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Abstract 

There is a growing interest in using additive manufacturing to produce smart structures, which 

have the capability to respond to thermal and mechanical stimuli. In this report, Selective 

Laser Melting (SLM) is used to build a Negative Poisson's Ratio (NPR) TiNi-based Shape 

Memory Alloy (SMA) structure, creating a multi-functional structure that could be used as 

reusable armour. The study assesses the influence of SLM process parameters (laser power, 

scan speed, and track spacing) on the microstructural and structural integrity development in a 

Ti-rich TiNi alloy, as well as the impact of the post-process homogenisation treatment on the 

microstructure and phase transformations. The builds generally shows stress-induced cracks 

and residual porosity, which could be minimised through process optimisation. Nonetheless, 

the homogenisation treatment is essential to reduce the fraction of Ti2Ni intermetallics, which 

are known to disturb the B19′-chemistry, and hence the required phase transformation 

temperatures. The optimum process parameters are finally used to fabricate NPR structures, 

which were mechanically tested to validate the Poisson’s ratio predictions. A higher ductility 

was observed in the structures that have undergone the homogenisation treatment. 
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1. Introduction 

Negative Poisson’s Ratio (NPR) structures, also known as auxetics, are interconnected 

network-like structures which grow in size when stretched or shrink when compressed [1]. 

This unique property offers an enhanced functionality in the mechanical performance of these 

structures. Compared to conventional structures, NPR structures offer an increased plane 

strain, and a tuneable density, fracture resistance, shear modulus, indentation resistance and 

acoustic response [2]. Accordingly, NPR structures have been considered for a wide range of 

smart and functional devices, including smart antennas [3], stretchable sensors [4], protective 

equipment [5] and in many other applications from the fields of nanotechnology and 

biomedicine to defence and aerospace. Despite these advantages, the complex designs of NPR 

structures pose difficulties in manufacturing, and hence limit their applications. To date, many 

reports on NPR structure are focused on the theoretical analysis and the material response. 

Different types of NPR structures have been developed. This includes cellular solids [6-11], 

porous polymers [12-14], composites [15-17], and textiles [18-19]. 

Conventional sheet forming processes have been employed to construct cellular NPR 

structures [20]. However, the size and design limitations are considered to be the main barrier 

to produce complex NPR structure. Electron Beam Melting (EBM), one of the additive 

manufacturing (AM) processes, has been also used to fabricate 3D re-entrant NPR structure 

made from Ti-6Al-4V [21].   

NPR structures have been categorised into several types such as ‘chiral’, re-entrant ’and 

‘rotating’, honeycomb, and others.  Elip et al. conducted a comparative study of 2D and 3D 

NPR geometries using simulation and CAD/CAE. They found that the re-entrant 2D and 3D 

geometries have the highest negative Poisson’s ratio and the lowest area reduction.  On the 

other hand, the 2D chiral and 3D pyramid NPR structures proved to have the highest area 

reduction and the lowest negative Poisson’s ratio [22]. 
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To enhance the functionality of NPR structures, TiNi-based Shape Memory Alloys can be 

used, combining this with the use of AM to utilise the design flexibility it offers. TiNi-based 

SMAs are known to exhibit a motor-functionality due to a reversible phase transformation [23]. 

The phase transformation (e.g. B19′ martensite  B2 austenite) can either be deformation-

induced or temperature-induced, which is referred to as superelasticity (SE) or the shape 

memory effect (SME), respectively, depending on the alloy chemistry and the phases present 

[24]. This metallurgical behaviour makes SMAs a candidate class for shock-absorbing, 

inflatable, or actuating structures, as they can recover their original shape following 

deformation, with or without a thermal stimulus. Nonetheless, manufacturing of SMAs via 

conventional manufacturing (e.g. ingot casting and hot deformation) is known to result in 

various defects due to their high susceptibility to cracking and segregation [25, 26], in addition 

to their poor machinability [27, 28]. Furthermore, the phase transformations, and hence the 

SMAs performance, are highly sensitive to the alloy chemistry (e.g. Oxygen and Carbon 

content) [29, 30], resulting in an irreproducible and variable behaviour. As such, there is an 

interest in exploring novel manufacturing processes that could avoid these concerns, while 

improving the geometrical complexity of SMAs structures. The use of AM technologies is a 

potential route that may address the aforementioned issues, due to its design flexibility, as 

well as the localised heating and rapid cooling rates associated with the process, which may 

reduce the extent of segregation and the grain size, resulting in structures with improved 

mechanical performance compared to casting.  

Selective Laser Melting (SLM), or laser powder bed fusion, is an AM technology that uses 

powders melted layer-by-layer to create complex 3D structures [31]. The geometrical and 

surface accuracy of SLM process is typically better than those in the EBM [32], and therefore 

was chosen for this work. Previous work on SLM processing of TiNi followed three 

approaches; the first involved the use of mixed elemental Ni and Ti powders [33], while the 

second approach focused on SLM processing of porous structures with controlled porosity for 



  

4 
 

bone implants to achieve the bone’s specific strength and modulus (i.e. biomechanical 

compatibility) [34, 35], and the third starting from pre-alloyed powders to create dense structures 

[36-38]. For a comprehensive review on AM of TiNi, the reader is directed to the review by 

Elahinia et al. [39]. Nonetheless, studies on AM of TiNi have suffered from a number of 

shortcomings. First, the majority of the studies focused on Ni-rich or equi-atomic TiNi [40, 41], 

where SE is the dominant SMA regime, understandably since the majority of SMA 

applications in the medical field (e.g. stents) rely on the SE behaviour rather than the SME. In 

contrast, Ti-rich TiNi applications (e.g. actuators) rely on the SME in achieving the motor-

functionality, and they demonstrate a higher strength due to precipitation strengthening via 

Ti2Ni [42, 43]. Furthermore, the transformation temperatures (TTs) in Ti-rich TiNi are less 

sensitive to the Ni-content. Nonetheless, Ti-rich are specifically susceptible to liquid (weld) 

cracking due to grain boundary segregation [39, 42]. Second, the previous studies overlooked 

the need for post-processing homogenisation treatments to reduce segregation. 

Homogenisation of TiNi is known to result in a reproducible behaviour, with less variation in 

the TTs [43]. Finally, the utilisation of SLM design flexibility in developing and assessing the 

behaviour of multi-functional TiNi structures (e.g. negative Poisson’s ratio auxetic structures) 

is fairly limited [44, 45]. These shortcomings, and others, are addressed in the present 

investigation.  

The aim of this work is to introduce a novel type of a smart metamaterial that combines the 

properties of both NPR structures and SMAs in one component, and is manufactured using 

AM. This combination may hold the potential to create multifunctional auxetic structures, for 

instance to produce a reusable adaptive armour. The main objectives were to design, model, 

fabricate, and to mechanically test TiNi SMA NPR re-entrant structures, fabricated using 

SLM, to establish design-process-microstructure-mechanical performance correlations, 

through the application of Finite Element Analysis (FEA), process optimisation, and advanced 

materials characterisation.  
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2. Experimental  

2.1. Material and SLM Processing 

A Ti56Ni44 (55.7 at.% Ti content) cast, homogenised, and forged ingot was argon atomised by 

TLS Technik GmbH&Co (Germany).The powder was later sieved to separate the <65 µm 

which was used for SLM processing. The O-content of the as-received powder was measured 

using Leco TC436AR ANALYSER, and was found to be 1000 ppm. The particle size 

distribution of the powder was measured using a CoulterLS230 laser diffraction particle size 

analyser. 

Samples of dimensions (x,y,z) of 5×5×10 mm3 were built using a Concept Laser M2 Cusing 

SLM (laser powder bed) system in an Ar atmosphere, with an oxygen-content <0.1%. The 

system uses a continuous wave fibre laser with variable power output up to 400W, and a laser 

track width of 150μm. To optimise the process parameters in order to achieve defect-free 

builds, the process parameters (laser power, scan speed, and scan spacing) were varied in the 

range of 50-120 W, 100-300 mm/s, and 45-150 µm, using a layer thickness of 20 µm, 

deposited using the M2 system island scanning strategy, with an island size of 5 mm, with a 

total of 30 build conditions. Following the optimisation to reduce the structural defects, the 

NPR structures were built using the optimum parameters. 

2.2. Microstructural Characterisation and Mechanical Testing 

The as-fabricated (AF) samples were sectioned along the build (z) direction to study the 

influence of the process parameters on the pore and cracking density. The microstructure of 

the samples was analysed using a ZEISS Axioskop 2 optical microscope, and in a JOEL 6060 

Scanning Electron Microscope (SEM), equipped with an Oxford Inca Energy-Dispersive X-

ray Spectroscopy (EDX) system. To observe the microstructure at the interface between the 

various phases, thin foils were cut using spark erosion, ground, twin-jet electropolished in 5% 

perchloric acid in methanol solution, and examined using a JEOL2100 transmission electron 
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microscope (TEM), operated at 200 kV, and equipped with Oxford Inca EDX. The phases 

present at room temperature were identified using a Philips X’Per X-ray Diffraction (XRD) 

system, equipped with a Cu Kα anode, operated at 35 kV. A Mettler-Toledo DSC1 

Differential Scanning Calorimetry (DSC) system was used to determine the TTs, by cycling 

the samples at a rate of 10 ˚C/min during heating and cooling, between -10 and 130 ˚C.  

Samples were also exposed to two different homogenisation treatments (HT1: 950˚C/3h and 

HT2: 1000˚C/2h, both followed by water quench). Their microstructure was also studied, and 

their TTs were characterised using DSC. Finally, the NPR structures in both the AF and HT2 

conditions were compression tested at room temperature using a Zwick/Roell 1484 universal 

testing machine to measure the compressive properties and Poisson’s ratio. Lubrication grease 

was applied on the contact surface between samples and machine to reduce radial friction. A 

50 N preload was applied before testing. The displacement rate during compression test was 1 

mm/min. Vertical displacement during compression test was recorded by the machine 

displacement and the horizontal displacement was measured during loading. 
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3. Results and Discussions 

3.1 Simulation and Design 

Several types of geometries that produce NPR response have been studied and tested. 

Previous reports described the mechanical behaviour of re-entrant, chiral, and rotating NPR 

structures, with the re-entrant structures being the most studied. The unit cell of the re-entrant 

structure deforms its cell links in a way to exhibit a NPR on the level of each unit, which 

results in the highest NPR among the other types [1, 46], and is hence the scope of this study. It 

is important to note that despite the isotropic properties of chiral and rotating structures, their 

deformation mechanism limits the NPR to be in the range of <-1 [20-22].  

Two types of re-entrant structures were employed in this study; a conventional and a modified 

design, Figure 1. As shown in Figure 1(a), the conventional unit cell exhibits overhanging 

links, which are undesirable in AM processes. Overhanging links are generally described as 

critical structures to build by SLM, as they link onto loose powder, resulting in poor underside 

surfaces and resolution. Accordingly, the conventional design has been modified to overcome 

this problem by replacing all the overhangs structure with inclined ones as shown in Figure 

1(b).  

 

Figure 1: Re-entrant NPR unit cells (a) conventional unit cell, (b) Modified AM unit cell 
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Finite element analysis (FEA) using solidworks was used to predict the mechanical behaviour 

of the developed NPR structures. The area of the NPR structure was meshed using 8-node 

quadrilateral elements. The boundary conditions were set as follows: a compressive force was 

applied to top edges test while the bottom edges were fixed in the vertical (loading direction) 

and was allowed to move in the horizontal direction with friction coefficient of 0.2 to simulate 

a compression test. The effect of the re-entrant angle (θ) was calculated for both designs. The 

struts were made in 2D to reduce the meshing. The theoretical Poisson’s Ratio (υ) values were 

calculated by dividing obtained FEA strain in the transverse direction (εtransverse) to the strain 

in the vertical dimensions (εvertical), as shown in equation 1.  

verticale
eυ transvese

−=                (1) 

  
Re-entrant angles (ɵ) were varied and the structures Poisson's ratios were calculated using 

FEA for the two designs shown in Figure 1 when subjected to compressive loading. Figure 

2-a shows the effect of the re-entrant angle on the calculated Poisson's ratio. As shown, the 

predicted Poisson's ratio increased as the re-entrant angle was increased for both designs. 

However, the conventional configuration with a re-entrant angle of 75˚ showed a Poisson's 

ratio of -1.88, slightly higher than the AM modified design, which showed a Poisson’s ratio of 

-1.74. A 3D model was created based on the modified design using the optimum re-entrant 

angle for SLM fabrication and compression testing, as shown in Figure 2-b. Similarly, for the 

3D model, the calculated Poisson's ratio of the modified design showed a negative Poisson's 

ratio of -1.65. 
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Figure 2: The design of the NPR structure (a) Effect of re-entrant angle on Poisson's ratio, (b) 
3D construction of AM modified re-entrant design 

  
 
 
3.2 Microstructural assessment of the powder and of SLMed samples 

The as-received powder was generally spherical in shape (Figure 3-a), with limited satellites 

or irregular morphologies. This suggested a good flowability, which was evident in the 

measured Hausner ratio of 1.12 (good flowability < 1.25). By sectioning the powder particles, 

entrapped gas pores (due to atomisation) were infrequently observed (Figure 3-b), suggesting 

that the powder quality is generally suitable for SLM since it is known that the presence of 

entrapped gas pores contributes to the residual porosity present in AM builds [47]. Powder size 

distribution showed that the average particle size (d50) is ~22µm, with a limited fraction in the 

sub-10 µm range (Figure 3-c). It was also noted that, despite the rapid cooling rates during 

gas atomisation, that Ti2Ni intermetallics formed within the martensitic interdendritic regions 

in the powder particles (Figure 3-b), which highlights the high susceptibility of this alloy to 

micro-segregation. According to the Ti-Ni phase diagram [43], the alloy’s composition shows 

two phases at room temperature, which are the cubic Ti2Ni and the monoclinic B19′TiNi [48]. 
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Figure 3: Re-entrant NPR unit cells (a) conventional unit cell, (b) Modified AM unit cell 

 

3.3 Process Optimisation 

Previous studies by Bormann and co-workers [38, 41] correlated the volumetric energy density 

parameter with the TTs in Ni-rich TiNi, whereby: 

thv
PEv

xx
=          (2)  

where EV is energy density (J/mm3), ν is scan speed (mm/s), h is scan spacing (mm), and t is 

layer thickness (mm). No studies in the literature used the energy density parameter to control 

the development of porosity content or cracking density in TiNi, although its use is a standard 

approach in other alloys [31, 49]. Typically, the porosity content is observed to decrease with the 

increase in the EV until a threshold level is achieved indicating full consolidation [50]. 

However, this trend is absent in some alloy systems (e.g. Al-alloys) [51]. By plotting EV versus 

the measured porosity area fraction, no trend was observed, with the data points showing a 

large scatter, Figure 4. 

It is important to note that the investigated EV range exceeded the range investigated in 

previous studies on Ni-rich TiNi [40]. It is also worth mentioning that the samples processed at 

EV <300 J/mm3 demonstrated excessive cracking and lack of consolidation, Figure 5, 
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whereas the majority of the builds beyond 300 J/mm3 achieved porosity fraction < 1%, yet 

with cracks present in some conditions. 

 

Figure 4: The energy density (EV) plot, showing the variation in porosity fraction in TiNi 
SLM 

 

 

Figure 5: Lack of structural integrity in the samples built using EV < 350 J/mm3 
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Alternative to EV, the porosity fraction and cracking density (crack length/area, mm/mm2) 

were plotted against the linear energy density (EL = P/v, J/mm), Figure 6-(a,b). Contour plots 

were constructed, showing the variation in the porosity fraction and cracking density as a 

function of both the scan spacing and EL. By correlating both contours, processing windows 

to achieve low porosity fraction and low cracking density were identified, albeit separately in 

most conditions, since each defect type appeared to get reduced at a different parameters 

range. By choosing P/v = 0.67 J/mm and scan spacing = 0.065 mm, a good compromise can 

be obtained in terms of the cracking density and porosity fraction. Still, a very narrow 

processing range showed low levels of both the porosity fraction and cracking density, as 

shown in Figure 6-(c,d,e). Since lattice and mesh structures (including auxetics) typically 

have thin struts of diameter < 3 mm, thermal cracks are known to be lower in those structures 

than in cubic/bulk specimens due to the differences in the level of thermal stresses 

experienced [45]. An interesting correlation can be inferred from Figure 6. It is obvious that 

low porosity can be achieved via a combination of low EL (Figure 6-a), whereas low cracking 

density is obtained at high EL (Figure 6-b). This suggests that the cracking density tends to be 

reduced as the melt pool temperature increases (assuming that the melt pool temperature is 

proportional to EL). Evidence on the possibility of this hypothesis is the observation that high 

EL resulted in high porosity fraction, since high melt pool temperatures are known to result in 

turbulences in the melt pool [47].  

3.4. Build Microstructure 

The build microstructure exhibited three features; residual pores, cracks, and a dendritic 

solidification microstructure. The size of the pores in the high EL samples varied between 10 

to 60 μm, Figure 7-a. Since the pores were generally large, spherical, and did not show 

unconsolidated particles within, it is believed that they were formed as a result of melt pool 

turbulences leading to gas entrapment, rather than from the porosity within the powder. The 
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lowest porosity in the investigated parameters range was 0.09%, which is lowest ever found in 

studies on AM of TiNi, although the solidification behaviour (including porosity formation 

and susceptibility to macro and micro-cracking) would be expected to be alloy-dependent 29, 30, 

33, so it may be higher in other alloys. The microstructure was primarily dendritic, with Ti2Ni 

present along the interdendritic regions. The dendritic structure was finer in the low EL 

conditions (e.g. Figure 7-(b,c)), compared to the high EL conditions (Figure 7-a), which 

suggests that slower cooling rates occurred in the high EL conditions. The high EL condition 

consisted of 20-60 μm columnar and 5-10 μm equiaxed dendrites Figure 7-a), compared to 

fine columnar dendrites of 10-40 μm in length in low EL condition (Figure 7-b). The Ti2Ni 

content was quantified using ImageJ® image analysis, revealing an area fraction of 31±4% 

(18±4 vol.%) in the high EL condition (90 W, 115 mm/s, 0.0675 mm), compared to 27±4% 

(14±4 vol.%) in the low EL condition (60 W, 120 mm/s, 0.056 mm). 

 

Figure 6: The correlation of the EL and cracking density with the (a) porosity fraction and (b) 
crack density, showing representative builds from the extremes of the investigated window; 

(c) low cracking only (90 W, 115 mm/s, 0.0675 mm, high EL), (d) low cracking and low 
porosity (70W, 105 mm/s, 0.0675 mm), and (e) low porosity with long cracks (60 W, 120 

mm/s, 0.056 mm, low EL). 
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Figure 7: The morphology of the horizontal thermal cracks (arrowed) at the edge of near full-
density sample and the vertical cracks that appeared after sectioning, shown in (a) optical 
micrograph showing cracks initiating from interdendritic Ti2Ni in (b) and (c) back-scatter 

micrographs of X-Z section showing the frequency of the cracks 

 

The high Ti2Ni content suggests that a heat treatment is necessary to improve the 

homogeneity, mechanical properties, and shape memory behaviour of SLM-built SMA. Since 

Ti2Ni is very brittle, cracks appeared to stem from the continuous Ti2Ni phase present in the 

interdendritic regions, Figure 8-(a,b). As a result, it is believed that the ductility of the as-

built samples is going to be poor due to the propagation and growth of the existing micro-

cracks. The majority of the macro-cracks cracks were horizontal (i.e. normal to the build 

direction), Figure 8-c. Although the critical stress of TiNi is rather low (about 300MPa in the 

martensite phase and about 400 MPa in the austenite phase), the strain can be higher than 20% 

during tensile tests [52]. The vertical cracks appeared to form only after sectioning, and 

presumably occur as a mechanism to relax the residual stresses. Despite the high porosity 

fraction present in the high EL conditions, this coincides with low cracking density, suggesting 

that the presence of porosity allows more deformation within the samples, which potentially 

reduces the cracking density, (Figure 6-b). Mechanical testing of porous TiNi structures also 

supports this hypothesis [53, 54].  

XRD result of the powder and as-fabricated samples (built using the low EL and high EL 

parameters) confirmed the presence of two phases only; Ti2Ni and B19′, Figure 9. The data 
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indicate that the as-fabricated samples of various build conditions have similar peaks, but the 

peaks intensities are different, while the powder has random orientations. 

 

Figure 8: The morphology of the horizontal thermal cracks (arrowed) at the edge of near full-
density sample and the vertical cracks that appeared after sectioning, shown in (a) optical 
micrograph showing cracks initiating from interdendritic Ti2Ni in (b) and (c) back-scatter 

micrographs of X-Z section showing the frequency of the cracks 

 

 

Figure 9: XRD patterns for SLM built TiNi and powders reveal the presence of B19� and 
Ti2Ni. The high EL sample has larger amount of Ti2Ni than the low EL sample), while the 

powder (blue) has random orientations 
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3.5. Post SLM Heat Treatments 

The presence of Ti2Ni intermetallics disturbs the chemistry of the matrix by depleting the 

matrix from Ti, resulting in a drop in the TTs. Furthermore, large amounts of Ti2Ni may 

negatively affect the SMA ductility. As a result, a heat treatment is essential to improve the 

homogeneity, SME, and mechanical properties. According the TiNi binary phase diagram, 

Ti2Ni phase melts at 964˚C. However, this temperature can be affected by the presence of O 

and other minor elements. As such, DSC was used to accurately determine the melting 

temperature of Ti2Ni. The DSC revealed that Ti2Ni melting initiates at ~1010˚C, Figure 10.  

Thus, two heat treatments (HT1 and HT2) were applied to the optimum build condition. HT2 

is close to the melting point of Ti2Ni in this is alloy, which was intended to potentially 

consolidate the micro-cracks in Ti2Ni by melting and re-solidification. HT1 appeared to break 

most of Ti2Ni (Figure 11-a, whereas HT2 eliminated the continuous Ti2Ni interdendritic 

morphology altogether (Figure 11-b).  

 

Figure 10: DSC trace of the low EL AF condition shows Ti2Ni melts ~1010˚C and solidified 
about 980˚C during cooling 
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Figure 11: The morphology of Ti¬2¬Ni phase following the post-process homogenisation heat 
treatments (a) HT1, (b) HT2. 

 
3.6. The Phase Transformation Behaviour 

The phase transformation behaviour and TTs of the builds were studied using DSC in the as-

fabricated and HT2 conditions. Initially, the samples were thermally cycled in their 

transformation range to stabilise their behaviour [43, 55], before recording the DSC traces, 

Figure 12. It appears that the heat treatment resulted in an increase in the TTs, due to 

dissolution of the excess Ti2Ni formed during the process, which increased the Ti at.% 

content within the B19′, leading to an increase in the martensite start temperature (Ms). Only 

one-step transformation was observed.  
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Figure 12: DSC traces for the as-built low EL and high EL and heat-treated low EL samples 

 

By calculating the energy release during the martensitic transformation, it was found to be 

19.5 J/g for the low EL condition, 17.9 J/g for the high EL build (~10% lower than low EL 

sample), and 19.3 J/g for the HT2 low EL condition. The change in the energy release can be 

correlated to the fraction of B19′ present in the sample. As such, this suggests that the low EL 

condition and the heat-treated condition generally contain more B19′ fraction (and lower 

Ti2Ni fraction) than in the high EL condition, which can be verified from Figure 7-(a,b). The 

Ti2Ni fraction (PTi 2Ni  ) was also estimated using the integrated intensity of the XRD patterns 

(Figure 9) using the equation: 

PTi 2Ni =
∑Cj

∑Ci
 

                                (3) 
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where Cj is the integrated intensity of Ti2Ni peak and Ci are the peak intensity for all phases, it 

was found that the total intensity of Ti2Ni in the high EL sample is 33±2%, which is about 

10% higher than the low EL sample (23±2%), which confirms the previous hypothesis. 

The heat treatment also led to a narrower phase transformation range (i.e. Ms – Mf). The 

narrowness of the peak in the heat-treated sample shows that the heat treatment has 

homogenised the samples, eliminating chemical segregation within the B19′ [56]. The low EL 

sample has the widest martensitic transformation peak, ranging from 56 to 22˚C, whereas the 

high EL sample has a narrower martensitic peak, while the heat-treated sample has the 

narrowest peak, Figure 12. The peak width is related the inhomogeneity of the B19′ matrix. If 

the B19′ shows chemical inhomogeneities in the Ti-content, it is possible that the TTs range 

will end up being extended over a wider area. The energy release, however, is related to the 

B19′ fraction. As a result, the heat-treated sample has the most homogeneous B19′ chemistry, 

which results in the narrowest TTs range. Using the TEM, some Ni-rich areas were found in 

the TiNi matrix in the low EL sample. As shown in Figure 13, the Ti-rich or near equiatomic 

matrix with twinned martensite are indicated by black arrow. The area near Ti2Ni indicated by 

the white arrow showed 51 at.% Ni using EDX, which happens to be at the vicinity of some 

Ti2Ni particles. This could explain the wider martensitic TTs range in the low EL condition 

(Figure 12). It also suggests that chemical inhomogeneities have a strong influence on the 

SME, and as such a post-process heat treatment is essential to improve the performance. 
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Figure 13: Darkfield TEM micrograph of low EL sample, the presence of Ni-rich B19� 
arrowed) at the vicinity of Ti2Ni particles. The EDX analysis of the martensite area indicated 
by the black arrow was 51 at.% Ti, while the Ni-rich area at the vicinity of Ti2Ni indicated by 

white arrow was Ni-rich (49 at.% Ti). 

 
3.8. NPR Structure Morphology and Performance 

Conventional re-entrant structure (Figure 14-a) samples with dimensions (x,y,z) of 26 × 26 × 

36 mm3 were built using the low EL parameters. The designed beam thickness was 0.3 mm, 

while the beam thickness in the fabricated samples was found to be ~1-2 mm, 0.8 mm powder 

lumps attached at the corners. This is a known shortcoming in SLM, where the thermal 

footprint of the laser is usually large than the optical footprint (laser spot size), which is 

usually the one accounted for in the calculation of the tool path. As a result, the melt pool 

ends up consolidating (partially or fully) some of the powder particles at its vicinity in the bed. 

Furthermore, there are obvious locations where the thickness of the struts changes (e.g. 

comparing the corners with the struts). This happens due to the delivery of more heat input in 

the location where there is a crossover of the laser tracks. Finally, the amount of 

solid/fabricated metal at the corner is less than the other area, which leads variations of heat 
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transferring rate. It can be clearly see the poor underside surfaces due to the overhangs 

structures of the conventional design. These defects were minimised in the modified AM re-

entrant structure, Figure 14-b. As expected, the microstructure of the struts does not show any 

cracks in the optimised condition, due to the rapid cooling experienced in the small sections, 

Figure 14-c.   

 

 

Figure 14: The morphology of NPR cells showing SEM micrographs for the (a) conventional 
re-entrant design, (b) modified AM re-entrant design, and (c) a section through the struts 

showing the lack of cracks 

 
Mechanical tests were carried on before and after HT2 to assess the influence of the heat 

treatment on the mechanical performance. The force-displacement curves for the as-fabricated 

and heat-treated samples are shown in Figure 15. The as-fabricated sample shows a steeper 

force/displacement curve than the heat-treated sample, and the maximum load is 12% higher 

than the heat-treated sample. The as-fabricated sample also shows a generally linear curve 

prior to fracture, whereas the heat-treated sample shows two steps deformation. However, the 

extent of deformation in the as-fabricated sample was 46% lower than the heat-treated sample, 

which indicates the ductility improved after the heat treatment. The as-fabricated sample 

includes more Ti2Ni, which increases the yield strength due to its strengthening contribution 

[52, 57]. However, the surface features make susceptible to stress concentration and crack 

propagation along the interdendritic Ti2Ni, which reduce the ductility of as-fabricated sample. 

The dissolution of Ti2Ni in the heat-treated samples, however, allows the material to have a 

large deformation prior to failure. 
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Force–displacement data were used to calculate Poisson’s ratio using Equation 1. The 

Poisson’s ratio of the heat-treated NPR structure is ~-2, which is similar to the Ti-6Al-4V 

NPR structure fabricated by electric beam melting, previously reported in the literature [21]. 

Following deformation, the deformed structure was heated to 100˚C, which led to the 

restoration of the original (undeformed) geometry.  

 

Figure 15: Force-displacement curve shows the as-fabricated sample (blue) has higher 
strength but lower ductility than the heat-treated sample (red). 

 

 

Figure 16: The Poisson’s ratio ντz (-2) was calculated as the negative ratio between the 
transverse and vertical deformation from the best fit of force-displacement data of heat treated 

sample 
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4. Conclusions and Future Work 

The study focused on the development of TiNi-based NPR structures using AM. The key 

findings of this work can be summarised as follows:  

1. Design optimisation of NPR structures is essential to tailor the Poisson’s ratio and to adapt 

the structure for AM by avoiding the use of overhanging structures. 

2. SLM of TiNi demonstrates two potential defects; porosity and residual stress induced 

cracking. Both types can be minimised or totally eliminated through process optimisation. 

The use of the linear energy density proved to be a useful tool in identifying the process 

window for SLM of TiNi. 

3. Heat treatment is essential to improve the microstructural homogeneity, SME, and 

ductility of TiNi, through the reduction of Ti2Ni precipitates. Nonetheless, the reduction in 

Ti2Ni results in a reduction in load bearing capability of the structure.   

4. The heat-treated NPR structure achieved a high negative Poisson’s ratio of -2. 

Future work will focus the stability of the SME in NPR structure with repeated loading and 

unloading.   
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