement has been identified, asset

managers need to select the most appropriate maintenance

treatment. However, without a comprehensive understanding of

pavement failure, inappropriate maintenance is often carried out.

At present, a combination of available data, such as traffic, road

inventory and condition, is used together with pavement dete-

rioration models to estimate future network condition and to

evaluate the maintenance requirements on a road network.

Predicting structural road pavement failure is a challenging task

because of the complex interaction between the factors that
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contribute towards failure, the different modes or mechanisms by

which a road may fail, the availability, quality and variability of

data, and the inherent uncertainty of the behaviour of road

pavements (Reigle, 2000). There are models that focus on singular

or multiple types of failure (e.g. cracking or rutting) and systems

with diagnostic capabilities have been reported (Henning, 2008).

The formulation of such models requires a thorough understanding

of the complexities of pavement failure, which can in turn assist in

the selection of appropriate model variables (Isa et al., 2005).

While a number of researchers have developed approaches for

infrastructure systems that utilise an understanding of failure types

(Evdorides, 1994; Xiao et al., 2011), this practice is not widely

used in the road sector, arguably because of the unavailability of

data of appropriate quantity and quality and computational

techniques that are accessible to the practising engineer.

This paper describes a computational methodology that quantifies

the probability of structural failure of road pavement sections and

identifies the most likely contributing factors. This is achieved

using fault trees, developed using expert opinion, to identify the

combination of factors that could contribute to failures. A

computational technique, known as a support vector machine

(SVM), automates the process by examining possible failure

paths in a given set of data associated with a road pavement to

classify whether the scrutinised road pavement is sound or has

failed, and to assign a probability of failure according to the

potential failure paths identified from the fault tree analysis.

Accordingly, this paper presents

j the theoretical framework used for the diagnosis of the cause

of failure and the probability of failure

j the development and testing of the methodology using data

from New Zealand

j a discussion of the usefulness of the methodology developed.

2. Pavement performance modelling
A number of approaches have been adopted to predict road

pavement performance, of which the probabilistic approach is

becoming increasingly popular due to the stochastic nature of the

variables measured on the road networks. This approach recog-

nises that much of the data collected on road networks is highly

variable (Martin, 2008). Methods used to this end include logistic

regression, basic linear and non-linear models, Bayesian probabil-

ities, genetic algorithms and kernel-based learning methods

(Caruana and Niculescu-Mizil, 2006; Henning, 2008; Martin,

2008; Park et al., 2008). In other fields such as medical

diagnostics and other engineering disciplines, neural networks,

SVMs, fuzzy logic and analytical hierarchy processes have been

used successfully to calculate risk probabilities (Pal, 2006; Tu,

1996; Volinsky et al., 1997).

The success of a particular modelling technique depends greatly

on the appropriateness of the model for the situation at hand and

its performance can be enhanced by understanding the underlying

causes of failure (Isa et al., 2005). Two such widely employed

techniques are failure mode and effect analysis (FMEA) and fault

tree analysis (FTA) (Patev et al., 2005; Seyed-Hosseini et al.,

2006). FMEA is an analytical tool for reliability analysis that can

be used to identify possible failure causes in order to minimise,

or eliminate, failure in systems. By using a weighted ranking

system, each failure is assigned a risk number that represents the

overall impact of failure. The causes of failure can be graphically

represented using FTA, which further enables concurrently

occurring failure factors to be included in the modelling process

(Patev et al., 2005). With this approach, the failure paths can be

established from the breakdown of the critical paths.

3. Theoretical framework

3.1 Conceptual design

In order to determine the probability of road pavement failure

from road data sets, the approach adopted used expert knowledge

to identify the predominant types of failure on a road network and

the associated foremost factors that contribute towards failure.

Subsequently, a computational technique was identified and devel-

oped to analyse road pavement data sets containing these factors.

The developed technique is capable of determining the probability

of failure for each of the failure types and identifying the most

probable combination of factors that contribute to the failure. The

probabilities of failure for each failure type were considered

together to determine the overall failure probability of a pavement

section. The overall approach thus consisted of two main parts –

fault charts to diagnose the cause of failure and a computational

model to calculate the probability of failure.

3.1.1 Fault charts

Fault, or failure, charts were built by canvassing the views of a

panel of experts in conjunction with a preliminary analysis of road

networks. Initially, the predominant failure types, or mechanisms

occurring on the road network, were identified and, for each type,

the expert panel identified fundamental groups of factors that

contribute to the failure. These were then broken down further into

associated sub-factors and used by the panel of experts to develop a

fault chart for each failure type. These charts can then be used to

identify the underlying causes of failure and the interactions

between factors associated with failure and the failure modes.

Three such charts, which focus on the predominant mechanisms

associated with structural failure occurring on New Zealand road

networks, are shown in Figures 1 to 3. The charts are presented in

such a way that the causes contributing to the failure are sequential.

For example, a surface with poor pavement results in deformation

of the pavement layer(s) and subsequent rutting failure (Figure 1).

3.1.2 Computational model

In order to determine the probability of failure of road pavements

it was necessary to select an appropriate computational technique

that could make use of the data corresponding to the failure types

identified by the panel of experts. A number of methods were

examined for this purpose, including logistic regression, neural

213

Transport
Volume 168 Issue TR3

Using support vector machines to predict
the probability of pavement failure
Schlotjes, Burrow, Evdorides and Henning

Downloaded by [ University of Birmingham] on [12/01/16]. Copyright © ICE Publishing, all rights reserved.



networks, SVMs, probability trees and random forests (Caruana

and Niculescu-Mizil, 2006; Chandra et al., 2009). Following an

extensive sensitivity analysis using road data from the New

Zealand state highway (SH) long-term pavement performance

(LTPP) programme, an SVM technique was chosen for the task

in hand (Schlotjes et al., 2012). An SVM is a supervised

computational learning model with an associated training algo-

rithm that can be used, for a given set of input data, to assign a

probability to two possible categories to which the set of input

data may belong (Van Looy et al., 2007). Previous studies have

employed SVMs in pavement engineering to, for example,

estimate the pavement serviceability ratio and detect pavement

cracking (Hu et al., 2010; Yan et al., 2011). The SVM training

algorithm uses input training data to build a model that can

assign probabilities to new input data sets. In this work, the input

data sets consisted of road network information corresponding to

the data types as identified by the panel of experts.

The SVM technique transforms typically non-linear data, or data

difficult to separate with steadfast decision boundaries, using

various kernel functions. Once transformed, the data can be easily

separated such that an unambiguous decision boundary is defined,

as shown in Figure 4 (Van Looy et al., 2007). By maximising the

margin (2ª) between the separated data classes, the optimal

solution is found to ensure confidence around the new predic-

tions. To do so, using vector mathematics of the closest data

points to the decision boundary (namely the support vectors), the

following equation is maximised

2ª ¼ 1

jjwjjw
T(x1 � x2)

¼ 1

jjwjj (w
Tx1 � wTx2)

¼ 1

jjwjj [(w
Tx1 þ b)� (wTx2 þ b)] ¼ 1

jjwjj (1þ 1)

ª ¼ 1

jjwjj1:

The model gives, for each failure type and for each failure path,

the probability of a pavement section failing. For a pavement

section, the most probable failure path for a particular failure

type is that which has the greatest failure probability.
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Figure 1. Rutting failure chart with the associated causes of

failure identified in the methodology
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The overall failure probability (PFailure) for a pavement section

with failure types A, B and C was calculated using Equation 2,

which considers the interdependence of each failure type (Ayyub

and McCuen, 2003; Mendenhall and Beaver, 1991; Schlotjes,

2013) as follows

PFailure ¼ P(A [ B [ C)

¼ P(A)þ P(B)þ P(C)� P(A \ B)

� P(A \ C)� P(B \ C)þ P(A \ B \ C)2:

where P(A \ B) ¼ P(A) 3 P(B), A ¼ failure type A, B ¼ failure

type B and C ¼ failure type C.

3.2 Assessing the performance of the model

Assessing model performance is an integral part of developing

any machine learning tool, including the SVM model developed

here. Four tests were considered – accuracy, misclassification,

f-score and phi coefficient (Parker, 2011).

The accuracy and misclassification tests were used to determine

the number of incorrectly predicted road sections and to compare

the predicted output with the actual failure data. The accuracy and

misclassification percentages were calculated as (Parker, 2011)

Accuracy ¼
P

TP þ TN

NTotal

3 100
3:

Misclassification ¼
P

PPredicted � PActualj j
N Total

3 100

¼
P

FP þ FN

NTotal

3 100
4:

in which TP (TN) is the number of predicted true positives

(negatives), NTotal is the total number of predictions, PPredicted is

the predicted probability, PActual is the actual failure probability

and FP (FN) is the number of predicted false positives (negatives).

The f-score is a weighted average of the fraction of the total

number of correctly classified non-failed sections divided by the

total number of predicted non-failed sections (precision) and of

the fraction of correctly classified non-failed road sections

divided by the total number of non-failed sections analysed

(recall). It is calculated according to (Parker, 2011)
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ilu
re
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Soft subgrade
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Figure 2. Fatigue cracking failure chart with the associated

causes of failure identified in the methodology
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f -score ¼ 2
precision 3 recall

precisionþ recall

� �
5:

where

precision ¼ TP

TP þ FP

recall ¼ TP

TP þ FN

An f-score can have a value of between zero and one. The closer

the value is to one, the more accurate the method is regarded

(Parker, 2011; Sokolova and Lapalme, 2009).

The phi coefficient was used to measure how well the SVM

technique predicted pavement failures and non-failures. As a

measure of performance, the phi coefficient is often favoured

above the f-score because it takes into account all correctly

predicted values, as opposed to the f-score where its constituent

precision and recall values only take account of the correctly

predicted non-failures. The phi coefficient was determined using

(Parker, 2011)
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Thin pavement
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Sh
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(Subgrade sensitivity)

Water ingress
(Environment)

Soft material
(Strength)

Narrow carriageways
(Pavement width/No. of

lanes/composition)

Environment
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Figure 3. Shear failure chart with the associated causes of failure

identified in the methodology
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phi coefficient ¼ TPTN � FPFN

(N 1N 2N3N4)1=26:

in which N1 is the total number of predicted non-failures, N2 is

the total number of predicted failures, N3 is the total number of

actual non-failures and N4 is the total number of actual failures.

A positive phi coefficient means that the majority of the results

are correctly predicted, and vice versa. A value of zero indicates

that there is no relationship between the prediction and input

variables (Parker, 2011).

4. Case study

4.1 Data set

Data were obtained from the LTPP programme, which monitors

63 sites on the New Zealand SH network (Henning, 2008;

Henning et al., 2004). The large majority of the pavements in the

network are thin, flexible, unbound granular pavements, carrying

low volumes of traffic (i.e. ,10 000 vehicles per day). Common

structural failures on these pavement types include rutting, fatigue

cracking and shear, as considered by Austroads (2012) in the

design of flexible, unbound granular pavement types.

4.2 Failure charts

Although other modes of failure are recognised for other

pavement types and environments, the focus of this work is on

only the three predominant structural failure types on New

Zealand’s low-volume roads, namely rutting, load-associated

fatigue cracking and shear (Schlotjes et al., 2011). For each of

these failure types a failure chart was developed by canvassing

the opinion of a panel of experts. To achieve this, the panel

identified the following six groups of factors that contribute to

failure

j traffic (e.g. annual average daily traffic)

j pavement composition (e.g. number of layers, thicknesses,

ages)

j pavement strength (e.g. structural number)

j environment (e.g. rainfall)

j surface condition (e.g. percentage of cracking, rutting

depth)

j subgrade sensitivity (e.g. low, medium and high).

These factors were used to group the data types available in the

SH LTPP data set as shown in Table 1. The factors were then

sub-divided according to the opinion of the panel of experts and

used to develop a failure chart for each failure type – rutting,

fatigue cracking and shear. The charts so developed are presented

in Figures 1–3, where the notation Trial X correlates with the

combinations of factor listed in Table 2. It may be seen that some

combinations of factors (failure paths) occur for more than one

failure type because of the similar interactions between factors

within the types of failure. For example, both rutting and fatigue

cracking can be due to a combination of excessive strain and

poor pavement support, as a result of composition issues (as

shown by Trial 7 in Figures 1 and 2).

4.3 Computational model

The SVM technique was used to determine the probability of

failure of the road pavements in the SH LTPP network data set.

The technique was used to compute, for each of the three failure

types identified, the likelihood of failure of all pavement sections

by each possible failure path in the failure charts. In developing

the SVM model, a tenfold cross-validation approach was fol-

lowed, where a random 90% sample of the data set was used for

training (Rogers and Girolami, 2012). The performance of the

SVM modelling technique was demonstrated using a number of

measures as described below.

Feature
space

Separating
hyperplane

High-dimension solutionLow-dimension solution

Figure 4. Overview of SVM technique (adapted from Van Looy et

al. (2007))

217

Transport
Volume 168 Issue TR3

Using support vector machines to predict
the probability of pavement failure
Schlotjes, Burrow, Evdorides and Henning

Downloaded by [ University of Birmingham] on [12/01/16]. Copyright © ICE Publishing, all rights reserved.



4.4 Results and analysis

The results of the analysis are divided into an assessment of the

performance measures to show the applicability of the SVM

modelling technique for the task in hand and an analysis of the

SH LTPP road network to demonstrate the usefulness of the

suggested methodology.

4.4.1 Assessment of the SVM technique

Table 3 presents the average results from cross-validation tests of

the performance measures, from which it may be seen that the

SVM model predicted accurately the three types of pavement

failure according to the accuracy, misclassification and f-score

measures used. The relatively lower values of the phi coefficient

however suggest weaker relationships between the road data set

and the predicted failure for each failure type.

The prediction of rutting and fatigue cracking is slightly better

than that for shear failure by the three measures of accuracy,

misclassification and f-score. Shear failure can be strongly linked

to the properties of pavement materials and, unfortunately, this

information is lacking in network-level data sets. Further work is

therefore required in the development of the shear failure

prediction component of the model.

4.4.2 Factors associated with failure

Table 2 summarises, for each of the three failure types consid-

ered, the computed most probable causes of failure for the entire

SH LTPP road network and the associated corresponding number

of pavement sections. For all three failure types, strength is

shown to be a major factor. As far as rutting is concerned, road

pavement strength is the only significant factor for 64% of the

road pavements analysed. The predominant factors associated

with fatigue cracking are strength, traffic, composition, environ-

ment and subgrade sensitivity. The environment factor occurred

in 46% of the pavement sections that had failed by fatigue

cracking and, since environment is a measure of the cumulative

amount of rainfall falling on an already cracked pavement (Table

1), would suggest that water ingress is a major factor contributing

Factor group Variables included in the group

Traffic Annual average daily traffic (AADT)a,b,c

Total percentage of heavy vehiclesa,b,c

Cumulative number of equivalent standard axles (ESA), given the base layer agea,b,c

Cumulative number of ESA, given the surface layer ageb

Pavement composition Base layer agea,b,c

Sub-base layer agea,b,c

Surface ageb

Total pavement thickness, excluding surface thicknessa,b,c

Total pavement thickness, including surface thicknessb

Pavement widtha,b,c

Number of lanesa,b,c

Pavement strength Strength of pavement (weak or strong)a,b,c

Structural number (SNP)a,b,c

Structural indices (SIs) for rutting, flexure, shear and roughnessa,b,c

Falling weight deflectometer (FWD) parametersa,b,c

Environment Cumulative rainfall once the pavement is crackeda,b,c

Surface condition Rut depths for left-hand wheelpath, right-hand wheelpath and lanea,c

Rut rate for left-hand wheelpath, right-hand wheelpath and lanea

Total cracking (all cracking types)b

Crack rateb

Number of years of continual crackingb

Mechanical damagec

Structural patchc

Pothole diameter, depth and numberc

Shovingc

Subgrade sensitivity Sensitivity of pavementa,b,c

a Rutting data set.
b Fatigue cracking data set.
c Shear data set.

Table 1. Factor combinations for modelling using LTPP data
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to the deterioration of this network. For shear failure, combina-

tions of traffic, pavement composition and strength are the likely

contributing factors towards failure of nearly half the network.

The few occurrences of surface condition in Table 2 and the fact

that it does not occur alone for any of the three failure

mechanisms suggest that functional pavement condition is not a

good predictor of failure. This adds further credence to a

fundamental concept of pavement engineering that visual road

condition assessment may not be sufficient on its own to

determine appropriate maintenance, even though in practice only

Trial Factors Number of pavement sections

Rutting Fatigue

cracking

Shear

3 Strength 3596 782 n/aa

7 Traffic + composition 45 547 177

8 Traffic + strength 0 0 n/a

12 Composition + strength 932 348 703

16 Strength + environment 6 n/a n/a

18 Strength + subgrade sensitivity 0 0 865

22 Traffic + composition + strength 120 313 1150

23 Traffic + composition + environment n/a 199 n/a

24 Traffic + composition + surface condition n/a 45 n/a

25 Traffic + composition + subgrade sensitivity 0 131 118

26 Traffic + strength + environment 0 396 n/a

28 Traffic + strength + subgrade sensitivity 0 0 0

32 Composition + strength + environment 0 186 37

33 Composition + strength + condition n/a 125 n/a

34 Composition + strength + subgrade sensitivity 0 239 212

39 Strength + environment + subgrade sensitivity 871 n/a n/a

42 Traffic + composition + strength + environment 0 151 182

43 Traffic + composition + strength + surface condition n/a 253 n/a

44 Traffic + composition + strength + subgrade sensitivity 0 n/a 962

46 Traffic + composition + environment + subgrade sensitivity 3 103 n/a

47 Traffic + composition + surface condition + subgrade sensitivity n/a 18 n/a

49 Traffic + strength + environment + subgrade sensitivity 42 1077 614

50 Traffic + strength + surface condition + subgrade sensitivity n/a 229 n/a

52 Composition + strength + environment + surface condition n/a 11 n/a

53 Composition + strength + environment + subgrade sensitivity 0 239 143

54 Composition + strength + surface condition + subgrade sensitivity n/a 4 n/a

57 Traffic + composition + strength + environment + surface condition n/a 3 n/a

58 Traffic + composition + strength + environment + subgrade sensitivity 13 212 465

59 Traffic + composition + strength + surface condition + subgrade sensitivity n/a 6 n/a

62 Composition + strength + environment + surface condition + subgrade sensitivity n/a 8 n/a

63 Traffic + composition + strength + environment + surface condition + subgrade sensitivity n/a 3 n/a

Total 5628 5628 5628

a Not applicable.

Table 2. Factor combinations of the SH LTPP network per failure

mechanism

Average value over all failure paths

Accuracy:

%

Misclassification:

%

f-score phi

coefficient

Rutting 97.70 2.30 0.99 0.22

Fatigue cracking 98.21 1.79 0.99 0.31

Shear 94.52 5.48 0.97 0.16

Table 3. Summary of the performance measures

219

Transport
Volume 168 Issue TR3

Using support vector machines to predict
the probability of pavement failure
Schlotjes, Burrow, Evdorides and Henning

Downloaded by [ University of Birmingham] on [12/01/16]. Copyright © ICE Publishing, all rights reserved.



visual condition assessment is often used to determine main-

tenance needs.

4.4.3 Failure probability

As the data set did not contain the necessary data to determine

the probability of jointly occurring failures, a simplified version

of Equation 2, which is similar to that adopted in conventional

pavement design, was adopted to calculate the overall failure

probability

PFailure ¼ max[P(Rutting), P(Fatigue cracking),

P(Shear)]7:

It should be noted that alternative methods of calculating the

probability of failure could be adopted and are discussed by

Schlotjes (2013). However, this was considered to be beyond the

scope of this paper.

Accordingly, three outputs were calculated

j probable causes of failure

j the probability of failure for each failure type

j the overall failure probability of road sections.

Figure 5 shows the frequency distribution of the probability of

overall failure of the road pavement sections analysed and there-

fore the overall risk profile of the SH LTPP road network. The

histogram shows that the majority (97%) of the pavement sections

on the network have a probability of failure of less than 0.2, and

79% have a failure probability of less than 0.1, which suggests

that the network is in good condition. However, 2% of pavement

sections are predicted to fail with a high probability of failure

(PFailure . 0.5).

The distribution of the most probable failure modes on the SH

LTPP road network shown in Figure 6 indicates that shear failure

is the most probable.

4.5 Practical application

The methodology presented facilitates both project- and network-

level analysis of a road network. At project level, pavement

sections that have a high probability of failure can be identified,

further assessed if necessary and appropriately treated. Such a

predictive approach is likely to be more cost-effective than a

reactive one. For failed sections of the network, the methodology

allows an insight into the causes of failure, enabling an appro-

priate remedial treatment to be applied, and can support, or

replace, expensive site investigations. For example, pavement

section 3804 was identified as having failed by fatigue cracking.

Using the developed model, the computed overall failure prob-

ability and those of the individual failure types are

PFailure(3804) ¼ max[PRut ¼ 0:0442,

PFatigue crack ¼ 0:9874, PShear ¼ 0:0767]

PFailure(3804) ¼ PFatigue crack ¼ 0:9874

The associated factor combination of the PFailure is trial 23 (see

Table 2). From the failure charts, Figure 2 in particular, it can be

seen that pavement failed in fatigue cracking due to poor

pavement composition (an aged pavement or insufficient pave-

ment thickness). This resulted in poor pavement support, which

when combined with excessive traffic loadings caused failure.

Pavement section 4249 failed in both rutting and shear, with

computed failure probabilities of

PFailure(4249) ¼ max[PRut ¼ 0:6935,

PFatigue crack ¼ 0:0213, PShear ¼ 0:9507]

PFailure(4249) ¼ PShear ¼ 0:9507

Trial 7 is the most probable failure factor combinations for both

rutting and shear. According to the failure charts (Figures 1 and

3), the most likely failure paths for both of these mechanisms are

traffic and composition and, although the same factor combina-

tions are in the critical failure paths, the most probable causes are

different. Shear failure is generally related to material perform-

ance and rutting is a result of induced strains from excessive

traffic loadings and strain repetitions, so the cause of these failures

(both rutting and shear) can be attributed to poor composition of

the pavement combined with excessive traffic loading.

At a network level, risk profiles (Figure 5) can be produced to

identify the overall serviceability of the network and the pre-

dominant failure mechanism(s) (Figure 6). This enables appro-
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Figure 5. Overall failure probability distribution of the SH LTPP

road network from the predicted outputs of the developed SVM

model
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priate and timely maintenance to be carried out along with any

adjustments to maintenance regimes. Furthermore, potential

changes in the external environment can be quantified in terms of

potential effects on network condition. For example, if traffic

loading on the network is set to increase, the projected increase in

loading can be included in the input parameters in the SVM and

the effects modelled. Similarly, the effects of potential changes in

precipitation due to climate change could be estimated.

5. Conclusion
A method that is capable of assessing the probability of structural

failure of road pavements has been developed. The method is

based on using expert judgement to develop failure charts for the

predominant types of failure on a road pavement, which can be

used to identify the contributing factors to pavement failure. A

computational technique, known as SVM, was developed to

analyse the probability of failure of pavement data sets and to

determine the most probable failure paths for each failure type.

The resulting probabilities for each failure type were used, in a

simple approach, to determine an overall probability of pavement

failure. Further work is being undertaken to calculate the overall

failure probability within the SVM modelling process.

A case study using data from the New Zealand SH LTPP

programme was used to demonstrate the performance of the

proposed methodology. Four performance measures were used to

assess the precision of the SVM technique in determining the

probability of failure of pavements via rutting, fatigue cracking

and shear failure. Although the SVM performed satisfactorily in

predicting failures, further development in the prediction of shear

failure and consideration of combined failure modes are both

desirable and necessary. Analysis of the New Zealand data set

showed that the network may be regarded as being in good

condition, although a small number of pavement sections within

the network have a high likelihood of failure. It is evident that

measured functional pavement condition alone is not a good

identifier of failure and the inclusion of a parameter related to

strength, such as pavement deflection, is essential.
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