
 
 

University of Birmingham

Neuroimaging findings in disruptive behavior
disorders
Baker, Rosalind H.; Clanton, Roberta L.; Rogers, Jack C.; De Brito, Stéphane A.

DOI:
10.1017/S1092852914000789

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Baker, RH, Clanton, RL, Rogers, JC & De Brito, SA 2015, 'Neuroimaging findings in disruptive behavior
disorders', CNS spectrums, vol. 20, no. 4, pp. 369-381. https://doi.org/10.1017/S1092852914000789

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
© Cambridge University Press 2015
Final version of record available at: http://dx.doi.org/10.1017/S1092852914000789

Checked Jan 2016

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 09. Apr. 2024

https://doi.org/10.1017/S1092852914000789
https://doi.org/10.1017/S1092852914000789
https://birmingham.elsevierpure.com/en/publications/e416dab4-552b-434a-a352-8c23721e05c3


REVIEW 1 
 

Running head: NEUROIMAGING IN DISRUPTIVE BEHAVIOUR DISORDERS 

 

 

Neuroimaging findings in disruptive behaviour disorders 
 

Rosalind H. Baker*1 PhD student, Roberta L. Clanton*1 PhD student, Jack C. Rogers1 

Postdoctoral research fellow, & Stéphane A. De Brito1 Birmingham Fellow 
 
1School of Psychology, University of Birmingham, Edgbaston, Birmingham, UK 

*Both authors contributed equally. 

 

Address for correspondence: 
Stéphane De Brito 

School of Psychology 

University of Birmingham 

Edgbaston 

Birmingham, B15 2TT, UK 

s.a.debrito@bham.ac.uk 

 

Word Count: 4041 

 

Acknowledgments: Rosalind Baker, Jack Rogers and Stéphane De Brito are supported by 

the European Commission’s Seventh Framework Programme (FP7/2007–2013) under Grant 

Agreement n° 602407 (FemNAT-CD) (http://ec.europa.eu). Roberta Clanton is supported by 

a PhD studentship from the College of Life and Environmental Sciences, University of 

Birmingham. We thank Dr Graeme Fairchild for his comments on a previous version of the 

manuscript. 

 

 

 

 

 

 

mailto:s.a.debrito@bham.ac.uk
http://ec.europa.eu/


REVIEW 2 
 

Abstract 

Decades of research have shown that youths with disruptive behaviour disorders (DBD) are a 

heterogeneous population. Over the past 20 years, researchers have distinguished youths with 

DBD as those displaying high (DBD/HCU) versus low (DBD/LCU) callous-unemotional 

(CU) traits. These traits include flat affect and reduced empathy and remorse, and are 

associated with more severe, varied and persistent patterns of antisocial behaviour and 

aggression. Conduct problems in youths with HCU and LCU are thought to reflect distinct 

causal vulnerabilities, with antisocial behaviour in youths with DBD/HCU reflecting a 

predominantly genetic aetiology, whilst antisocial behaviour in youths with DBD/LCU is 

associated primarily with environmental influences. Here we selectively review recent 

functional (fMRI) and structural (sMRI) magnetic resonance imaging research on DBD, 

focusing particularly on the role of CU traits. Firstly, fMRI studies examining the neural 

correlates of affective stimuli, emotional face processing, empathy, theory of mind, morality, 

and affective decision-making in DBD are discussed. This is followed by a review of the 

studies investigating brain structure and structural connectivity in DBD. Next, we highlight 

the need to further investigate females and the role of sex differences in this population. We 

conclude the review by identifying potential clinical implications of this research. 

 

Keywords: disruptive behaviour disorders, conduct disorder, conduct problems, disruptive 

behaviour disorders, callous-unemotional traits, antisocial behaviour, fMRI, voxel-based 

morphometry, surface-based morphometry, diffusion tensor imaging, sex differences. 
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Introduction 

Disruptive behaviour disorders (DBD), which include conduct disorder/conduct problems and 

oppositional defiant disorder, are characterised by aggressive and antisocial behaviour during 

childhood and adolescence1. These behaviours are among the most common reasons for a 

childhood referral to mental health and educational services2. DBD are associated with 

problems socially within the school or workplace, which can often lead to legal problems, 

criminality and arrest3. As a result, bringing up a child with DBD costs society ten times 

more than a child displaying no conduct problems2. Crucially, DBD in youths are not only 

predictive of antisocial and aggressive behaviours in adulthood, but also substance misuse, 

other mental health problems and poor physical health4. 

 

Decades of research have highlighted that youths with DBD are a heterogeneous population 

incorporating different subtypes5. Several useful approaches have accounted for this 

heterogeneity6, but the approach that distinguishes youths with DBD as those displaying high 

(DBD/HCU) versus low (DBD/LCU) callous-unemotional (CU) traits has attracted 

considerable interest over the past 20 years5. CU traits reflect a lack of empathy and guilt 

combined with a shallow affect and the callous use of others for one’s own gain. Among 

antisocial adults, high levels of CU traits characterise adult psychopaths, a particularly severe 

group of antisocial individuals7. While youths cannot be labelled as psychopaths, those with 

DBD/HCU are thought to be at risk of developing psychopathy in adulthood8,9, and as result 

have been the focus of intense research. Genetic, behavioural, experimental and 

neuroimaging studies have shown that youths with DBD/HCU and those with DBD/LCU are 

characterised by different vulnerabilities5. This resulted in the recent inclusion of CU traits as 

the 'with Limited Prosocial Emotions' specifier for the diagnosis of conduct disorder in the 

fifth edition of the Diagnostic and Statistical Manual of Mental Disorder (DSM 51). Twin 
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studies indicate that conduct problems in youths with DBD/HCU are highly heritable, while 

conduct problems in youths with DBD/LCU are moderately heritable, but largely influenced 

by environmental factors10. Unlike youths with DBD/LCU, youths with DBD/HCU display 

behaviours akin to adults with psychopathy, notably committing violent crimes at a younger 

age and displaying a more severe and varied pattern of conduct problems, including 

instrumental aggression and sadistic acts of violence6,11. Youths with DBD/HCU have a 

preference for novel and dangerous activities, present with a lack of emotional 

responsiveness to negative emotional stimuli, are impaired at processing others’ fearful and 

sad facial expressions and vocal tones and are relatively insensitive to punishment8; all of 

which are consistent with a low fearfulness temperamental style6. By contrast, youths with 

DBD/LCU are typically less aggressive, mostly displaying threat-based reactive aggression9. 

This most likely reflects a hostile attributional bias in response to real or perceived social 

threat, such as angry faces or ambiguous neutral faces12. Finally, youths with DBD/LCU have 

problems regulating their emotions, display a low frustration tolerance and high levels of 

anger, impulsivity and emotional distress6,11. They are also more responsive and empathic to 

the distress of others13, and to negative stimuli9,11. 

 

In addition to distinguishing among subtypes of youths with DBD, there is a growing 

need to explore the influence of sex, particularly in the context of neuroimaging 

research14. Male and female adolescents with DBD may express antisocial behaviour in 

different ways, show structural differences in the brain and different abnormalities in 

brain function. However, very little neuroimaging research has investigated females 

with DBD or directly compared males and females with DBD. Whilst 13.8% of male 

adolescents present with conduct disorder, only 6.7% of female adolescents show the 

same presentation15. Further, males aged 10-17 years are more likely to have been 
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contacted by the police and convicted for a criminal offence than females16. Similarly, 

the age of onset of antisocial behaviour is different between the sexes; whilst more males 

are diagnosed with conduct disorder aged 10, with a downward trend after this age, the 

rate of conduct disorder in females peaks at 16 years15. One possible reason behind 

these skewed diagnosis rates could be that the DSM 5 criteria for conduct disorder show 

a bias towards behaviours more often exhibited by males14. Whilst males are more 

likely to show overt behaviours, such as vandalism and aggressive stealing, females are 

more likely to show covert behaviours such as lying and sabotaging relationships17. 

With the aim of extending research on females with DBD, the Fem-NAT-CD consortium 

- a large multisite European study which our group is part of - will assess the 

environmental and neurobiological factors that might underpin sex differences in 

conduct disorder. For the purposes of this review, the few published neuroimaging 

studies that have examined females with DBD and considered the influence of sex 

differences in DBD will be discussed. 

 

In this paper we selectively review recent functional (fMRI) and structural (sMRI) magnetic 

resonance imaging research on DBD, focusing particularly on the role of CU traits. Firstly, 

fMRI studies examining the neural correlates of affective stimuli, emotional face processing, 

empathy, theory of mind, morality, and affective decision-making in DBD will be discussed. 

This is followed by a review of the studies investigating brain structure and structural 

connectivity in DBD. Next, recent studies investigating female samples and the role of sex 

differences are discussed. We conclude the review by identifying potential clinical 

implications of this research. 

Functional magnetic resonance imaging evidence 

Affective stimuli and emotional face processing 
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Several fMRI studies have examined the neural correlates of negative affective stimuli (e.g., 

IAPS stimuli18) and face processing in DBD, identifying an atypical response in this 

population within a set of cortical and subcortical regions including, among others, the 

orbitofrontal cortex (OFC), ventromedial prefrontal cortex (VMPFC), anterior cingulate 

cortex (ACC), insula, temporal lobe and the amygdala19,20. However, studies which do not 

take into account individual differences in CU traits have produced a mixed account of the 

reported amygdala response, with evidence of both amygdala hypo- and hyper-reactivity to 

negative affective stimuli21,22. Given evidence indicating that youths with DBD/HCU and 

DBD/LCU are characterised by distinct emotional, cognitive and behavioural responses to 

affective stimuli and faces8,11, these inconsistent findings may partly result from variations in 

CU traits across samples23. Compared to typically developing (TD) youths, youths with 

DBD/LCU have consistently been found to exhibit hyperactivity in the amygdala when 

processing both fearful faces23 and fearful eyes24. Furthermore, compared to TD youths, 

youths with DBD and high anxiety levels (possibly reflecting LCU) have also been found to 

exhibit reduced activity within the dorsal ACC, a key region for emotion regulation, in 

response to negative affective stimuli.  These results might partly explain why youths with 

DBD/LCU have a propensity towards emotion regulation difficulties and reactive aggression 

when feeling threatened5. By contrast, fMRI studies that have assessed CU traits have 

consistently shown that youths with DBD/HCU exhibit amygdala hypoactivity during the 

processing of conscious 25,26 (but see 27,28) and unconscious fearful faces23. These findings 

have been recently extended by White et al.29, showing that an atypical amygdala response to 

consciously processed fearful faces in youths with DBD/HCU is not secondary to an 

attentional deficit (i.e., increased top-down control) but specifically related to the CU 

component of psychopathic traits. These findings and others30 are inconsistent with the 

response modulation hypothesis, which posits that emotional deficits seen in 
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psychopathy stem from a core deficit in selective attention that limits the processing of 

peripheral information31. In sum, amygdala hypoactivity could partly explain the high 

propensity for proactive aggression seen in youths with DBD/HCU8. In support of this view, 

a recent study showed that amygdala response to fearful faces in youths with DBD mediated 

the association between CU traits and proactive aggression32. 

Empathy, theory of mind, and morality 

Empathy deficits in relation to DBD have been extensively documented5, with recent fMRI 

studies examining differences in neural response to perceived pain in others. The experience 

and observation of perceiving others in pain elicits activation in a network of regions 

including the ACC, anterior insula, amygdala and striatum, which mediate the affective 

perception of pain, as well as the somatosensory cortex, supplementary motor cortex and 

periaqueductal grey, which mediate the perceived somatosensory sensation of pain33. 

Surprisingly, Decety et al. found that when viewing others in pain, youths with DBD had an 

increased neural response in regions including the anterior insula, anterior mid-cingulate, 

dorsal striatum and amygdala compared to TD youths34. This pattern of results was 

interpreted as reflecting enjoyment in the DBD youths when seeing someone else in pain. 

However, because CU traits were not measured by Decety et al., it is also possible that the 

youths with DBD were characterised by low levels of CU traits and associated high 

emotional reactivity, which could have led to the observed increase in neural response. This 

hypothesis is supported by two recent studies that include a measure of CU traits35,36. Youths 

with DBD, as compared to TD youths, showed reduced activation to the perceived pain in 

others in the ACC, anterior insula and inferior frontal gyrus36. Crucially, within the DBD 

group, unique variance associated with callous traits was negatively correlated with the 

response in the ACC and anterior insula. Consistent with these results, Marsh et al. found that 

those with DBD/HCU, compared to TD youths, showed reduced response in the ACC and 
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ventral striatum to perceived pain in others35. These youths also showed reduced activity in 

the amygdala and insula in response to others’ pain, but not when imagining that the pain was 

their own. Importantly, the affective and interpersonal features of measured psychopathy 

were negatively related to the induced brain response to perceiving pain in others in the 

amygdala and ACC. Finally, using a more complex affective-processing task including 

cartoon vignettes, Sebastian et al found that cartoons requiring understanding distress in 

others within the context of social situations produced reduced amygdala and anterior insula 

activity in youths with DBD relative to TD youths37. This reduced activation was negatively 

correlated with the unique variance associated with CU traits. Using the same task, O’Nions 

and colleagues found that cartoon scenarios that require the interpretation of others’ 

intentions did not induce a significantly different brain response in youths with DBD/HCU 

compared to TD youths38. These results dovetail with behavioural and experimental data13 

and highlight the fact that youths with DBD/HCU do not have a deficit in understanding the 

mental state of others, as has been shown for children with autism spectrum disorder13,38. 

Rather, they show reduced empathic responses to others’ distress cues13. and are able to 

callously manipulate others for their own benefit13. 

The immoral judgment seen in youths with DBD/HCU may result from impairments in 

emotional empathy and affective decision-making (see below); deficits thought to reflect 

dysfunctions within the amygdala-VMPFC circuitry and striatum8. Consistent with this view, 

a recent study found that compared to TD youths, those with DBD/HCU exhibited reduced 

amygdala response and reduced amygdala-OFC connectivity during moral judgments about 

legal actions39. 

Taken together, these results provide emerging evidence of neural vulnerabilities that might 

hamper successful socialisation of youths with DBD/HCU, putting them at increased risk of 
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displaying severe antisocial behaviour and proactive aggression without feeling guilt or 

empathy for their victims. 

Affective Decision-making 

Poor and rash decision-making is another central feature of DBD40. A large body of 

experimental data has identified an association between DBD, CU traits and impairments in 

affective decision-making8,19. Neural correlates of these associations have recently been 

explored within the context of functional neuroimaging studies. For example, compared to 

TD youths and youths with ADHD, youths with DBD showed a reduced neural response in 

the OFC during rewarded responses41. In another study, when deciding between a low-

risk/low-reward or high-risk/high-reward option, youths with DBD and substance use 

disorders displayed a reduced neural response in a number of regions including the OFC, 

ACC, basal ganglia, insula and amygdala compared to TD youths42. In response to wins, 

DBD youths also had a lower response in the ACC, among other regions, compared to TD 

youths, but a higher response to losses in the OFC, among other regions42. However, as these 

studies did not take the influence of CU traits into account it is unclear how these atypical 

responses relate to DBD and/or CU traits. Studies using standard learning (i.e., passive 

avoidance learning) and reversal learning paradigms have also shown that, compared to TD 

youths43,44 and youths with ADHD43, youths with DBD/HCU exhibit atypical responses to 

reward and punishment within the OFC/VMPFC and caudate. According to a recent study by 

White et al.45, these functional differences reflect compromised representations of 

reinforcement expectancies (i.e., the expected value associated with a stimulus/action) within 

the VMPFC and aberrant prediction error signalling within the caudate (i.e., the signal 

representing the difference between the level of reward/punishment received and the level 

expected, enabling reinforcement expectancies to be updated). These results are supported by 

a follow-up study revealing that during a decision-making task with environmental (e.g. 
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threatening images) rather than monetary reinforcers, DBD youths showed reduced 

modulation of expected value information used to guide decision-making within bilateral 

caudate regions compared to TD youths 46 (but see also 42). Given the lack of association 

between CU traits and expected value signals in the caudate in these two studies by White et 

al.45,46, one interpretation is that caudate dysfunction may represent a shared impairment in 

DBD which is not influenced by levels of CU traits. These results fit with behavioural studies 

showing that youths with DBD, irrespective of level of CU traits, display altered decision 

making under risk47 and altered temporal discounting of future rewards48. Taken together, 

these results provide a potentially important account of why youths with DBD, including 

those with HCU, persistently engage in antisocial, aggressive and risk-taking behaviours 

despite the resulting adverse consequences such as exclusion from schools and imprisonment.  

Insert Table 1 Here 

Structural magnetic resonance imaging evidence 

Atypical neural responses in youths with DBD might be partly underpinned by differences in 

brain structure and/or connectivity. In this section, we firstly review sMRI studies on youths 

with DBD that were not subdivided using measures of CU traits. This is followed by a review 

of the small number of studies that have used structural MRI data to examine the correlates of 

CU traits using group comparisons and/or parametric analyses.  

Structural MRI studies on youths with DBD commonly report atypical brain structure in 

regions central to emotion processing and regulation, empathy, morality and decision-

making19,20. The majority of these studies used whole-brain and automated imaging analysis 

methods, such as voxel-based morphometry (VBM) to examine grey matter volume (GMV), 

and surface-based morphometry (SBM) to measure cortical thickness and folding. VBM 

studies consistently observed reduced GMV in fronto-temporal regions, such as the OFC, 
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insula and amygdala49-55, with two studies reporting an overall reduction in GMV in youths 

with DBD (13% 53; 6% 51). Negative correlations were also reported between the volume of 

the anterior insula and lifetime CD symptoms54 and aggressive behaviour55. Studies using 

SBM have also shown that youths with DBD have thinner cortex or folding irregularities in 

areas of reduced GM, namely the OFC, insula and ACC52,56. Cortical thinning in more 

posterior regions, such as the superior temporal cortex and precuneus, was also detected56,57 

as well as reduced volume of the striatum and the amygdala57. By contrast, studies using 

diffusion tensor imaging (DTI) to examine the integrity of white matter tracts have thus far 

yielded inconsistent results, notably for the uncinate fasciculus which connects the OFC to 

the amygdala. Whilst no microstructural differences in this fibre tract have been reported 

between youths with DBD and TD youths58, others do report increased fractional anisotropy 

(FA;59-61). Interestingly, reduced FA in the arcuate fasciculus62 and increased FA in the 

corpus callosum63 in youths with DBD compared to TD youths has also been found. These 

mixed findings may partly reflect variation in methods of analysis (TBSS vs tractography), 

different age ranges and, for some studies, a failure to account for levels of CU traits in the 

sample (e.g.58).  

To date, only three sMRI studies (two using VBM) have compared youths with DBD/HCU 

traits to TD youths. One study showed that a subclinical sample of boys with DBD/HCU 

traits compared to TD youths presented with increased GM concentration in the medial 

orbitofrontal and rostral/dorsal anterior cingulate cortices and bilateral temporal lobes regions 

implicated in decision-making, morality and empathy64. Given evidence of reduction in GM 

with increasing age in typical development65, these results were interpreted as reflecting 

delayed cortical maturation in the DBD/HCU sample. A follow-up study by De Brito et al.66 

using the same sample supports this claim, with decreased white matter concentration 

observed in boys with DBD/HCU compared to TD youths in frontal, ACC and temporal 
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regions, consistent with the De Brito et al.65 study, as well as left precuneus. Follow-up 

analyses on twins revealed that some of the GM differences observed by De Brito et al. might 

represent a potential endophenotype for DBD/HCU67. Despite evidence of group differences 

in functional connectivity, Finger et al. did not observe differences in structural connectivity 

within the uncinate fasiculus or other white matter tracts when comparing DBD/HCU youths 

and TD youths using DTI68. 

sMRI studies investigating the association between CU traits and VBM, SBM and DTI 

metrics have revealed somewhat inconsistent findings. For example, a VBM study using a 

large sample of male adolescent prisoners with DBD (N=191) revealed negative associations 

between GM volume and psychopathic traits in the posterior cingulate cortex and OFC, 

extending into temporal poles and parahippocampal cortex69.  This pattern of results was 

recently replicated in females70. In contrast, Fairchild et al. found that, across DBD and TD 

females, CU traits were positively correlated with bilateral OFC GM volume, but negatively 

correlated with anterior insula and striatal GM volume49. In a large sample of males with 

DBD (N=63), Fairchild et al. found no relationship between GM volumes and CU traits54. 

Using SBM, a negative association between CU traits and cortical thickness in the superior 

temporal cortex has also been reported in youths with DBD57. Whilst Finger et al. did not find 

an association between CU traits and DTI metrics68, a recent study reported a positive trend 

between psychopathic traits and FA in the left uncinate fasciculus60, and yet another revealed 

a negative trend between CU traits and FA values in the left uncinate fasciculus in males with 

DBD61. 

Insert Table 2 Here 
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Neuroimaging evidence: Sex matters 

Sex differences in DBD are presently overlooked, with most samples in neuroimaging studies 

of DBD including males only. Thus, it is unclear whether the current evidence base also 

applies to females14. Given evidence of sex differences in brain development and brain 

functioning in TD youths71, it is conceivable that females with DBD might present different 

impairments from those observed in males with DBD. Yet, to date, only one fMRI study has 

compared females with DBD to TD females, reporting that those with DBD exhibited 

reduced medial OFC and increased anterior insula activity to sad, angry and neutral faces 

indicative of general face processing impairments72. These results contrast with those 

observed in males using the same task, whereby males with DBD, compared to TD youths, 

exhibited increased activity to neutral faces and reduced activity to angry faces, indicative of 

more specific impairments in emotion processing73. 

In terms of sMRI studies, Fairchild et al. found that both males and females with CD showed 

similar reduction in GM volume in the amygdala compared to TD youths, consistent with 

evidence that both males and females with DBD show impaired fear conditioning49. 

Crucially, however, a sex by diagnosis interaction was observed in the bilateral anterior 

insula; DBD females showed reduced GM volume compared to TD females, with the 

opposite pattern observed among males. A recent DTI study also reported a sex by diagnosis 

interaction whereby males with DBD, compared to TD males, had higher FA and lower radial 

diffusivity of the bilateral uncinate fasciculus, but no group differences were observed 

between the females with DBD and the TD females. Interestingly, higher FA and lower radial 

diffusivity in the uncinate fasciculus were found in males with DBD compared to females 

with DBD61. 

The above results suggest that both males and females with DBD are characterised by 

functional and structural abnormalities in key regions implicated in affective processing, 
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empathy and decision-making, but the nature of these deficits within a number of regions 

varies across sex. Our group is currently investigating the potential origins and implications 

of these differences within the context of the FemNAT-CD study, a large multisite European 

study examining environmental and neurobiological factors associated with the development 

of DBD in male and female youths. 

Implications for treatment 

The neuroimaging findings reviewed above add to the existing body of genetic, behavioural 

and experimental evidence by highlighting that youths with DBD/HCU and DBD/LCU are 

characterised by different neurocognitive vulnerabilities, which are likely to influence 

intervention implementations and outcomes. Treatments for these subgroups should be 

tailored to their unique affective, neurocognitive and motivational styles to maximise their 

effectiveness11. Despite evidence that youths with DBD/HCU are less responsive to 

treatment, and that their antisocial behaviour is under strong genetic influence, these youths 

should not be considered ‘untreatable’9,11. An increasing body of evidence shows that 

intensive and tailored treatments can reduce antisocial behaviour and levels of CU traits in 

these youths, particularly when their reward-oriented style is primed11. Neuroimaging 

evidence suggests that such interventions should seek to increase sensitivity to other’s 

distress cues and improve prediction error and expected value signalling during decision-

making, possibly through a two-pronged approach combining behavioural and 

pharmacological interventions8,74. While youths with DBD/LCU  might also benefit from 

behavioural and pharmacological interventions targeting decision-making, in contrast to 

youths with DBD/HCU, they are more likely to respond to interventions focusing on 

increasing anger control/emotion regulation and reducing harsh and inconsistent parenting, 

given that these children are more likely to come from dysfunctional families11. Clearly, any 
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form of intervention should systematically account for the influence of the level of CU traits 

on treatment response36,37. 

Conclusions 

There is increasing recognition among the research and clinical community that youths with 

DBD are characterised by different patterns of behavioural problems and affective profiles, 

reflecting different underlying causal mechanisms11. The evidence base accumulated over the 

last 20 years has shown that subtyping youths with DBD based on their level of CU traits 

identifies two subgroups of antisocial youths characterised by different vulnerabilities and 

behavioural profiles9,11. Consistent with experimental data showing high emotional reactivity 

in DBD/LCU and low emotional reactivity in DBD/HCU, recent fMRI evidence has shown 

that high levels of CU traits in DBD is associated with hyporesponsivity to affective stimuli 

and others’ distress in cortical and subcortical regions such as the anterior insula, ACC and 

amygdala. In contrast, low levels of CU traits are associated with heightened response in 

those regions. No sMRI study has directly compared these two subgroups and those studies 

that have examined the associations between CU traits and sMRI indices have produced 

mixed findings. The paucity of neuroimaging investigations focussing on females and on the 

role of sex differences is another important gap in this work. It is hoped that the mounting 

body of neuroimaging evidence investigating the role of CU traits on brain functioning and 

structures could inform the development of tailored treatments for both male and female 

youths with DBD based on the levels of CU traits they exhibit.  
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