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Abstract	
  

Tris-2-chloroethyl phosphate (TCEP), tris (1-chloro-2-propyl) phosphate (TCIPP) and tris-

1,3-dichloropropyl phosphate(TDCIPP)  are organophosphate flame retardants (PFRs) widely 

applied in a plethora of consumer products despite their carcinogenic potential.  Human 

dermal absorption of these PFRs is investigated for the first time using human ex vivo skin 

and EPISKIN™ models. Results of human ex vivo skin experiments revealed 28%, 25% and 

13% absorption of the applied dose (500 ng/cm2, finite dose) of TCEP, TCIPP and TDCIPP, 

respectively after 24 h exposure. The EPISKIN™ model showed enhanced permeability 

values (i.e. weaker barrier), that were respectively 16%, 11% and 9% for TCEP, TCIPP and 

TDCIPP compared to human ex vivo skin. However, this difference was not significant 

(P>0.05). Estimated permeability constants (Kp, cm/h) showed a significant negative 

correlation with log KOW for the studied contaminants. The effect of hand-washing on dermal 

absorption of PFRs was investigated. Washing reduced overall dermal absorption, albeit to 

varying degrees depending on the physicochemical properties of the target PFRs. Moreover, 

slight variations of the absorbed dose were observed upon changing the dosing solution from 

acetone to 20% Tween 80 in water, indicating the potential influence of the dose vehicle on 

the dermal absorption of PFRs. Finally, estimated dermal uptake of the studied PFRs via 

contact with indoor dust was higher in UK toddlers (median ΣPFRs = 36 ng/ kg bw. day) than 

adults (median ΣPFRs = 4 ng/kg bw. day). More research is required to fully elucidate the 

toxicological implications of such exposure. 

 

 

Keywords: Dermal absorption, Organophosphate flame retardants, EPISKIN, PFRs, Human 

exposure. 
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Introduction	
  

Organophosphate flame retardants (PFRs) have been associated recently with a variety of 

applications in a wide range of products (van der Veen and de Boer, 2012). Following the 

inclusion of tetra- to hepta- brominated diphenyl ether (PBDE) congeners  under the 

Stockholm Convention list of persistent organic pollutants (POPs) (Stockholm convention on 

POPs, 2013), several flame retardants (FRs) have emerged as alternatives to the banned 

PBDEs. Among those alternative FRs, the European market demand of PFRs has increased 

from 83,700 tons in 2004 to 91,000 tons in 2006 accounting for 20% of the EU consumption 

of FRs in 2006 (EFRA, 2007). In Japan, the production and shipment quantity of PFRs were 

estimated at 45,400 and 85,700 tons in 2005 and 2010, respectively. The annual yield of 

PFRs reached ~ 70,000 tons in 2007 and is estimated to increase by 15% annually in China 

(Wei et al., 2015). Chlorinated PFRs include tris-2-chloroethyl phosphate (TCEP), tris (1-

chloro-2-propyl) phosphate (TCIPP) and tris-1,3-dichloropropyl phosphate(TDCIPP). They 

are used as flame retardants in flexible and rigid polyurethane foams (PUFs) deployed in 

furniture, car upholstery and related products (van der Veen and de Boer, 2012). In addition, 

they are also used as plasticizers in various products including lacquer, paint and glue (Wei et 

al., 2015). 

PFR are not chemically bonded to the polymer matrix (i.e. additive FRs). Therefore, they are 

likely to leach out from treated products by abrasion and/or volatilization to contaminate the 

surrounding environment in a similar scenario to PBDEs (Reemtsma et al., 2008). PFRs have 

been recently detected in both indoor and outdoor environments (Reemtsma et al., 2008; van 

der Veen and de Boer, 2012). Several studies have reported on levels of various PFRs in soil, 

sediment, water and air (Martinez-Carballo et al., 2007; Reemtsma et al., 2008; van der Veen 

and de Boer, 2012; Cristale et al., 2013). Moreover, PFRs were recently reported in biota and 
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human breast milk indicating their bioavailability to humans and wildlife (Sundkvist et al., 

2010; Kim et al., 2011; Leonards et al., 2011; Kim et al., 2014; Brandsma et al., 2015). 

Current understanding of the toxicological properties of PFRs is not complete. Few studies 

have reported on adverse effects of PFRs including liver toxicity, reproductive toxicity, 

neurotoxicity and interference with normal growth upon long-term exposure in laboratory 

animals (Regnery et al., 2011; van der Veen and de Boer, 2012). Other studies have reported 

various toxic effects of TDCIPP including immunotoxicity and disturbance of lipid 

metabolism in chicken embryos (Farhat et al., 2014), as well as neurodevelopmental defects 

in embryonic zebrafish (Noyes et al., 2015). TDCIPP was also reported to cause reduced 

thyroid hormone levels in humans (Meeker and Stapleton, 2010). In addition, TCEP, TCIPP 

and TDCIPP were subject to an EU risk assessment process under an Existing Substances 

Regulation (EEC 793/93) and were classified as persistent in the aquatic environment 

(Regnery et al., 2011). Furthermore, TCEP is classified by the EU as a “potential human 

carcinogen” (carcinogen category 3), while TDCIPP is classified under regulation EC 

1272/2008 as a category 2 carcinogen with hazard statement H351 “suspected of causing 

cancer” (ECHA, 2010). 

Currently, little is known about the sources, magnitude and pathways of human exposure to 

PFRs. Recent studies have provided estimates of external human exposure to PFRs via 

inhalation (Cequier et al., 2014), ingestion of indoor dust (Abdallah and Covaci, 2014) and 

diet (Malarvannan et al., 2015). However, very little is known about the relative contribution 

of different exposure pathways to the overall human body burdens of these contaminants. 

More recently, Hoffman et al. reported that concentrations of TDCIPP in indoor dust were 

not associated with those in hand wipes. However, hand wipe levels were associated with 

urinary metabolites indicating that hand-to-mouth contact or dermal absorption may be 

important pathways of human exposure to PFRs (Hoffman et al., 2015). Furthermore, 
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pharmacokinetic modelling of the extensively studied PBDEs revealed the significance of 

dermal contact with indoor dust as a pathway of human exposure to these FRs (Lorber, 2008; 

Trudel et al., 2011). To illustrate, dermal uptake was reported as the 2nd most important 

contributor (following dust ingestion) to PBDE body burdens of Americans (Lorber, 2008). 

For Europeans, ingestion of diet and dust, as well as dermal exposure to dust constituted the 

major factors influencing human body burdens of PBDEs (Trudel et al., 2011). To our 

knowledge, there is ˗to date˗ no available information on human uptake of PFRs following 

dermal contact. This may be attributed to ethical issues associated with both in vivo and in 

vitro studies using human tissues. In addition, uncertainties arise from interspecies variation 

and allometric scaling of dermatokinetic data from animals to humans (Abdallah et al., 

2015a). These challenges further support the need for alternative in vitro methods to study 

dermal availability of hazardous chemicals present in indoor dust to humans. To overcome 

these challenges, our research group recently reported on the application of in vitro 3D-

human skin equivalents (e.g. EPISKIN™ and EpiDerm™ models) as an alternative approach 

to study human dermal absorption of various brominated flame retardants. 3D-human skin 

equivalents (3D-HSE) are cultured from primary human cells to produce fully differentiated, 

multi-layer tissues that mimic the original human skin both histologically and physiologically 

(Figure SI-1). They were initially developed as alternatives to animal testing by the 

pharmaceutical industry and were successfully applied to study the dermal absorption of 

various topically applied chemicals (Schaefer-Korting et al., 2008a; Ackermann et al., 2010). 

The paucity of data on human dermal absorption of PFRs represents a research gap that can 

hinder the accurate risk assessment of this class of emerging contaminants. Therefore, the 

aims of this paper are: (a) to investigate the human dermal absorption of TCEP, TCIPP and 

TDCIPP using two in vitro dermal models, namely human ex vivo skin and EPISKIN™ 

human skin equivalent, (b) to study the effect of hand washing on the dermal absorption of 
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the studied PFRs and (c) to provide a primary assessment of adult and toddler exposure to the 

target PFRs via dermal contact with indoor dust. 

	
  	
  Materials	
  and	
  Methods	
  

In vitro dermal exposure experiments were performed along the principles of good laboratory 

practice and in compliance with the OECD guidelines for in vitro dermal absorption testing 

(OECD, 2004). The handling instructions and performance characteristics of EPISKIN™ 3D-

human skin equivalent (3D-HSE) model were also taken into consideration. The study 

protocol received the required ethical approval (# ERN_12-1502) from the University of 

Birmingham’s Medical, Engineering and Mathematics Ethical Review Committee. 

Chemicals	
  and	
  standards	
  

All solvents and reagents used for preparation, extraction, clean-up and instrumental analysis 

of samples were of HPLC grade and were obtained from Fisher Scientific (Loughborough, 

UK). Neat standards (purity > 98%) of tris (2-chloroethyl) phosphate (TCEP), tris (2-

chloroisopropyl) phosphate (TCPP), tris (1,3-dichloro-2-propyl) phosphate (TDCIPP), were 

purchased from Sigma-Aldrich (Gillingham, Dorset, UK). Isotopically labelled d15-triphenyl 

phosphate (d15-TPhP) and d27-tri-n-butyl phosphate (d27-TnBP) (50 µg/mL in toluene, purity 

>99%) were obtained from Wellington Laboratories (Guelph, ON, Canada). Florisil® SPE 

cartridges were purchased from Supelco™ (Bellefonte, Pennsylvania, USA). All culture 

medium components (Table SI-1) were purchased from Sigma-Aldrich UK (Gillingham, 

Dorset, UK).     

Test	
  matrices	
  

Human	
   skin: Freshly excised, healthy human upper breast skin was obtained via Caltag 

Medsystems Ltd. (Buckingham, UK) from three consented female adults (aged 35, 37 and 34 
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years) following plastic surgery. Selection criteria included: Caucasian, no stretchmarks, no 

scars, no hair and full thickness skin without adipose tissue. Skin was kept on ice for no 

longer than 4 h prior to the onset of the ex-vivo skin absorption studies. Upon receipt, the ex 

vivo skin samples were equilibrated for 1 h with 3 mL of DMEM (Dulbecco's Modified 

Eagle's Medium)-based (Sigma-Aldrich, UK) culture medium (Table SI-1) at 5% CO2 and 37 

˚C before use in permeation experiments. 

EPISKIN™: The EPISKIN™ RHE/L/13 human skin equivalent kit was purchased from 

SkinEthic Laboratories (Lyon, France). The RHE/L/13 tissue constructs are 1.07 cm2 tissues 

shipped on the 13th day of culture required for acceptable tissue differentiation 

(www.episkin.com). The kit includes maintenance medium (MM) - which is a proprietary 

DMEM-based medium that allows acceptable differentiated morphology of the tissue for ~ 5 

days upon receipt by end users. Upon receipt, the EPISKIN™ tissues were equilibrated 

overnight with their MM at 5% CO2 and 37 ˚C before use in the permeation experiments. 

Dosing	
  Solutions	
  

Two different concentration levels of (I) 50 ng/µL and (II) 10 ng/µL of each of TCEP, TCIPP 

and TDCIPP were prepared in acetone by serial dilution. Based on the exposed surface area, 

a net dose of 500 ng/cm2 and 1000 ng/cm2 was applied to each of the investigated skin tissues 

using 10 µL/cm2 (finite dose application) of dosing solutions I and 100 µL/cm2 (infinite dose 

application) of dosing solution II, respectively. Acetone was selected as the dosing vehicle 

based on its ability to dissolve the test compounds at the desired levels and its minimal effect 

on skin barrier function. A previous study on the effect of organic solvents on the trans-

epidermal water loss (TEWL) as indicator of skin barrier revealed both acetone and hexane to 

not behave significantly differently in this context to water, while a mixture of 

chloroform:methanol (2:1 v/v) caused the greatest significant increase in TEWL (Abrams et 

al., 1993). 
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To study the possible effect of the dosing vehicle on the percutaneous penetration of the 

tested chemicals, target PFRs were dissolved in 2 different dosing vehicles of: (A) acetone, 

and (B) 20% Tween 80 (Sigma-Aldrich, UK) in water at a concentration of (III) 10 ng/µL. 

For this strand of experiments, in vitro skin tissues were dosed with 50 µL/cm2 (infinite dose 

application) of dosing solution II and III for comparison. Preparation of the higher dosing 

level (i.e. 50 ng/µL) was not possible due to limited solubility of target PFRs in vehicle (B). 

Percutaneous	
  penetration	
  assay	
  protocol	
  

The permeation experiments were performed using the static set-up approach (Figure SI-1). 

Skin tissues were mounted in standard Franz-type permeation devices with the stratum 

corneum facing up. Based on the recommendation of the 3D-HSE providers, the EPISKIN™ 

tissues were mounted in special inserts constructed for this model (SkinEthic Laboratories, 

Lyon, France), while excised human skin tissues were mounted in standard glass Franz cells.  

All experiments were performed in triplicate. Following 30 minutes equilibration, the tested 

chemicals were applied onto the skin surface in the donor compartment. A DMEM-based 

culture medium (Table SI-1) was used as receptor fluid, maintained at 32 ± 1 °C and 

magnetically stirred. At fixed time points, aliquots of the receptor fluid (2 mL) were collected 

from the receptor compartment and immediately replaced with fresh fluid. After 24 hours, the 

entire receptor fluid was collected and the skin surface washed thoroughly with cotton buds 

impregnated in (1:1) hexane:ethyl acetate (5 times). The tissues were removed from the 

permeation devices and both the donor and receptor compartments were washed separately (5 

x 2 mL) with (1:1) hexane:ethyl acetate. All samples were stored at -20 ˚C until chemical 

analysis. 

 To investigate the potential effect of hand washing on the dermal absorption of PFRs, a 

separate strand of experiments were performed in triplicate. In these, human ex vivo skin 

exposed to 500 ng/cm2 of target PFRs (dosing solution I, finite dose application) was washed 
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after 6 h of exposure, while monitoring the absorbed dose continued until 24 hours. The 

washing procedure involved wiping the skin surface gently (5 times) with cotton buds 

presoaked in a detergent solution (5% neutral hand soap in isotonic water, pH = 7.2 ± 0.1). 

Sample	
  extraction	
  and	
  chemical	
  analysis	
  

Each permeation assay generated five different types of samples comprising: receptor fluid at 

various time points, skin tissue, cotton buds (used to thoroughly wipe the skin surface), donor 

and receptor compartment washes. 

The receptor fluid, skin tissue and cotton bud samples were spiked with 30 ng of d15-TPhP 

used as internal standard prior to extraction according to a previously reported QuEChERs 

based method (Abdallah et al., 2015c) (more details provided in the SI section).  

Skin tissue samples were subject to an extra clean-up step to remove potentially interfering 

macromolecules. This involved evaporating the extract under a gentle stream of nitrogen 

prior to solvent exchange to 1 mL of hexane. The crude extract was then loaded onto a 

Florisil® SPE cartridge (pre-conditioned with 6 mL of hexane). Fractionation was achieved 

by eluting with 8 mL of hexane (F1, discarded) followed by 10 mL of ethyl acetate (F2). F2 

was evaporated to incipient dryness under N2 (Abdallah and Covaci, 2014). The donor and 

receptor compartment washes were spiked with 30 ng of d15-TPhP prior to direct evaporation 

under a gentle stream of N2. 	
  

Target analytes were reconstituted in 100 µL of isooctane containing 250 pg/µL d27-TnBP 

used as recovery determination (syringe) standard for QA/QC purposes. 

Quantification of target PFRs was performed using a TRACE 1310™ GC coupled to a ISQ™ 

single quadrupole mass spectrometer (Thermo Fisher Scientific, Austin, TX, USA) operated 

in electron ionization (EI) mode according to the previously described method (Van den Eede 

et al., 2012; Abdallah and Covaci, 2014). Separation of target PFRs was performed on 

Agilent DB-5 capillary column (30 m x 0.25 mm; 0.25 µm) using helium as the carrier gas. 
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The mass spectrometer was run in selected ion monitoring (SIM) with ion source, quadrupole 

and mass transfer line temperatures set at 230, 150 and 300 °C, respectively. Further details 

of the GC-EI/MS method are provided in the SI section. 

Dermal	
  exposure	
  estimation	
  

Daily exposure to the studied PFRs via dermal contact with indoor dust was estimated using 

the general equation: 

 

𝑫𝑬𝑫=𝑪	
  𝐱	
  𝑩𝑺𝑨	
  𝐱	
  𝑫𝑨𝑺	
  𝐱	
  𝑭𝑨	
  𝐱	
  𝑰𝑬𝑭𝑩𝑾	
  𝐱	
  ����	
  …� 

 

Where DED = Daily exposure dose (ng/kg bw/day), C = PFR concentration in dust (ng/g),    

BSA =Body surface area exposed (cm2), DAS = Dust adhered to skin (mg/cm2), FA = fraction 

absorbed by the skin (unitless), IEF = indoor exposure fraction (hours spent over a day in a 

certain indoor environment) (unitless), BW = Body weight (kg). 

Data	
  analysis	
  and	
  statistical	
  methods	
  	
  	
  	
  	
  

A quantitative description of test compound permeation through the skin barrier is obtained 

from Fick’s first law of diffusion as follows (Niedorf et al., 2008): 

𝑱𝒔𝒔=𝜟𝒎𝜟𝒕.𝑨=	
  𝑫.	
  𝑲.	
  ∆𝑪∆𝒙	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  � 

Where Jss = steady-state flux [ng/cm2.h]; Δm = permeated mass [ng]; Δt = time interval [h]; D 

= diffusion coefficient [cm2/h]; K = partition coefficient; A = area [cm2]; Δc = concentration 

difference [ng/cm3]; Δx: thickness of membrane [cm]. 

When using infinite-dose configurations, i.e. in which the donor concentration far exceeds the 

concentration in the receptor compartment (CD>>CA), ΔC can be replaced by the known 

donor concentration, CD, and the permeated mass per time assumed constant. Therefore, the 

apparent permeability constant (Kp, cm/h), which represents an independent measure of the 
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membrane resistance against permeation of the examined substance, can be calculated as:    

𝑲𝒑=	
  𝑱𝒔𝒔𝑪𝑫	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  � 

Absorption data were plotted as a cumulative absorption - time curve and the flux (Jss) and 

lag time (tlag) were determined from the linear portion (R2 ≥ 0.9) of the curve. For infinite 

dose applications, the permeability constant (Kp; cm/h) was calculated by dividing the steady 

state flux (ng/cm2.h) by the concentration of applied chemical (ng/cm3) (Moore et al., 2014).  

Determination of the start and upper boundary of the linear range (i.e. steady state conditions) 

was achieved according to the method described by Niedorf et al.(Niedorf et al., 2008) (a 

summary flow chart is provided in figure SI-2). 

Results are presented as the arithmetic mean of three replicates ± standard deviation (SD). 

Statistical analysis was performed using SPSS 13.0 software package. Differences in skin 

permeation were evaluated by the paired student t-test between two datasets. A Games-

Howell test was used for analysis of variance (ANOVA) among several datasets with equal 

variances not assumed; p < 0.05 was regarded to indicate a statistically significant difference.   

QA/QC	
  	
  

Several stages of QA/QC measurements were performed to check the performance of the 

percutaneous penetration assay protocol. A “field” blank, comprising a skin tissue exposed to 

solvents only and treated as a sample, was performed with each sample batch (n= 9). None of 

the studied compounds were above the limit of detection (LOD) in the field blank samples. 

Good recoveries of the d15-TPhP labeled internal standard (> 85%) in all sample types were 

obtained indicating high efficiency of the extraction method. The accuracy and precision of 

the analytical method was tested via replicate analysis of matrix spikes of EPISKIN™, 

human ex vivo skin and receptor fluid samples at three different concentration levels of the 

target PFRs. Good results were obtained (Table SI-2) indicating the suitability of the applied 

analytical protocol for quantification of target PFRs in the studied samples. 
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Based on the guidelines of the EPISKIN™ model, the viability of the tissue was tested by 

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay using a standard 

kit purchased from each provider. Acceptable MTT results (i.e. Formazan concentration ≥ 1.5 

mg/mL) were achieved following 24 h of exposure under the specified test conditions, prior 

to dropping below the recommended level of Formazan at longer times. Both positive and 

negative control experiments were carried out alongside each sample batch. Positive controls 

involved the exposure of the test tissue to Triton-X-100 which showed ~ 100% permeation 

(n=5; 97 ± 4%), while negative controls showed 0% penetration of decabromodiphenyl 

ethane after 24 h exposure. The integrity of the skin membrane was tested using the standard 

trans-epidermal electrical resistance (TEER) and methylene blue (BLUE) standard methods 

(Guth et al., 2015). All skin tissues reported in this study passed all the above QA/QC tests. 

Results	
  and	
  Discussion	
  

Percutaneous	
  absorption	
  of	
  chlorinated	
  PFRs	
  applied	
  as	
  a	
  finite	
  dose.	
  

Following 24 h exposure of human ex vivo skin to a finite dose of 500 ng/cm2 in 10 µL of 

acetone, TCEP showed the highest cumulative absorption with 28% of the applied dose 

detected in the receptor fluid. Lower absorbed fractions of 25% and 13% were observed for 

TCIPP and TDCIPP, respectively (Table 1).  Interestingly, mass balance studies showed the 

reverse trend with the mass of each target PFR accumulated within the skin (Figure 1). 

Analysis of the skin tissue resulted in recovery of 15%, 11% and 7% of the applied dose of 

TDCIPP, TCIPP and TCEP, respectively after 24 h exposure. Statistical analysis revealed a 

significant (P < 0.05) positive correlation between the absorbed fractions of PFRs and their 

water solubility (Table SI-3), while a significant negative correlation was established between 

the cumulative 24 h absorption of target compounds and their log Kow (Table SI-3).        
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Similar results were obtained using the EPISKIN™ human skin equivalent model (Table 1 

and Figure 1). No statistically significant differences (P > 0.05) were observed between the 

results obtained from the investigated in vitro skin models. However, it was evident that 

EPISKIN™ tissues were more permeable (i.e. less barrier function) to all the studied 

compounds than human ex vivo skin (Figure 1). In particular, TCEP, TCIPP and TDCIPP 

showed 16%, 11% and 9% enhanced absorption in EPISKIN™ model compared to human ex 

vivo skin model, respectively. This is in line with our previous findings for the flame 

retardants hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBP-A), which 

achieved higher percutaneous penetration levels through EPISKIN™ compared to human ex 

vivo skin at two different dose levels (Abdallah et al., 2015b).    

To our knowledge, this is the first study to report on human dermal absorption of PFRs which 

precludes comparison with previous similar studies. However, our results are generally in 

agreement with those of an earlier study of human dermal absorption of two structurally-

related organophosphorus pesticides using ex vivo human abdominal skin (Moore et al., 

2014). The absorbed fractions of the more hydrophilic dichlorvos were higher than those of 

chlorpyrifos following 24 h dermal exposure (finite dose) in three different vehicles.  An in 

vivo study of the dermal absorption of structurally-related polychlorinated biphenyls (PCBs) 

with various degrees of chlorination applied as finite dose in male rats reported similar 

results. This rat skin model favoured the rapid absorption of the more hydrophilic, mono- and 

di-chlorinated PCBs, while the lipophilic hexachlorinated PCB studied, achieved lower 

absorbed fractions, yet higher skin accumulation levels following 48 h exposure (Garner and 

Matthews, 1998). This was mainly attributed to the physicochemical parameters of the 

studied PCBs, which allowed the more polar mono-PCBs to penetrate faster through the 

water-rich viable epidermis. More lipophilic hexa-PCBs were hypothesized to accumulate for 

longer in the lipid-rich stratum corneum prior to diffusion through the viable epidermis at a 
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slower rate (Garner and Matthews, 1998). This can also explain our results for the studied 

PFRs where the more hydrophilic TCEP (Table SI-3) displays the highest absorbed fraction, 

while the more lipophilic TDCIPP achieves the highest accumulation level within the skin 

following 24 h exposure (Figure 1).    

Percutaneous	
  absorption	
  of	
  chlorinated	
  PFRs	
  applied	
  as	
  infinite	
  dose.	
  

Infinite dose application maximizes the concentration gradient and diffusion/penetration 

through the skin becomes the rate-limiting step. Therefore, this application mode permits the 

calculation of the permeability constant (Kp) for each investigated compound under the test 

conditiona (OECD, 2004). Careful inspection of the cumulative absorption curves of the 

studied compounds over 24 h exposure, reveals a different profile for TDCIPP compared to 

TCEP and TCIPP (Figure 2). Both TCEP and TCIPP showed a rapid increase in the absorbed 

dose in the first 8 h of exposure, before the absorption rate declined until 24 h. However, 

TDCIPP showed a slower, yet more consistent rate of absorption throughout the 24 h 

exposure period (Figure 2). This may be attributed to the higher lipophilicity of TDCIPP (log 

Kow = 3.8), compared to TCIPP (log Kow = 2.6) and TCEP (log Kow = 1.4), resulting in a 

slower mass transfer rate of this PFR across the lipophilic stratum corneum. In a previous 

study, we observed a comparable absorption profile to that observed here for TDCIPP, for the 

flame retardant TBBP-A (log KOW = 4.5) applied to both human ex vivo skin and EPISKIN™ 

in acetone (Abdallah et al., 2015b). Moreover, a similar difference in the cumulative 

absorption profile was also observed between the lipophilic pesticide Chlorpyrifos (log Kow = 

4.9) and the more hydrophilic Dichlorvos (log Kow = 1.4) applied to ex vivo human skin in 

isopropanol (Moore et al., 2014).    

The infinite dose application results were used to estimate various dermal absorption 

parameters for each studied PFR using a previously reported model (Niedorf et al., 2008). 

Results revealed a significant negative correlation between the estimated permeability 
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constant (Kp, cm/h) of the studied compounds (Table 2) and their log KOW values (Table SI-3). 

This in agreement with previous reports for BFRs (Abdallah et al., 2015b) and PCBs (Garner 

and Matthews, 1998). Estimated Kp values for the PFRs in this study are higher than those 

reported for the flame retardants HBCD and TBBP-A (Abdallah et al., 2015b). This may also 

be attributed to the more lipophilic nature of HBCD (log KOW = 5.6) and TBBP-A (log KOW 

= 4.5) compared to the studied PFRs.  

Interestingly, comparison between the results obtained using human ex vivo skin and 

EPISKIN™ model (Table 2) revealed that differences in the barrier function (Δ Kp) 

decreased with decreasing polarity in the order: TCEP (Δ Kp = 0.8) > TCIPP (Δ Kp = 0.6) > 

TDCIPP (Δ Kp = 0.2). However, more comparative studies with more chemicals covering a 

wide variety of physicochemical properties are required to confirm this observation and 

further our understanding of the differences between the barrier function of 3D-HSE and real 

human skin. 

Effect	
  of	
  hand-­washing	
  	
  	
  	
  

Following 6 h of finite dose application (500 ng/cm2) of target PFRs to human ex vivo skin, 

the skin surface was washed thoroughly with a neutral detergent solution, while monitoring 

the absorbed dose in the receptor fluid continued until 24 h. Results show that while the 

absorption rate decreases markedly after washing, percutaneous penetration of the studied 

PFRs continues (Figure 3), which may be attributed to diffusion from the contaminant 

reservoir within the skin tissue. While statistical analysis revealed a significant difference (P 

< 0.05) in the absorption rates of TCEP and TCIPP with and without washing over a 24 h 

exposure period, the difference for TDCIPP was not significant (P = 0.12). Nielsen reported 

on the effect of handwashing on human dermal absorption of four different chemicals using a 

similar human ex vivo skin model (Nielsen, 2010). The effect of skin wash after 6 h dermal 

exposure on reducing subsequent extent of skin penetration (over 48 h) was more substantial 
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for hydrophilic caffeine (log KOW = -0.07) compared to the relatively lipophilic 

organophosphate insecticide malathion (log KOW = 2.75). This was explained by the higher 

affinity of the lipophilic malathion to deposit within the skin, resulting in a reservoir which 

can then release the insecticide slowly to the receptor fluid even after washing the skin 

surface (Nielsen, 2010). In two separate papers, Fenske et al. studied the efficiency of hand-

washing for removal of the chlorinated pesticides chlopyrifos (Fenske and Lu, 1994) and 

captan (Fenske et al., 1998) from the hands of occupationally exposed adults. Results 

revealed 78% of captan was successfully removed in the group who washed their hands 

immediately; whereas removal efficiency was reduced to 68 % after 1 h residing on hands 

(Fenske et al., 1998). 

Compared to the results by the same group for chlorpyrifos, removal of this pesticide by 

hand-washing was substantially lower (43 % at time = 0 and 23 % at time = 1 h) (Fenske and 

Lu, 1994). These variations were attributed to the differences in physicochemical properties 

of the two pesticides. In particular, chlorpyriphos (log KOW = 4.9, water solublility 2 mg/L) is 

more lipophilic and less water soluble than captan (log KOW = 2.4, water solublility 5 mg/L). 

Moreover, the differences in the applied commercial formulations of the two pesticides were 

hypothesized to influence their dermal permeation (Fenske et al., 1998).          

In general, our results (Figure 3) indicate that hand-washing can reduce the overall dermal 

absorption of the studied PFRs, albeit to varying degrees depending on the physicochemical 

properties of the PFRs.   

Effect	
  of	
  exposure	
  vehicle	
  

Several dermal absorption studies have reported on the influence of the vehicle on the 

percutaneous penetration of various chemicals including different pharmaceuticals 

(Karadzovska and Riviere, 2013), organophosphate pesticides (Moore et al., 2014) and 

brominated flame retardants (Abdallah et al., 2015b). To investigate the potential effect of 
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vehicle on the dermal absorption of target PFRs, human ex vivo skin was exposed to 500 

ng/cm2 of each of TCEP, TCIPP and TDCIPP in 2 different vehicles. After 24 h exposure, 

results revealed an increase in the absorbed dose of the 3 target compounds from 20 % Tween 

80 solution in water compared to acetone (Figure 4). While the effect of vehicle on the 

absorbed fraction varied for the studied PFRs, none showed a statistically significant 

difference (P > 0.05) between the studied exposure vehicles. In general, a vehicle may 

hydrate the stratum corneum (SC), extract critical barrier components out of the skin, or 

damage the skin because it is a strong acid or base. Removing SC lipids may increase 

percutaneous absorption of drugs. Many organic solvents (e.g. chloroform and methanol) are 

employed to delipidize the skin, which increases the permeability of hydrophilic - but not 

lipophilic – compounds (Chiang et al., 2012). Surfactants like Tween 80 and polyethylene 

glycol were previously reported as permeation enhancers for hydrophilic drugs (Duracher et 

al., 2009) and steroids (Schaefer-Korting et al., 2008b). Therefore, despite the lack of 

statistical significance, the enhanced dermal permeation of the studied PFRs (Figure 4) in the 

presence of Tween 80 is potentially relevant in the context of human exposure. This is due to 

the presence of natural surface active agents in human skin surface film (sweat/sebum 

mixture) (Stefaniak et al., 2010), which may influence the dermal absorption of these PFRs. 

More studies are required to fully characterise the effect of human skin surface film on the 

dermal uptake of various FRs.  

Implications	
  for	
  human	
  exposure	
  	
  	
  

While a recent study highlighted the importance of dermal exposure via contact with indoor 

dust as a potential contributor to the overall body burdens of TDCIPP and triphenyl 

phosphate flame retardants in American adults (Hoffman et al., 2015), there is a lack of 

information on the magnitude of human dermal exposure to PFRs. Therefore, results of 

dermal absorption of PFRs obtained in this study (Table 1) were used to obtain a preliminary 
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assessment of the internal dose of target PFRs arising from human dermal exposure to 

contaminated indoor dust.  

Using equation (3), we estimated the dermal exposure of two age groups (UK adults and 

toddlers) using three exposure scenarios. We used data recently reported by our research 

group (Brommer and Harrad, 2015) on the minimum, median and maximum concentrations 

(Table SI-4) of target PFRs in indoor dust from several UK microenvironments to estimate 

low, average and high exposure scenarios, respectively. The parameter FA in equation 3 was 

replaced by the experimental values obtained in this study for each target PFR using human 

ex vivo skin model (Table 1). Values for other parameters in equation 3 were obtained from 

the USEPA exposure factors handbook (USEPA, 2011) and summarized in Table 3.  

Dermal exposure estimates revealed higher uptake by UK toddlers compared to adults (Table 

3). This may be attributed to more dust adhering to the toddlers’ skin and higher exposed skin 

surface area to body weight ratio compared to adults. Higher concentrations of TCIPP in UK 

indoor dust resulted in higher dermal uptake of UK adults and toddlers to this PFR than for 

TCEP and TDCIPP combined. The estimated median intakes of an average UK adult (70 Kg) 

via dust ingestion were 0.03, 0.92 and 0.07 ng/kg bw.day for TCEP, TCIPP and TDCIPP 

respectively (Brommer and Harrad, 2015). These are less than the estimated median intakes 

of the UK adult via dermal absorption in this study (Table 3). For a UK child (20 kg), the 

median intakes of target PFRs via dust ingestion were 1.7, 43.0 and 4.0 ng/kg bw.day for 

TCEP, TCIPP and TDCIPP respectively (Brommer and Harrad, 2015). These are slightly 

higher than the estimated dermal uptake by a UK toddler (15 kg) of 1.5, 32.9, 1.6 ng/kg 

bw.day for TCEP, TCIPP and TDCIPP in this study. Currently, there are no data available on 

inhalational exposure of UK population to PFRs. However, Cequier et al. have reported lower 

average exposure of Norway Women and children to the target PFRs via air inhalation than 

dust ingestion (Cequier et al., 2014). Collectively, these data highlight the significance of 
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dermal uptake of PFRs via contact with indoor dust as a pathway of human exposure these 

contaminants. 

It should be noted that our dermal exposure estimates assume a fixed body area undergoing 

constant exposure to FRs in indoor dust for a constant period daily. While such rigid 

assumptions may introduce uncertainty to our estimates of dermal exposure, more research is 

required to fully elucidate the toxicological implications of such exposure in both adults and 

toddlers.  

In a risk assessment context, a No Significant Risk Level (NSRL) of 5.4 µg/day for TDCIPP 

listed as a carcinogen under the State of California safe drinking water and toxic enforcement 

act of 1986, PROPOSITION 65 (OEHHA, 2015). No other health based limit values 

(HBLVs) of legislative standing for our target FRs were found in the literature. However, Ali 

et al. estimated HBLVs of 22,000, 80,000 and 15,000 ng/kg bw/day for TCEP, TCIPP and 

TDCIPP, respectively based on a chronic no observed adverse effect level (NOAEL) divided 

by an uncertainty factor of 1,000, (Ali et al., 2012). Our worst-case scenario exposure 

estimates for dermal exposure of adults and toddlers (Table 3) fall far below these HBLV 

values. However, as noted by Ali et al. (Ali et al., 2012), the HBLV values cited here were 

based on relatively old toxicological studies and it is possible that future research may erode 

the margin of safety.   
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Supplementary	
  data	
  

Further details of the analytical methodology, quality assurance/quality control parameters, 

cumulative absorbed doses of PFRs over time and concentrations of target PFRs in dust from 

different UK indoor microenvironments are available as supplementary data.  
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Tables	
  

Table 1: Distribution of target PFRs (expressed as average percentage ± standard 

deviation of exposure dose) in different fractions of the in vitro diffusion system 

following 24 h exposure to 500 ng/cm2 (finite dose) of the studied compounds. 

Human	
  ex	
  vivo	
  skin	
   TCEP	
   TCIPP	
   TDCIPP	
  

Absorbed*	
   28.3 ±	
   2.3 24.7 ±	
   1.4 12.7 ±	
   1.2 

Unabsorbed#	
   6.8 ±	
   1.1 10.8 ±	
   1.2 14.8 ±	
   1.4 

Skin	
   55.3 ±	
   3.5 53.1 ±	
   2.9 62.3 ±	
   4.3 

Sum	
   90.3 ±	
   6.9 88.6 ±	
   5.5 89.8 ±	
   6.7 

EPISKIN™	
   TCEP	
   TCIPP	
   TDCIPP	
  

Absorbed*	
   33.7 ±	
   2.5 27.7 ±	
   1.9 13.9 ±	
   1.5 

Unabsorbed#	
   6.8 ±	
   1.4 10.8 ±	
   1.0 14.8 ±	
   1.3 

Skin	
   49.3 ±	
   3.9 50.3 ±	
   3.2 61.5 ±	
   4.6 

Sum	
   89.7 ±	
   7.8 88.8 ±	
   6.1 90.2 ±	
   7.5 

 

* Comprises cumulative concentrations in the receptor fluid over 24 h + receptor 

compartment rinse. 

# Comprises concentrations in the skin surface wipes after 24 h + donor compartment rinse. 
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Table 2: Flux rates (Jss, ng/cm2.h), permeability constants (Kp, cm/h), lag times (tlag, h) 

and linear ranges (h) estimated from infinite exposure of human ex vivo skin and 

EPISKIN™ to 1000 ng/cm2 of target PFRs for 24 h.  

 Human ex vivo skin EPISKIN™ 

 Jss Kp x 10-2 tlag Range R2* Jss Kp x 10-2 tlag Range R2 

TCEP 21.9 2.2 0.28 0.5 - 8 0.97 30.1 3.0 0.21 0.5 - 8 0.98 

TCIPP 15.5 1.6 0.29 0.5 - 10 0.98 21.7 2.2 0.23 0.5 - 10 0.96 

TDCIPP 5.4 0.5 2.9 4 - 22 0.96 7.4 0.7 2.9 4 - 22 0.98 

 

* R2 is the linearity coefficient. A minimum value of 0.9 combined with a P-value < 0.05 was 

required to express linearity (Niedorf et al., 2008).  
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Table 3: Exposure parameters (USEPA, 2011) and estimated dermal exposure (ng/kg 

bw.day) of UK adults and toddlers to the studied PFRs via contact with indoor dust.  

Parameter Adult Toddler 

Age >18 years 2-3 years 

Body weight 70 kg 15 kg 

Body surface area 1.94 m2 0.6 m2 

Skin surface exposed  4615 cm2 (head, forearms, hands 

 and feet) 

2564 cm2 (head, extremities 

including hands and feet) 

Dust adhered to skin 0.01 mg/cm2 0.04 mg/cm2 

Indoor exposure fraction (Abdallah et al., 2008) 

House 63.8% 63.8% 

Office 22.3% - 

Classroom - 22.3% 

Car 4.1% 4.1% 

Dermal exposure scenario Low Median High Low Median High 

TCEP <0.1 0.1 10.0 0.1 1.5 38.6 

TCIPP 0.5 3.8 22.6 4.9 32.9 217.8 

TDCIPP <0.1 0.2 4.3 <0.1 1.6 37.0 
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Figures	
  

Figure 1: Distribution of the studied PFRs applied as finite dose (500 ng/cm2) to (a) ex 

vivo human skin and (b) EPISKIN™ tissues following 24 h exposure. Error bars 

represent one standard deviation (n=3). 
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Figure 2: Cumulative absorbed dose of the target PFRs following 24 h exposure of (a) 

human ex vivo skin and (b) EPISKIN™ to 1000 ng/cm2 of the tested compounds (infinite 

dose). 
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Figure 3: Cumulative absorbed dose of (a) TCEP, (b) TCIPP and (c) TDCIPP applied to 
ex vivo human skin at 500 ng/cm2 each (finite dose). The skin surface in 3 cells was 
washed with detergent after 6 h (red line), while the other 3 cells were not washed (blue 
line). 
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Figure 4: Distribution of (a) TCEP, (b) TCIPP and (c) TDCIPP following 24 h exposure 

of human ex vivo skin to 500 ng/cm2 of each compound in (i) acetone and (ii) 20% 

Tween 80 solution in water. Error bars represent one standard deviation (n=3). 

 

 


