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Abstract ICOS encodes the Inducible T-cell Co-Stimulator
(ICOS). Deficiency of this receptor in humans causes a com-
mon variable immunodeficiency (CVID) characterised by an
absence of c lass -swi tched memory B ce l l s and
hypogammaglobulinemia. Three pathogenic mutations in
ICOS have been described to date in a total of 13 cases.
Here we report a novel homozygous 10 base pair frameshift
deletion in exon 2 discovered by whole exome sequencing of
two siblings from a family of Pakistani origin. Both patients
presented in early childhood with diarrhea, colitis and
transaminitis and one showed defective handling of human
herpesvirus 6. Activated patient CD3+CD4+ T lymphocytes
demonstrated a complete absence of ICOS expression and,

consistent with previous reports, we detected a reduction in
circulating T follicular helper cells. Findings in this kindred
emphasise the phenotypic variability of ICOS deficiency and,
in particular, the variably impaired antiviral immunity that is a
poorly understood facet of this rare disorder.

Keywords ICOS . primary immunodeficiency . common
variable immunodeficiency . CVID

Introduction

The Inducible T-cell Co-Stimulator (ICOS) is a receptor struc-
turally related to CD28. ICOS is expressed by T cells follow-
ing activation while its ligand (ICOS-L) is expressed on anti-
gen presenting cells including B cells [1]. Co-stimulation
through ICOS enhances many aspects of helper Tcell function
and is important in the generation of multiple lymphocyte
subsets; currently its most clearly defined role in humans is
in the differentiation of T follicular helper cells (Tfh) [2–4].

A homozygous 1815 base-pair deletion in the ICOS-
encoding gene ICOS was reported in 2003 as the cause of
adult-onset autosomal recessive common variable immunode-
ficiency in multiple patients from the Danube region [5].
Subsequently, two different pathogenic single base-pair
frameshift deletions in exon 2 have been identified in homo-
zygosity, the first in two siblings from Japan and the second,
most recently, in two siblings from Kuwait [6, 7]. The pheno-
typic spectrum of ICOS deficiency has expanded as more
patients are identified, with features varying from refractory
diarrhea in early life to adult onset infection, autoimmunity
and neoplasia [7–9].

We investigated two siblings who presented in early child-
hood with persistent pathogen-negative diarrhea and
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identified a novel homozygous 10 base-pair deletion in exon 2
of ICOS.

Case Overview

The parents of the patients are from the same ethnic back-
ground and are not, to their knowledge, related (Fig. 1a).

From the age of 2 years, their second child (patient 1) suffered
from chronic loose watery stools associated with abdominal
pain, fever, lethargy and weight loss. She was referred to im-
munology services aged 3.5 years and was noted to have ab-
sent class-switched memory B-cells (CD19 + CD27 + IgD-),
hypogammaglobulinemia and impaired vaccine responses
(Table 1). She was commenced on immunoglobulin replace-
ment therapy but diarrhea persisted and she developed

A

B

C

Fig. 1 10 base pair deletion in
ICOS in two siblings. a Family
tree. Diamonds represent healthy
siblings whose gender is not
disclosed to protect the family’s
privacy. b Sanger sequencing of
family members. Arrow indicates
the start of the deletion. c
Alignment of patient sequence
with a parental sequence
reconstructed by Poly Peak Parser
to show reference and pathogenic
alleles [10]
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hepatomegaly associated with raised liver enzymes (alanine
aminotransferase [ALT] of 2907 IU/L, normal range 10 to 40;
gamma-glutamyl transferase [GGT] 152 IU/L, normal range
0–51). Stools were free of enteric pathogens with the excep-
tion of single samples positive for norovirus, adenovirus and
Cryptosporidium.

Liver and gut biopsies showed mild chronic hepatitis and
severe active chronic panenteritis, respectively. Samples from
sigmoid colon, duodenum and liver were PCR positive for
human herpesvirus 6 (HHV6). Treatment with intravenous
ganciclovir and then oral valganciclovir together with
nitazoxanide resulted in some improvement of the hepatitis:
liver and duodenal samples became negative for HHV6 but
sigmoid biopsy remained positive. However, the patient con-
tinued to have clinically severe colitis with persistent diarrhea
and abdominal pain which limited her school attendance. By
analogy with other combined immunodeficiencies we were
concerned that this situation would only deteriorate over time.
Following extensive discussion among the team andwith fam-
ily, it was therefore decided to attempt curative treatment with
hematopoietic stem cell transplantation (HSCT). She received
an unrelated 11/12 HLA matched transplant following re-
duced intensity conditioning. Unfortunately she developed
capillary leak syndrome on day 5 with respiratory distress
followed by toxic epidermal necrolysis and died from these
complications.

The younger brother of the proband (patient 2) presented
similarly at age two years with an episode of diarrhea.
Investigations again revealed low immunoglobulins, absent
class-switched memory B-cells and raised liver enzymes
(Table 1 and data not shown). PCR analyses of blood for
CMV, EBV, HHV6 and adenovirus were negative. The family
have so far refused immunoglobulin replacement therapy; the
patient is 7 years old and currently remains well.

Investigations

We explored the hypothesis that the affected siblings had an
autosomal recessive disorder caused by homozygosity for a
mutation derived from a shared parental ancestor. DNA from
both children was submitted for whole exome sequencing and
analysed in conjunction with homozygosity mapping data
(full methods in supplemental file). Filtering out common var-
iants left a homozygous 10 base-pair deletion in ICOS as the
only plausible candidate disease-causing variant in the linkage
regions. Sanger sequencing confirmed segregation in keeping
with autosomal recessive inheritance: both parents possessed
one wild-type allele and one allele carrying the deletion
(c.321_330del; Fig. 1b and c), while both affected children
were homozygous for the deletion. The deletion leads to a

Table 1 Immunological parameters from ICOS deficient patients

Parameter Patient 1 Patient 2 Reference range [11–14]

Neutrophils 4.7 × 109/L 5.82 × 109/L 1.5–8 × 109/L

Lymphocytes 2.9 × 109/L 5.3 × 109/L 1.7–6.9 × 109/L

CD3+ 2352 cells/μl 2856 cells/μl 900–4500 cells/μl

CD4+ 1748 cells/μl 1877 cells/μl 500–2400 cells/μl

CD8+ 469 cells/μl 879 cells/μl 300–1600 cells/μl

CD19+ 1607 cells/μl 2824 cells/μl 200–2100 cells/μl

CD19 + CD27-IgD+ (naïve B Cell) 86 % 97 % 83·4–90·1 %

CD19 + CD27 + IgD+ (memory B cell) 2 % 3 % 4·2–6·9 %

CD19 + CD27 + IgD- (class switched B Cell) <1 % 0 % 1·5–4·1 %

CD4-CD45RA + CD27- (effector CD8+) 0 cells/μl 86 cells/μl

CD4-CD45RA + CD27+ (naïve CD8+) 353 cells/μl 742 cells/μl

CD4 + CD45RA + CD27+ (naïve CD4+) 706 cells/μl 799 cells/μl

Activated T cells (HLA-DR+) 5 % 7 %

IgM 0.17 g/L 0.32 g/L 0.48–1.68 g/L

IgG 2.07 g/L 1.5 g/L 4.24–10.51 g/L

IgA 0.43 g/L 0.29 g/L 0.14–1.23 g/L

Tetanus non-protective non-protective

Hib 0.36 ųg/ml 0.02 ųg/ml 0.22–42.8 ųg/ml

Pneumococcal serotypes: protective responses 0/12 serotypes 2/12 serotypes

Measles IgG Not done Positive

Mumps IgG Not done Positive

Rubella IgG Not done Negative
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frameshift and a premature stop after 10 codons in the new
reading frame (p.F108YfsX118).

To confirm ICOS deficiency at protein level, cryopre-
served frozen aliquots of peripheral blood mononuclear
cells from patient 2 were analyzed by flow cytometry
after stimulation with PHA. This demonstrated complete
absence of ICOS expression (Fig. 2a) despite upregula-
tion of the T-cell activation marker CD69 (Fig. 2b).
Unfortunately no cryopreserved material for this assay
was available from patient 1.

Previous reports have concluded that there is an association
between ICOS deficiency and a reduction in the circulating
pool of Tfh, as represented by the CXCR5hi proportion of the
memory (CD4RAlo) peripheral CD4+ T cell population [7,
15]. Defective Tfh generation would be consistent with the
histopathological finding of aberrant germinal centres in
ICOS deficient patients [9, 16]. In contrast to all controls test-
e d , p a t i e n t 2 h a d n o d i s c r e t e p o p u l a t i o n o f
CD45RAloCXCR5hiCD4+ T cells, and the overall proportion
of CD4+ lying in this region was lower than the normal range

A

B

C

Fig. 2 Frameshift deletion in ICOS causes failure of ICOS expression on
activated T cells and reduced Tfh. a ICOS expression on control and
patient cells. Peripheral blood mononuclear cells (PBMCs) were
stimulated with PHA for 18 h before staining. Plots are gated on live
CD3+CD4+ lymphocytes. b ICOS deficiency does not impair T cell
activation as assessed by CD69 expression. Cells were treated and

gated as in (A). c Reduction in circulating Tfh in ICOS deficient patient.
Healthy control or patient PBMCs were stained for the Tfh markers
CXCR5 and CD45RA. Plots are gated on live CD3+CD4+ lymphocytes.
d Quantification of experiment shown in C showing multiple healthy
controls. Line indicates mean value
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(2.98 % of CD4+ cells compared to an average of 9.02 % in
controls, range 4.62–14.70 %; Fig. 2d). Patient 2 had a rela-
tively low total proportion of CD45RA− helper memory T
cells at 22.4 % of the total CD3+CD4+ lymphocyte popula-
tion. However, this figure lies within the normal range both
from our adult controls (where the figure was 18.7–68.1 %),
and a previously reported reference range for the patient’s age
group (approximately 15–65 %) [17].

Discussion

This report clearly demonstrates that ICOS-deficiency can be
associated with clinical features of cellular as well as humoral
immunodeficiency. The most common presentation in previ-
ous cases was pneumonia, which could be mechanistically
explained by defective antibody production [9]. In contrast,
features described here and in the recently reported Kuwaiti
siblings suggest a broader disorder of Tcell function: patient 1
demonstrated defective handling of HHV6 and possibly also
of Crytosporidium, while the Kuwaiti patients suffered from
Pneumocystis jirovecii pneumonia (PJP) and cytomegalovirus
viremia [7]. Thus the clinical features of ICOS deficiency
parallel those of another T-B cell costimulatory defect,
CD40 ligand deficiency, in which patients not only show
hypogammaglobulinemia but also evidence of an accompany-
ing T-cell immunodeficiency, commonly in the form of
Pneumocystis or Cryptosporidium infections [18].

Although a less prominent feature, earlier reports of ICOS
deficiency also included evidence of impaired viral immunity.
Patients from the Danube cohort have been reported to expe-
rience recurrent HSV infection and one individual developed
HPV-driven vulval carcinoma, while one of the Japanese sib-
lings is described as having prolonged viral infections in in-
fancy [6, 9]. The mechanism behind this dysfunction is not
entirely clear but may be related to defective cytokine secre-
tion [1]. One factor in the milder course of our patient 2 to date
may relate to age of exposure to microbial pathogens: age at
presentation varies widely in both ICOS and CD40 ligand
deficiency, but CD40 ligand deficiency appears to be more
consistently apparent in childhood [9, 18].

Patient 2 lacked a discrete Tfh population, but the size of this
compartment varied markedly in healthy controls. This finding
is consistent with data from the Danube cohort where average
Tfh proportions were markedly lower in the patient group com-
pared to controls, but outliers from the two groups had overlap-
ping values [15]. This suggests that the putative Tfh defect in
ICOS deficiency may be qualitative as much as quantitative;
another intriguing possibility is that the size of the Tfh popula-
tion could correlate with the severity of the phenotype, as has
recently been reported in CD40L deficiency [19].

ICOS deficiency should be considered as part of the differ-
ential diagnosis in patients with antibody deficiency or

combined immunodeficiency. An early clue is the complete
lack of class switched memory B cells, which is a consistent
feature of the disorder. In the absence of another molecular
diagnosis we suggest that such patients should undergo an
assay in which CD4+ T cells are activated before being eval-
uated for expression of ICOS and activation markers includ-
ing CD69 and CD25 or HLA-DR. Inclusion of these markers
is important because there is a danger that non-damaging var-
iants in ICOS could be incorrectly designated as pathogenic if
T cell activation is defective for another reason, resulting in a
failure of ICOS induction. Evaluation of Tfh numbers might
also contribute diagnostically although, as we show, these
may overlap normal values.

Haematopoietic stem cell transplantation offers patients
with ICOS deficiency a chance of cure should their disease
be clinically severe. Although transplantation was sadly un-
successful in our patient, one of the Kuwaiti siblings reported
by Chou et al. was successfully transplanted with improve-
ment in his colitis [7]. By analogy with other combined im-
munodeficiencies, earlier transplant is likely to be less hazard-
ous for the patient than a later procedure, when complications
have accumulated. Conservative management of patients who
decline or are unsuitable for transplantation remains a difficult
challenge, but we suggest a combination of immunoglobulin
replacement, antimicrobial (including PJP) prophylaxis and
judicious antiviral therapy.
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