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ARBITRARY ORIENTATIONS OF HAMILTON CYCLES
IN DIGRAPHS∗

LOUIS DEBIASIO† , DANIELA KÜHN‡, THEODORE MOLLA§ , DERYK OSTHUS‡ ,
AND AMELIA TAYLOR‡

Abstract. Let n be sufficiently large and suppose that G is a digraph on n vertices where every
vertex has in- and outdegree at least n/2. We show that G contains every orientation of a Hamilton
cycle except, possibly, the antidirected one. The antidirected case was settled by DeBiasio and Molla,
where the threshold is n/2 + 1. Our result is best possible and improves on an approximate result
by Häggkvist and Thomason.
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1. Introduction. A classical result on Hamilton cycles is Dirac’s theorem [3],
which states that if G is a graph on n ≥ 3 vertices with minimum degree δ(G) ≥ n/2,
then G contains a Hamilton cycle. Ghouila-Houri [4] proved an analogue of Dirac’s
theorem for digraphs which guarantees that any digraph of minimum semidegree
at least n/2 contains a consistently oriented Hamilton cycle (where the minimum
semidegree δ0(G) of a digraph G is the minimum of all the in- and outdegrees of the
vertices in G). In [8], Keevash, Kühn, and Osthus proved a version of this theorem
for oriented graphs. Here the minimum semidegree threshold turns out to be δ0(G) ≥
(3n− 4)/8. (In a digraph we allow two edges of opposite orientations between a pair
of vertices; in an oriented graph at most one edge is allowed between any pair of
vertices.)

Instead of asking for consistently oriented Hamilton cycles in an oriented graph
or digraph, it is natural to consider different orientations of a Hamilton cycle. For
example, Thomason [14] showed that every sufficiently large strongly connected tour-
nament contains every orientation of a Hamilton cycle. Häggkvist and Thomason [7]
proved an approximate version of Ghouila-Houri’s theorem for arbitrary orientations
of Hamilton cycles. They showed that a minimum semidegree of n/2 + n5/6 ensures
the existence of an arbitrary orientation of a Hamilton cycle in a digraph. This im-
proved a result of Grant [5] for antidirected Hamilton cycles. The exact threshold in
the antidirected case was obtained by DeBiasio and Molla [2]; here the threshold is
δ0(G) ≥ n/2 + 1, i.e., larger than in Ghouila-Houri’s theorem. In Figure 1, we give
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1554 DEBIASIO, KÜHN, MOLLA, OSTHUS, AND TAYLOR

Fig. 1. In digraphs F 1
2m and F 2

2m, A and B are independent sets of size m− 1 and bold arrows
indicate that all possible edges are present in the directions shown.

two digraphs G on 2m vertices which satisfy δ0(G) = m and have no antidirected
Hamilton cycle, showing that this bound is best possible. (The first of these examples
is already due to Cai [1].)

Theorem 1.1 (DeBiasio and Molla [2]). There exists an integer m0 such that the
following hold for all m ≥ m0. Let G be a digraph on 2m vertices. If δ0(G) ≥ m, then
G contains an antidirected Hamilton cycle, unless G is isomorphic to F 1

2m or F 2
2m. In

particular, if δ0(G) ≥ m+ 1, then G contains an antidirected Hamilton cycle.
In this paper, we settle the problem by completely determining the exact threshold

for arbitrary orientations. We show that a minimum semidegree of n/2 suffices if the
Hamilton cycle is not antidirected. This bound is best possible by the extremal
examples for Ghouila-Houri’s theorem, i.e., if n is even, the digraph consisting of two
disjoint complete digraphs on n/2 vertices and, if n is odd, the complete bipartite
digraph with vertex classes of size (n− 1)/2 and (n+ 1)/2.

Theorem 1.2. There exists an integer n0 such that the following holds. Let G
be a digraph on n ≥ n0 vertices with δ0(G) ≥ n/2. If C is any orientation of a cycle
on n vertices which is not antidirected, then G contains a copy of C.

Kelly [9] proved an approximate version of Theorem 1.2 for oriented graphs. He
showed that the semidegree threshold for an arbitrary orientation of a Hamilton cycle
in an oriented graph is 3n/8+o(n). It would be interesting to obtain an exact version
of this result. Further related problems on digraph Hamilton cycles are discussed
in [10].

2. Proof sketch. The proof of Theorem 1.2 utilizes the notion of robust ex-
pansion which has been very useful in several settings recently. Roughly speaking,
a digraph G is a robust outexpander if every vertex set S of reasonable size has an
outneighborhood which is at least a little larger than S itself, even if we delete a small
proportion of the edges of G. A formal definition of robust outexpansion is given in
section 4. In Lemma 4.4, we observe that any graph satisfying the conditions of The-
orem 1.2 must be a robust outexpander or have a large set which does not expand, in
which case we say that G is ε-extremal. Theorem 1.2 was verified for the case when G
is a robust outexpander by Taylor [13] based on the approach of Kelly [9]. This allows
us to restrict our attention to the ε-extremal case. We introduce three refinements of
the notion of ε-extremality: ST -extremal, AB-extremal, and ABST -extremal. These
are illustrated in Figure 2, where the arrows indicate that G is almost complete in the
directions shown. In each of these cases, we have that |A| ∼ |B| and |S| ∼ |T |. If G is
ST -extremal, then the sets A and B are almost empty and so G is close to the digraph
consisting of two disjoint complete digraphs on n/2 vertices. If G is AB-extremal,
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ARBITRARY ORIENTATIONS OF HAMILTON CYCLES 1555

Fig. 2. An ABST -extremal graph. When G is AB-extremal, the sets S and T are almost empty
and when G is ST -extremal the sets A and B are almost empty.

then the sets S and T are almost empty and so in this case G is close to the complete
bipartite digraph with vertex classes of size n/2 (thus both digraphs in Figure 1 are
AB-extremal). Within each of these cases, we further subdivide the proof depending
on how many changes of direction the desired Hamilton cycle has. Note that in the
directed setting the set of extremal structures is much less restricted than in the undi-
rected setting. (In the undirected case, it is well known that all the near extremal
graphs are close to the complete bipartite graph Kn/2,n/2 or two disjoint cliques on
n/2 vertices.)

The main difficulty in each of the cases is covering the exceptional vertices, i.e.,
those vertices with low in- or outdegree in the vertex classes where we would expect
most of their neighbors to lie. When G is AB-extremal, we also consider the vertices
in S ∪ T to be exceptional, and when G is ST -extremal, we consider the vertices in
A ∪ B to be exceptional. In each case we find a short path P in G which covers all
these exceptional vertices. When the cycle C is close to being consistently oriented,
we cover these exceptional vertices by short consistently oriented paths, and when
C has many changes of direction, we will map sink or source vertices in C to these
exceptional vertices (here a sink vertex is a vertex of indegree two and a source vertex
is a vertex of outdegree two).

An additional difficulty is that in the AB- and ABST -extremal cases we must
ensure that the path P leaves a balanced number of vertices in A and B uncovered.
Once we have found P in G, the remaining vertices of G (i.e., those not covered by P )
induce a balanced almost complete bipartite digraph and one can easily embed the
remainder of C using a bipartite version of Dirac’s theorem. When G is ST -extremal,
our aim will be to split the cycle C into two paths PS and PT and embed PS into
the digraph G[S] and PT into G[T ]. So a further complication in this case is that we
need to link together PS and PT as well as cover all vertices in A ∪B.

This paper is organized as follows. Sections 3 and 4 introduce the notation and
tools which will be used throughout this paper. In section 4.3 we describe the structure
of an ε-extremal digraph and formally define what it means to be ST -, AB-, or ABST -
extremal. The remaining sections prove Theorem 1.2 in each of these three cases: we
consider the ST -extremal case in section 5, the AB-extremal case in section 6, and
the ABST -extremal case in section 7.

3. Notation. Let G be a digraph on n vertices. We will write xy ∈ E(G) to
indicate that G contains an edge oriented from x to y. If G is a digraph and x ∈ V (G),
we will write N+

G (x) for the outneighborhood of x and N−
G (x) for the inneighborhood
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1556 DEBIASIO, KÜHN, MOLLA, OSTHUS, AND TAYLOR

of x. We define d+G(x) := |N+
G (x)| and d−G(x) := |N−

G (x)|. We will write, for example,
d±G(x) ≥ a to mean d+G(x), d

−
G(x) ≥ a. We sometimes omit the subscript G if this is

unambiguous. We let δ0(G) := min{d+(x), d−(x) : x ∈ V (G)}. If A ⊆ V (G), we let
d+A(x) := |N+

G (x) ∩ A| and define d−A(x) and d±A(x) similarly. We say that x ∈ V (G)
is a sink vertex if d+(x) = 0 and a source vertex if d−(x) = 0.

Let A,B ⊆ V (G) and xy ∈ E(G). If x ∈ A and y ∈ B we say that xy is an AB-
edge. We write E(A,B) for the set of all AB-edges and we write E(A) for E(A,A).
We let e(A,B) := |E(A,B)| and e(A) := |E(A)|. We write G[A,B] for the digraph
with vertex set A ∪ B and edge set E(A,B) ∪ E(B,A) and we write G[A] for the
digraph with vertex set A and edge set E(A). We say that a path P = x1x2 . . . xq

is an AB-path if x1 ∈ A and xq ∈ B. If x1, xq ∈ A, we say that P is an A-path. If
A ⊆ V (P ), we say that P covers A. If P is a collection of paths, we write V (P) for⋃

P∈P V (P ).
Let P = x1x2 . . . xq be a path. The length of P is the number of its edges.

Given sets X1, . . . , Xq ⊆ V (G), we say that P has form X1X2 . . . Xq if xi ∈ Xi for
i = 1, 2, . . . , q. We will use the following abbreviation:

(X)k := XX . . .X︸ ︷︷ ︸
k times

.

We will say that P is a forward path of the formX1X2 . . . Xq if P has formX1X2 . . . Xq

and xixi+1 ∈ E(P ) for all i = 1, 2, . . . , q−1. Similarly, P is a backward path of the form
X1X2 . . . Xq if P has form X1X2 . . .Xq and xi+1xi ∈ E(P ) for all i = 1, 2, . . . , q − 1.

A digraph G is oriented if it is an orientation of a simple graph (i.e., if there
are no x, y ∈ V (G) such that xy, yx ∈ E(G)). Suppose that C = (u1u2 . . . un) is an
oriented cycle. We let σ(C) denote the number of sink vertices in C. We will write
(uiui+1 . . . uj) or (uiCuj) to denote the subpath of C from ui to uj. In particular,
(uiui+1) may represent the edge uiui+1 or ui+1ui. Given edges e = (ui, ui+1) and
f = (uj , uj+1), we write (eCf) for the path (uiCuj+1). We say that an edge (uiui+1)
is a forward edge if (uiui+1) = uiui+1 and a backward edge if (uiui+1) = ui+1ui.
We say that a cycle is consistently oriented if all its edges are oriented in the same
direction (forward or backward). We define a consistently oriented subpath P of
C in the same way. We say that P is forward if it consists of only forward edges
and backward if it consists of only backward edges. A collection of subpaths of C is
consistent if they are all forward paths or if they are all backward paths. We say
that a path or cycle is antidirected if it contains no consistently oriented subpath of
length two.

Given C as above, we define dC(ui, uj) to be the length of the path (uiCuj) (so, for
example, dC(u1, un) = n− 1 and dC(un, u1) = 1). For a subpath P = (uiui+1 . . . uk)
of C, we call ui the initial vertex of P and uk the final vertex. We write (ujP ) :=
(ujuj+1 . . . uk) and (Puj) := (uiui+1 . . . uj). If P1 and P2 are subpaths of C, we
define dC(P1, P2) := dC(v1, v2), where vi is the initial vertex Pi. In particular, we will
use this definition when one or both of P1, P2 are edges. Suppose P1, P2, . . . , Pk are
internally disjoint subpaths of C such that the final vertex of Pi is the initial vertex
of Pi+1 for i = 1, . . . , k − 1. Let x denote the initial vertex of P1 and y denote the
final vertex of Pk. If x �= y, we write (P1P2 . . . Pk) for the subpath of C from x to y.
If x = y, we sometimes write C = (P1P2 . . . Pk).

We will also make use of the following notation: a 	 b. This means that we can
find an increasing function f for which all the conditions in the proof are satisfied
whenever a ≤ f(b). It is equivalent to setting a := min{f1(b), f2(b), . . . , fk(b)}, where
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each fi(b) corresponds to the maximum value of a allowed in order that the corre-
sponding argument in the proof holds. However, in order to simplify the presentation,
we will not determine these functions explicitly.

4. Tools.

4.1. Hamilton cycles in dense graphs and digraphs. We will use the follow-
ing standard results concerning Hamilton paths and cycles. Theorem 4.1 is a bipartite
version of Dirac’s theorem. Proposition 4.2 is a simple consequence of Dirac’s theorem
and this bipartite version.

Theorem 4.1 (Moon and Moser [12]). Let G = (A,B) be a bipartite graph with
|A| = |B| = n. If δ(G) ≥ n/2 + 1, then G contains a Hamilton cycle.

Proposition 4.2.

(i) Let G be a digraph on n vertices with δ0(G) ≥ 7n/8. Let x, y ∈ V (G) be distinct.
Then G contains a Hamilton path of any orientation between x and y.

(ii) Let m ≥ 10 and G = (A,B) be a bipartite digraph with |A| = m+1 and |B| = m.
Suppose that δ0(G) ≥ (7m + 2)/8. Let x, y ∈ A. Then G contains a Hamilton
path of any orientation between x and y.

Proof. To prove (i), we define an undirected graphG′ on the vertex set V (G) where
uv ∈ E(G′) if and only if uv, vu ∈ E(G). Let G′′ be the graph obtained from G′ by
contracting the vertices x and y to a single vertex x′ with NG′′(x′) := NG′(x)∩NG′(y).
Note that

δ(G′′) ≥ (n− 1)/2 = |G′′|/2.

Hence G′′ has a Hamilton cycle by Dirac’s theorem. This corresponds to a Hamilton
path of any orientation between x and y in G.

For (ii), we proceed in the same way, using Theorem 4.1 instead of Dirac’s
theorem.

4.2. Robust expanders. Let 0 < ν ≤ τ < 1, let G be a digraph on n vertices,
and let S ⊆ V (G). The ν-robust outneighborhood RN+

ν,G(S) of S is the set of all
those vertices x ∈ V (G) which have at least νn inneighbors in S. G is called a robust
(ν, τ)-outexpander if |RN+

ν,G(S)| ≥ |S|+νn for all S ⊆ V (G) with τn < |S| < (1−τ)n.

Recall from section 1 that Kelly [9] showed that any sufficiently large oriented
graph with minimum semidegree at least (3/8 + α)n contains any orientation of a
Hamilton cycle. It is not hard to show that any such oriented graph is a robust
outexpander (see [11]). In fact, in [9], Kelly observed that his arguments carry over
to robustly expanding digraphs of linear degree. Taylor [13] has verified that this is
indeed the case, proving the following result.

Theorem 4.3 (see [13]). Suppose 1/n 	 ν ≤ τ 	 η < 1. Let G be a digraph on
n vertices with δ0(G) ≥ ηn and suppose G is a robust (ν, τ)-outexpander. If C is any
orientation of a cycle on n vertices, then G contains a copy of C.

4.3. Structure. Let ε > 0 and G be a digraph on n vertices. We say that G
is ε-extremal if there is a partition A,B, S, T of its vertices into sets of sizes a, b, s, t
such that |a− b|, |s− t| ≤ 1 and e(A ∪ S,A ∪ T ) < εn2.

The following lemma describes the structure of a graph which satisfies the condi-
tions of Theorem 1.2.

Lemma 4.4. Suppose 0 < 1/n 	 ν 	 τ, ε < 1 and let G be a digraph on n
vertices with δ0(G) ≥ n/2. Then G satisfies one of the following:
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(i) G is ε-extremal;
(ii) G is a robust (ν, τ)-outexpander.

Proof. Suppose that G is not a robust (ν, τ)-outexpander. Then there is a set
X ⊆ V (G) with τn ≤ |X | ≤ (1 − τ)n and |RN+

ν,G(X)| < |X | + νn. Define RN+ :=

RN+
ν,G(X). We consider the following cases.

Case 1. τn ≤ |X | ≤ (1/2−√
ν)n.

We have

|X |n/2 ≤ e(X,RN+) + e(X,RN+) ≤ |X ||RN+|+ νn2 ≤ |X |(|RN+|+ νn/τ),

so |RN+| ≥ (1/2− ν/τ)n ≥ |X |+ νn, which gives a contradiction.
Case 2. (1/2 + ν)n ≤ |X | ≤ (1− τ)n.
For any v ∈ V (G) we note that d−X(v) ≥ νn. Hence |RN+| = |G| ≥ |X | + νn, a

contradiction.
Case 3. (1/2−√

ν)n < |X | < (1/2 + ν)n.
Suppose that |RN+| < (1/2 − 3ν)n. Since δ0(G) ≥ n/2, each vertex in X has

more than 3νn outneighbors in RN+. Thus, there is a vertex v �∈ RN+ with more
than 3νn|X |/n > νn inneighbors in X , which is a contradiction. Therefore,

(4.1) (1/2− 3ν)n ≤ |RN+| < |X |+ νn < (1/2 + 2ν)n.

Write A0 := X \RN+, B0 := RN+ \X , S0 := X ∩RN+, and T0 := X ∩RN+. Let
a0, b0, s0, t0, respectively, denote their sizes. Note that |X | = a0+s0, |RN+| = b0+s0,
and a0 + b0 + s0 + t0 = n. It follows from (4.1) and the conditions of Case 3 that

(1/2−√
ν)n ≤ a0 + s0, b0 + t0, b0 + s0, a0 + t0 ≤ (1/2 +

√
ν)n

and so |a0 − b0|, |s0 − t0| ≤ 2
√
νn. Note that

e(A0 ∪ S0, A0 ∪ T0) = e(X,RN+) < νn2.

By moving at most
√
νn vertices between the sets A0 and B0 and

√
νn between the

sets S0 and T0, we obtain new sets A,B, S, T of sizes a, b, s, t satisfying |a−b|, |s−t| ≤ 1
and e(A ∪ S,A ∪ T ) ≤ εn2. So G is ε-extremal.

4.4. Refining the notion of ε-extremality. Let n ∈ N and let ε, ε1, ε2, ε3,
ε4, η1, η2, τ be positive constants satisfying

1/n 	 ε 	 ε1 	 ε2 	 η1 	 τ 	 ε3 	 ε4 	 η2 	 1.

We now introduce three refinements of ε-extremality. (The constants ε2 and ε4 do
not appear in these definitions but will be used at a later stage in the proof so we
include them here for clarity.) Let G be a digraph on n vertices.

First, we say that G is ST -extremal if there is a partition A,B, S, T of V (G) into
sets of sizes a, b, s, t such that

(P1) a ≤ b, s ≤ t;
(P2) �n/2
 − ε3n ≤ s, t ≤ �n/2�+ ε3n;
(P3) δ0(G[S]), δ0(G[T ]) ≥ η2n;
(P4) d±S (x) ≥ n/2− ε3n for all but at most ε3n vertices x ∈ S;
(P5) d±T (x) ≥ n/2− ε3n for all but at most ε3n vertices x ∈ T ;
(P6) a+ b ≤ ε3n;
(P7) d−T (x), d

+
S (x) > n/2− 3η2n and d−S (x), d

+
T (x) ≤ 3η2n for all x ∈ A;

(P8) d−S (x), d
+
T (x) > n/2− 3η2n and d−T (x), d

+
S (x) ≤ 3η2n for all x ∈ B.
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Second, we say that G is AB-extremal if there is a partition A,B, S, T of V (G)
into sets of sizes a, b, s, t such that

(Q1) a ≤ b, s ≤ t;
(Q2) �n/2
 − ε3n ≤ a, b ≤ �n/2�+ ε3n;
(Q3) δ0(G[A,B]) ≥ n/50;
(Q4) d±B(x) ≥ n/2− ε3n for all but at most ε3n vertices x ∈ A;
(Q5) d±A(x) ≥ n/2− ε3n for all but at most ε3n vertices x ∈ B;
(Q6) s+ t ≤ ε3n;
(Q7) d−A(x), d

+
B(x) ≥ n/50 for all x ∈ S;

(Q8) d−B(x), d
+
A(x) ≥ n/50 for all x ∈ T ;

(Q9) if a < b, d±B(x) < n/20 for all x ∈ B; d−B(x) < n/20 for all x ∈ S and
d+B(x) < n/20 for all x ∈ T .

Third, we say that G is ABST -extremal if there is a partition A,B, S, T of V (G)
into sets of sizes a, b, s, t such that

(R1) a ≤ b, s ≤ t;
(R2) a, b, s, t ≥ τn;
(R3) |a− b|, |s− t| ≤ ε1n;
(R4) δ0(G[A,B]) ≥ η1n;
(R5) d+B∪S(x), d

−
A∪S(x) ≥ η1n for all x ∈ S;

(R6) d+A∪T (x), d
−
B∪T (x) ≥ η1n for all x ∈ T ;

(R7) d±B(x) ≥ b − ε1/3n for all but at most ε1n vertices x ∈ A;
(R8) d±A(x) ≥ a− ε1/3n for all but at most ε1n vertices x ∈ B;
(R9) d+B∪S(x) ≥ b + s− ε1/3n and d−A∪S(x) ≥ a+ s− ε1/3n for all but at most

ε1n vertices x ∈ S;
(R10) d+A∪T (x) ≥ a + t − ε1/3n and d−B∪T (x) ≥ b + t− ε1/3n for all but at most

ε1n vertices x ∈ T .
Proposition 4.5. Suppose

1/n 	 ε 	 ε1 	 η1 	 τ 	 ε3 	 η2 	 1

and G is an ε-extremal digraph on n vertices with δ0(G) ≥ n/2. Then there is a
partition of V (G) into sets A,B, S, T of sizes a, b, s, t satisfying one of the following:

• (P2)–(P8);
• (Q2)–(Q9) with a ≤ b;
• (R2)–(R10).

Proof. Consider a partition A0, B0, S0, T0 of V (G) into sets of sizes a0, b0, s0, t0
such that |a0 − b0|, |s0 − t0| ≤ 1, and e(A0 ∪ S0, A0 ∪ T0) < εn2. Define

X1 := {x ∈ A0 ∪ S0 : d+B0∪S0
(x) < n/2−√

εn},
X2 := {x ∈ A0 ∪ T0 : d−B0∪T0

(x) < n/2−√
εn},

X3 := {x ∈ B0 ∪ T0 : d+A0∪T0
(x) < n/2−√

εn},
X4 := {x ∈ B0 ∪ S0 : d−A0∪S0

(x) < n/2−√
εn}

and let X :=
⋃4

i=1 Xi. We now compute an upper bound for |X |. Each vertex x ∈ X1

has d+A0∪T0
(x) >

√
εn, so |X1| ≤ εn2/

√
εn =

√
εn. Also, each vertex x ∈ X2 has

d−A0∪S0
(x) >

√
εn, so |X2| ≤ √

εn. Observe that

|A0 ∪ T0|n/2− εn2 ≤ e(B0 ∪ T0, A0 ∪ T0)

≤ (n/2−√
εn)|X3|+ |A0 ∪ T0|(|B0 ∪ T0| − |X3|),
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1560 DEBIASIO, KÜHN, MOLLA, OSTHUS, AND TAYLOR

which gives

|X3|(|A0 ∪ T0| − n/2 +
√
εn) ≤ |A0 ∪ T0|(|B0 ∪ T0| − n/2) + εn2 ≤ 2εn2.

So |X3| ≤ 2εn2/(
√
εn/2) = 4

√
εn. Similarly, we find that |X4| ≤ 4

√
εn. Therefore,

|X | ≤ 10
√
εn.

Case 1. a0, b0 < 2τn.
Let Z := X ∪ A0 ∪ B0. Choose disjoint Z1, Z2 ⊆ Z so that d±S0

(x) ≥ 2η2n

for all x ∈ Z1 and d±T0
(x) ≥ 2η2n for all x ∈ Z2 and |Z1 ∪ Z2| is maximal. Let

S := (S0 \ X) ∪ Z1 and T := (T0 \ X) ∪ Z2. The vertices in Z \ (Z1 ∪ Z2) can be
partitioned into two sets A and B so that d+S (x), d

−
T (x) ≥ n/2−3η2n for all x ∈ A and

d−S (x), d
+
T (x) ≥ n/2− 3η2n for all x ∈ B. The partition A,B, S, T satisfies (P2)–(P8).

Case 2. s0, t0 < 2τn.
Partition X into four sets Z1, Z2, Z3, Z4 so that d±B0

(x) ≥ n/5 for all x ∈ Z1;

d±A0
(x) ≥ n/5 for all x ∈ Z2; d

+
B0

(x), d−A0
(x) ≥ n/5 for all x ∈ Z3; and d−B0

(x), d+A0
(x) ≥

n/5 for all x ∈ Z4. Then set A1 := (A0 \X) ∪ Z1, B1 := (B0 \X) ∪ Z2.
Assume, without loss of generality, that |A1| ≤ |B1|. To ensure that the vertices

in B satisfy (Q9), choose disjoint sets B′, B′′ ⊆ B1 so that |B′∪B′′| is maximal subject
to |B′ ∪ B′′| ≤ |B1| − |A1|, d+B1

(x) ≥ n/20 for all x ∈ B′ and d−B1
(x) ≥ n/20 for all

x ∈ B′′. Set B := B1\(B′∪B′′), S1 := (S0\X)∪Z3∪B′, and T1 := (T0\X)∪Z4∪B′′.
To ensure that the vertices in S ∪ T satisfy (Q9), choose sets S′ ⊆ S1, T

′ ⊆ T1 which
are maximal subject to |S′| + |T ′| ≤ |B| − |A1|, d±B(x) ≥ n/20 for all x ∈ S′ and
d±B(x) ≥ n/20 for all x ∈ T ′. We define A := A1 ∪ S′ ∪ T ′, S := S1 \ S′, and
T := T1 \ T ′. Then a ≤ b and (Q2)–(Q9) hold.

Case 3. a0, b0, s0, t0 ≥ 2τn− 1.
The case conditions imply a0, b0, s0, t0 < n/2−τn. Then, since δ0(G) ≥ n/2, each

vertex must have at least 2η1n inneighbors in at least two of the sets A0, B0, S0, T0.
The same holds when we consider outneighbors instead. So we can partition the ver-
tices in X into sets Z1, Z2, Z3, Z4 so that d±B0

(x) ≥ 2η1n for all x ∈ Z1; d
±
A0

(x) ≥ 2η1n

for all x ∈ Z2; d
+
B0∪S0

(x), d−A0∪S0
(x) ≥ 2η1n for all x ∈ Z3; and d+A0∪T0

(x), d−B0∪T0
(x) ≥

2η1n for all x ∈ Z4. Let A := (A0 \X)∪Z1, B := (B0 \X)∪Z2, S := (S0 \X)∪Z3,
and T := (T0 \X) ∪ Z4. This partition satisfies (R2)–(R10).

The above result implies that to prove Theorem 1.2 for ε-extremal graphs it
will suffice to consider only graphs which are ST -extremal, AB-extremal, or ABST -
extremal. Indeed, to see that we may assume that a ≤ b and s ≤ t, suppose that
G is ε-extremal. Then G has a partition satisfying (P2)–(P8), (Q2)–(Q9), or (R2)–
(R10) by Proposition 4.5. Note that relabeling the sets of the partition (A,B, S, T )
by (B,A, T, S) if necessary allows us to assume that a ≤ b. If s ≤ t, then we are
done. If s > t, reverse the orientation of every edge in G to obtain the new graph
G′. Relabel the sets (A,B, S, T ) by (A,B, T, S). Under this new labeling, the graph
G′ satisfies all the original properties as well as a ≤ b and s ≤ t. Obtain C′ from
the cycle C by reversing the orientation of every edge in C. The problem of finding
a copy of C in G is equivalent to finding a copy of C′ in G′.

5. G is ST -extremal. The aim of this section is to prove the following lemma,
which settles Theorem 1.2 in the case when G is ST -extremal.

Lemma 5.1. Suppose that 1/n 	 ε3 	 ε4 	 η2 	 1. Let G be a digraph on n
vertices such that δ0(G) ≥ n/2 and G is ST -extremal. If C is any orientation of a
cycle on n vertices, then G contains a copy of C.

We will split the proof of Lemma 5.1 into two cases based on how close the cycle C
is to being consistently oriented.Recall that σ(C) denotes the number of sink vertices
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in C. Observe that in any oriented cycle, the number of sink vertices is equal to the
number of source vertices.

5.1. C has many sink vertices, σ(C) ≥ ε4n. The rough strategy in this
case is as follows. We would like to embed half the cycle C into G[S] and half into
G[T ], making use of the fact that these graphs are nearly complete. At this stage, we
also suitably assign the vertices in A ∪ B to G[S] or G[T ]. We will partition C into
two disjoint paths, PS and PT , each containing at least σ(C)/8 sink vertices, which
will be embedded into G[S] and G[T ]. The main challenge we will face is finding
appropriate edges to connect the two halves of the embedding.

Lemma 5.2. Suppose that 1/n 	 ε3 	 ε4 	 η2 	 1. Let G be a digraph on n
vertices with δ0(G) ≥ n/2. Suppose A,B, S, T is a partition of V (G) satisfying (P1)–
(P8). Let C be an oriented cycle on n vertices with σ(C) ≥ ε4n. Then there exists a
partition S∗, T ∗ of the vertices of G and internally disjoint paths R1, R2, PS , PT such
that C = (PSR1PTR2) and the following hold:
(i) S ⊆ S∗ and T ⊆ T ∗;
(ii) |PT | = |T ∗|;
(iii) PS and PT each contain at least ε4n/8 sink vertices;
(iv) |Ri| ≤ 3 and G contains disjoint copies RG

i of Ri such that RG
1 is an ST -path,

RG
2 is a TS-path, and all interior vertices of RG

i lie in S∗.
In the proof of Lemma 5.2 we will need the following proposition.
Proposition 5.3. Suppose that 1/n 	 ε3 	 ε4 	 η 	 1. Let G be a digraph

on n vertices with δ0(G) ≥ n/2. Suppose A,B, S, T is a partition of V (G) satisfying
(P1)–(P8).
(i) If a = b ∈ {0, 1}, then there are two disjoint edges between S and T of any given

direction.
(ii) If A = ∅, then there are two disjoint TS-edges.
(iii) If a = 1 and b ≥ 2, then there are two disjoint TS-edges.
(iv) There are two disjoint edges in E(S, T ∪ A) ∪ E(T, S ∪B).

Proof. Let

S′ := {x ∈ S : N+
A (x), N−

B (x) = ∅} and T ′ := {x ∈ T : N+
B (x), N−

A (x) = ∅}.
First we prove (i). If a = b ∈ {0, 1}, then it follows from (P7), (P8) that |S′|, |T ′| ≥
n/4. Since s ≤ t, it is either the case that s ≤ (n − 1)/2 − b or s = t = n/2 − b.
If s ≤ (n − 1)/2 − b choose any x �= y ∈ S′. Both x and y have at least �n/2 −
((n− 1)/2− b− 1+ b)� = 2 inneighbors and outneighbors in T , so we find the desired
edges. Otherwise s = t = n/2 − b and each vertex in S′ must have at least one
inneighbor and at least one outneighbor in T and each vertex in T ′ must have at least
one inneighbor and at least one outneighbor in S. It is now easy to check that (i)
holds. Indeed, König’s theorem gives the two required disjoint edges provided they
have the same direction. Using this, it is also easy to find two edges in opposite
directions.

We now prove (ii). Suppose that A = ∅. We have already seen that the result
holds when B = ∅. So assume that b ≥ 1. Since s ≤ (n− b)/2, each vertex in S must
have at least b/2+1 inneighbors in T ∪B. Assume for contradiction that there are no
two disjoint TS-edges. Then all but at most one vertex in S must have at least b/2
inneighbors in B. So e(B,S) ≥ bn/8, which implies that there is a vertex v ∈ B with
d+S (v) ≥ n/8. But this contradicts (P8). So there must be two disjoint TS-edges.

For (iii), suppose that a = 1 and b ≥ 2. Since s ≤ (n− b− 1)/2, each vertex in S
must have at least (b + 1)/2 inneighbors in T ∪B. Assume there are no two disjoint
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TS-edges. Then all but at most one vertex in S have at least (b− 1)/2 inneighbors in
B. So e(B,S) ≥ nb/12, which implies that there is a vertex v ∈ B with d+S (v) ≥ n/12,
which contradicts (P8). Hence (iii) holds.

For (iv), we observe that min{s+ b, t+ a} ≤ (n− 1)/2 or s+ b = t+ a = n/2. If
s+ b ≤ (n−1)/2, then each vertex in S has at least two outneighbors in T ∪A, giving
the desired edges. A similar argument works if t+a ≤ (n−1)/2. If s+b = t+a = n/2,
then each vertex in S has at least one outneighbor in T ∪A and each vertex in T has
at least one outneighbor in S ∪ B. It is easy to see that there must be two disjoint
edges in E(S, T ∪A) ∪ E(T, S ∪B).

Proof of Lemma 5.2. Observe that C must have a subpath P1 of length n/3
containing at least ε4n/3 sink vertices. Let v ∈ P1 be a sink vertex such that the
subpaths (P1v) and (vP1) of P1 each contain at least ε4n/7 sink vertices. Write
C = (v1v2 . . . vn), where v1 := v, and write k′ := n− t.

Case 1. a ≤ 1

If a = b, set S∗ := S∪A∪B, T ∗ := T , R1 := (vk′vk′+1), and R2 := (vnv1) = vnv1.
By Proposition 5.3(i), G contains a pair of disjoint edges between S and T of any given
orientation. So we can map vnv1 to a TS-edge and (vk′vk′+1) to an edge between S
and T of the correct orientation such that the two edges are disjoint.

Suppose now that b ≥ a+1. By Proposition 5.3(ii)–(iii), we can find two disjoint
TS-edges e1 and e2. If vk′ is not a source vertex, set S∗ := S ∪ A ∪ B, T ∗ := T ,
R1 := (vk′−1vk′vk′+1), and R2 := vnv1. Map vnv1 to e1. If vk′+1vk′ ∈ E(C), map R1

to a path of the form SST which uses e2. Otherwise, since vk′ is not a source vertex,
R1 is a forward path. Using (P8), we find a forward path of the form SBT for RG

1 .

So let us suppose that vk′ is a source vertex. Let b1 ∈ B and set S∗ := S ∪ A ∪
B \ {b1} and T ∗ := T ∪ {b1}. Let R1 := (vk′−1vk′ ) = vk′vk′−1 and R2 := vnv1. We
know that vnv1, vk′vk′−1 ∈ E(C), so we can map these edges to e1 and e2.

In each of the above, we define PS and PT to be the paths, which are internally
disjoint from R1 and R2, such that C = (PSR1PTR2). Note that (i)–(iv) are satisfied.

Case 2. a ≥ 2

Apply Proposition 5.3(iv) to find two disjoint edges e1, e2 ∈ E(S, T ∪A)∪E(T, S∪
B). Choose any distinct x, y ∈ A ∪B such that x and y are disjoint from e1 and e2.

First let us suppose that vk′ is a sink vertex. If e1, e2 ∈ E(S,A) ∪ E(T, S ∪ B),
set S∗ := S ∪ A ∪ B, T ∗ := T , R1 := (vk′−1vk′vk′+1), and R2 := (vnv1v2). If
e1 ∈ E(T, S ∪ B), use (P3) and (P8) to find a path of the form S(S ∪ B)T which
uses e1 for RG

1 . If e1 ∈ E(S,A), we use (P7) to find a path of the form SAT using e1
for RG

1 . In the same way, we find a copy RG
2 of R2. If exactly one of ei, e2, say, lies

in E(S, T ), set S∗ := (S ∪ A ∪ B) \ {x}, T ∗ := T ∪ {x}, R1 := (vk′−1vk′vk′+1) and
R2 := (v1v2). Then v2v1 can be mapped to e2 and we use e1 to find a copy RG

1 of R1

as before. If both e1, e2 ∈ E(S, T ), set S∗ := (S ∪ A ∪B) \ {x, y}, T ∗ := T ∪ {x, y},
R1 := (vk′−1vk′ ), and R2 := (v1v2). Then map v2v1 and vk′−1vk′ to the edges e1
and e2.

Suppose now that (vk′−1vk′vk′+1) is a consistently oriented path. If e2 �∈ E(S, T ),
let S∗ := S ∪ A ∪ B, T ∗ := T , R1 := (vk′−1vk′vk′+1), and R2 := (vnv1v2), and, if
e2 ∈ E(S, T ), let S∗ := (S ∪ A ∪B) \ {x}, T ∗ := T ∪ {x}, R1 := (vk′−1vk′vk′+1), and
R2 := (v1v2). Then use the edge e2 to find a copy RG

2 of R2 as above. We use (P7) or
(P8) to map R1 to a backward path of the form SAT or a forward path of the form
SBT as appropriate.

We let PS and PT be paths which are internally disjoint from R1 and R2 such
that C = (PSR1PTR2). Then (i)–(iv) are satisfied.
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It remains to consider the case when vk′ is a source vertex. We now consider the
vertex vk′−1 instead of vk′ . Note that C cannot contain two adjacent source vertices,
so either vk′−1 is a sink vertex or (vk′−2vk′−1vk′ ) is a backward path. We proceed as
previously. Note that when we define the path PT it will have one additional vertex
and so we must allocate an additional vertex from A∪B to T ∗; we are able to do this
since a+ b > 3.

Apply Lemma 5.2 to G and C to obtain internally disjoint subpaths R1, R2, PS ,
and PT of C as well as a partition S∗, T ∗ of V (G). Let RG

i be copies of Ri in G
satisfying the properties of the lemma. Write R′ for the set of interior vertices of the
RG

i . Define GS := G[S∗ \R′] and GT := G[T ∗]. Let xT and xS be the images of the
final vertices of R1 and R2 and let yS and yT be the images of the initial vertices of
R1 and R2, respectively. Also, let VS := S∗ ∩ (A ∪B) and VT := T ∗ ∩ (A ∪B).

The following proposition allows us to embed copies of PS and PT in GS and GT .
The idea is to greedily find a short path which will contain all the vertices in VS and
VT and any vertices of “low degree.” We then use that the remaining graph is nearly
complete to complete the embedding.

Proposition 5.4. Let GS, PS, PT , xS, yS, xT , and yT be as defined above.

(i) There is a copy of PS in GS such that the initial vertex of PS is mapped to xS

and the final vertex is mapped to yS.
(ii) There is a copy of PT in GT such that the initial vertex of PT is mapped to xT

and the final vertex is mapped to yT .

Proof. We prove (i); the proof of (ii) is identical. Write PS = (u1u2 . . . uk). An
averaging argument shows that there exists a subpath P of PS of order at most ε4n
containing at least

√
ε3n sink vertices.

Let X := {x ∈ S : d+S (x) < n/2−ε3n or d−S (x) < n/2−ε3n}. By (P4), |X | ≤ ε3n
and so, using (P3), we see that every vertex x ∈ X is adjacent to at least η2n/2
vertices in S \X . So we can assume that xS , yS ∈ S \X since otherwise we can embed
the second and penultimate vertices on PS to vertices in S \ X and consider these
vertices instead.

Let u′
1 be the initial vertex of P and u′

k be the final vertex. Define m1 :=
dPS (u1, u

′
1) + 1 and m2 := dPS (u

′
k, uk) + 1. Suppose first that m1,m2 > η22n. We

greedily find a copy PG of P in GS which covers all vertices in VS ∪X such that u′
1

and u′
k are mapped to vertices s1, s2 ∈ S \X . This is possible since any two vertices

in X can be joined by a path of length at most three of any given orientation, by (P3)
and (P4), and we can use each vertex in VS as the image of a sink or source vertex of
P . Partition (V (GS) \ V (PG)) ∪ {s1, s2}, arbitrarily, into two sets L1 and L2 of size
m1 and m2, respectively, so that s1, xS ∈ L1 and s2, yS ∈ L2. Consider the graphs
Gi := GS [Li] for i = 1, 2. Then (P4) implies that δ(Gi) ≥ mi − ε3n− ε4n ≥ 7mi/8.
Applying Proposition 4.2(i), we find suitably oriented Hamilton paths from s1 to xS

in G1 and s2 to yS in G2 which, when combined with P , form a copy of PS in GS

(with endvertices xS and yS).

It remains to consider the case when m1 < η22n or m2 < η22n. Suppose that the
former holds (the latter is similar). Let P ′ be the subpath of PS between u1 and u′

k.
So P ⊆ P ′. Similarly as before, we first greedily find a copy of P ′ in GS which covers
all vertices of X ∪ VS and then extend this to an embedding of PS .

Proposition 5.4 allows us to find copies of PS and PT in GS and GT with the
desired endvertices. Combining these with RG

1 and RG
2 found in Lemma 5.2, we obtain

a copy of C in G. This proves Lemma 5.1 when σ(C) ≥ ε4n.
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5.2. C has few sink vertices, σ(C) < ε4n. Our approach will closely follow
the argument when C had many sink vertices. The main difference will be how we
cover the exceptional vertices, i.e., the vertices in A ∪ B. We will call a consistently
oriented subpath of C which has length 20 a long run. If C contains few sink vertices,
it must contain many of these long runs. So, whereas previously we used sink and
source vertices, we will now use long runs to cover the vertices in A ∪B.

Proposition 5.5. Suppose that 1/n 	 ε 	 1 and n/4 ≤ k ≤ 3n/4. Let C be an
oriented cycle with σ(C) < εn. Then we can write C as (u1u2 . . . un) such that there
exist

(i) long runs P1, P2 such that P1 is a forward path and dC(P1, P2) = k,
(ii) long runs P ′

1, P
′
2, P

′
3, P

′
4 such that dC(P

′
i , P

′
i+1) = �n/4
 for i = 1, 2, 3.

Proof. Let P be a subpath of C of length n/8. Let Q be a consistent collection of
vertex disjoint long runs in P of maximum size. Then |Q| ≥ 2εn, with room to spare.
We can write C as (u1u2 . . . un) so that the long runs in Q are forward paths.

Suppose that (i) does not hold. For each Qi ∈ Q, let Q′
i be the path of length 20

such that dC(Qi, Q
′
i) = k. Since Q′

i is not a long run, Q′
i must contain at least one

sink or source vertex. The paths Q′
i are disjoint so, in total, C must contain at least

|Q|/2 ≥ εn > σ(C) sink vertices, a contradiction. Hence (i) holds.

We call a collection of four disjoint long runs P1, P2, P3, P4 good if P1 ∈ Q and
dC(Pi, Pi+1) = �n/4
 for all i = 1, 2, 3. Suppose C does not contain a good collection
of long runs. In particular, this means that each long run in Q does not lie in a good
collection. For each path Qi ∈ Q, let Qi,1, Qi,2, Qi,3 be subpaths of C of length 20
such that dC(Qi, Qi,j) = j�n/4
. Since {Qi, Qi,1, Qi,2, Qi,3} does not form a good
collection, at least one of the Qi,j must contain a sink or source vertex. The paths
Qi,j where Qi ∈ Q and j = 1, 2, 3 are disjoint so, in total, C must contain at least
|Q|/2 ≥ εn > σ(C) sink vertices, which is a contradiction. This proves (ii).

The following proposition finds a collection of edges oriented in an atypical direc-
tion for an ε-extremal graph. We will use these edges to find consistently oriented S-
and T -paths covering all the vertices in A∪B. This proposition will be used again in
section 7.1, where it allows us to correct an imbalance in the sizes of A and B.

Proposition 5.6. Let G be a digraph on n vertices with δ0(G) ≥ n/2. Let
d ≥ 0 and suppose A,B, S, T is a partition of V (G) into sets of size a, b, s, t with
t ≥ s ≥ d + 2 and b = a + d. Then G contains a collection M of d + 1 edges in
E(T, S ∪ B) ∪ E(B,S) satisfying the following. The endvertices of M outside B are
distinct and each vertex in B is the endvertex of at most one TB-edge and at most
one BS-edge in M . Moreover, if e(T, S) > 0, then M contains a TS-edge.

Proof. Let k := t − s. We define a bipartite graph G′ with vertex classes S′ :=
S ∪ B and T ′ := T ∪ B together with all edges xy such that x ∈ S′, y ∈ T ′, and
yx ∈ E(T, S ∪ B) ∪ E(B,S). We claim that G′ has a matching of size d + 2. To
prove the claim, suppose that G′ has a vertex cover X of size |X | < d + 2. Then
|X ∩ S′| < (d− k)/2 + 1 or |X ∩ T ′| < (d+ k)/2 + 1. Suppose that the former holds
and consider any vertex t1 ∈ T \X . Since δ+(G) ≥ n/2 and a+ t = (n− d+ k)/2, t1
has at least (d− k)/2+1 outneighbors in S′. But these vertices cannot all be covered
by X . So we must have that |X ∩T ′| < (d+k)/2+1. Consider any vertex s1 ∈ S \X .
Now δ−(G) ≥ n/2 and a+ s = (n− d− k)/2, so s1 must have at least (d + k)/2 + 1
inneighbors in T ′. But not all these vertices can be covered by X . Hence, any vertex
cover of G′ must have size at least d+ 2 and so König’s theorem implies that G′ has
a matching of size d+ 2.
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If e(T, S) > 0, either the matching contains a TS-edge or we can choose any
TS-edge e and at least d of the edges in the matching will be disjoint from e. This
corresponds to a set of d + 1 edges in E(T, S ∪ B) ∪ E(B,S) in G with the required
properties.

We define a good path system P to be a collection of disjoint S- and T -paths such
that each path P ∈ P is consistently oriented, has length at most six, and covers at
least one vertex in A∪B. Each good path system P gives rise to a modified partition
AP , BP , SP , TP of the vertices of G (we allow AP , BP to be empty) as follows. Let
IntS(P) be the set of all interior vertices on the S-paths in P and IntT (P) be the set
of all interior vertices on the T -paths. We set AP := A \ V (P), BP := B \ V (P),
SP := (S ∪ IntS(P)) \ IntT (P) and TP := (T ∪ IntT (P)) \ IntS(P) and say that
AP , BP , SP , TP is the P-partition of V (G).

Lemma 5.7. Suppose that 1/n 	 ε3 	 ε4 	 η2 	 1. Let G be a digraph on
n vertices with δ0(G) ≥ n/2. Suppose A,B, S, T is a partition of V (G) satisfying
(P1)–(P8). Let C be a cycle on n vertices with σ(C) < ε4n. Then there exists t∗ such
that one of the following holds:

• There exist internally disjoint paths PS , PT , R1, R2 such that
(i) C = (PSR1PTR2);
(ii) |PT | = t∗;
(iii) R1 and R2 are paths of length two and G contains disjoint copies RG

i of
Ri whose interior vertices lie in V (G) \T . Moreover, RG

1 is an ST -path
and RG

2 is a TS-path.
• There exist internally disjoint paths PS , P

′
S , PT , P

′
T , R1, R2, R3, R4 such that

(i) C = (PSR1PTR2P
′
SR3P

′
TR4);

(ii) |PT |+ |P ′
T | = t∗ and |PS |, |P ′

S |, |PT |, |P ′
T | ≥ n/8;

(iii) R1, R2, R3, R4 are paths of length two and G contains disjoint copies RG
i

of Ri whose interior vertices lie in V (G)\T . Moreover, RG
1 and RG

3 are
ST -paths and RG

2 and RG
4 are TS-paths.

Furthermore, G has a good path system P such that the paths in P are disjoint from
each RG

i , P covers (A ∪B) \⋃V (RG
i ), and the P-partition AP , BP , SP , TP of V (G)

satisfies |TP | = t∗.
Proof. Let d := b− a and k := t− s.

We first obtain a good path system P0 covering A ∪ B as follows. Apply Propo-
sition 5.6 to obtain a collection M0 of d + 1 edges as described in the proposition.
Choose M ⊆ M0 of size d such that M contains a TS-edge if d ≥ 1 and e(T, S) > 0.
We use each edge e ∈ M together with properties (P3), (P5), and (P8) to cover
one vertex in B by a consistently oriented path of length at most six as follows. If
e ∈ E(T,B) and e is disjoint from all other edges in M , find a consistently oriented
path of the form TBT using e. If e ∈ E(B,S) and e is disjoint from all other edges
in M , find a consistently oriented path of the form SBS using e. If e ∈ E(T, S), we
note that (P3), (P5), and (P8) allow us to find a consistently oriented path of length
three between any vertex in B and any vertex in T . So we can find a consistently
oriented path of the form SB(T )3S which uses e. Finally, if e ∈ E(T,B) and shares
an endvertex with another edge e′ ∈ M ∩E(B,S) we find a consistently oriented path
of the form SB(T )3BS using e and e′. This path uses two edges in M but covers two
vertices in B. Since we have many choices for each such path, we can choose them to
be disjoint, so M allows us to find a good path system P1 covering d vertices in B.

Label the vertices in A by a1, a2, . . . , aa and the remaining vertices in B by
b1, b2, . . . , ba. We now use (P6)–(P8) to find a consistently oriented S- or T -path
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Li covering each pair ai, bi. If 1 ≤ i ≤ �(4a+ k)/8�, cover the pair ai, bi by a path of
the form SBTAS. If �(4a+ k)/8� < i ≤ a cover the pair ai, bi by a path of the form
TASBT . Let P2 :=

⋃a
i=1 Li.

We are able to choose all these paths so that they are disjoint and thus obtain
a good path system P0 := P1 ∪ P2 covering A ∪ B. Let AP0 , BP0 , SP0 , TP0 be the
P0-partition of V (G) and let t′ := |TP0 |, s′ := |SP0 |.

By Proposition 5.5(i), we can enumerate the vertices of C so that there are long
runs P1, P2 such that P1 is a forward path and dC(P1, P2) = t′. We will find consis-
tently oriented ST - and TS-paths for RG

1 and RG
2 which depend on the orientation

of P2. The paths R1 and R2 will be consistently oriented subpaths of P1 and P2,
respectively, whose position will be chosen later.

Case 1. b ≥ a+ 2.

Suppose first that P2 is a backward path. If P1 contains a path of the form
SB(T )3BS, let b0 and b′0 be the two vertices in B on this path. Otherwise, let b0 and
b′0 be arbitrary vertices in B which are covered by P1. Use (P8) to find a forward
path for RG

1 which is of the form S{b0}T . We also find a backward path of the form
T {b′0}S for RG

2 . We choose the paths RG
1 and RG

2 to be disjoint from all paths in P0

which do not contain b0 or b′0.
Suppose now that P2 is a forward path. If a ≥ 1, consider the path L1 ∈ P2

covering a1 ∈ A and b1 ∈ B. Find forward paths of the form S{b1}T for RG
1 and

T {a1}S for RG
2 , using (P7) and (P8), which are disjoint from all paths in P0 \ {L1}.

Finally, we consider the case when a = 0. Recall that e(T, S) > 0 by Proposition 5.3(ii)
and so M contains a TS-edge. Hence there is a path P ′ in P1 of the form SB(T )3S,
covering a vertex b0 ∈ B and an edge t1s1 ∈ E(T, S), say. We use (P3) and (P8)
to find forward paths of the form S{b0}T for RG

1 and {t1}{s1}S for RG
2 which are

disjoint from all paths in P0 \ {P ′}.
Obtain the good path system P from P0 by removing all paths meeting RG

1 or
RG

2 . Let AP , BP , SP , TP be the P-partition of V (G) and t∗ := |TP |. The only vertices
which could have moved to obtain TP from TP0 are interior vertices on the paths in
P0\P , so |t∗−t′| ≤ 2 ·5 = 10. Thus we can choose R1 and R2 to be subpaths of length
two of P1 and P2 so that |PT | = t∗, where PS and PT are defined by C = (PSR1PTR2).

Case 2. b ≤ a+ 1.

Case 2.1. a ≤ 1.

If a = b, by Proposition 5.3(i) we can find disjoint e1, e2 ∈ E(S, T ) and disjoint
e3 ∈ E(S, T ), e4 ∈ E(T, S). Note that P0 = P2, since a = b, so we may assume that
all paths in P0 are disjoint from e1, e2, e3, e4. If P2 is a forward path, find a forward
path of the form SST for RG

1 using e3 and a forward path of the form TSS for RG
2

using e4. If P2 is a backward path, find a forward path of the form SST for RG
1 using

e1 and a backward path of the form TSS for RG
2 using e2. In both cases, we choose

RG
1 and RG

2 to be disjoint from all paths in P0.

If b = a + 1, note that there exist e1 ∈ E(S, T ) and e2 ∈ E(T, S). (To see
this, use that δ0(G) ≥ n/2 and the fact that (P7) and (P8) imply that |{x ∈ S :
N+

A (x), N−
B (x) = ∅}| ≥ n/4.) We may assume that all paths in P2 are disjoint from

e1, e2. Let b0 ∈ B be the vertex covered by the single path in P1. Find a forward
path of the form S{b0}T for RG

1 , using (P8). Find a consistently oriented path of the
form TSS for RG

2 which uses e1 if P2 is a backward path and e2 if P2 is a forward
path. Choose the paths RG

1 and RG
2 to be disjoint from the paths in P0 \ P1 = P2.

In both cases, we obtain the good path system P from P0 by removing at most
one path which meets RG

1 or RG
2 . Let AP , BP , SP , TP be the P-partition of V (G)
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and let t∗ := |TP |. The only vertices which could have moved to obtain TP from
TP0 are interior vertices on the path in P0 \ P if P0 �= P , so |t∗ − t′| ≤ 5. So we
can choose subpaths Ri of Pi so that |PT | = t∗, where PS and PT are defined by
C = (PSR1PTR2).

Case 2.2. 2 ≤ a ≤ k.
If P2 is a forward path, consider a1 ∈ A and b1 ∈ B, which were covered by the

path L1 ∈ P0. Use (P7) and (P8) to find forward paths, disjoint from all paths in
P0 \ {L1}, of the form S{b1}T and T {a1}S for RG

1 and RG
2 , respectively.

Suppose now that P2 is a backward path. We claim that G contains 2−d disjoint
ST -edges. Indeed, suppose not. Then d+T (x) ≤ 1− d for all but at most one vertex in
S. Note that b+ s = (n− k + d)/2, so d+A∪T (x) ≥ (k − d)/2 + 1 for all x ∈ S. So

e(S,A) ≥ (s− 1)((k − d)/2 + 1− (1− d)) = (s− 1)(k + d)/2 ≥ nk/8 ≥ na/8.

Hence, there is a vertex x ∈ A with d−S (x) ≥ n/8, contradicting (P7). Let E = {ei :
1 ≤ i ≤ 2− d} be a set of 2− d disjoint ST -edges. We may assume that P2 is disjoint
from E.

If a = b, use (P3) to find a forward path of the form SST using e1 for RG
1 and

a backward path of the form TSS using e2 for R2. If b = a + 1, let b0 ∈ B be the
vertex covered by the single path in P1. Use (P3) and (P8) to find a forward path of
the form S{b0}T for RG

1 and a backward path of the form TSS using e1 for RG
2 . We

choose the paths RG
1 and RG

2 to be disjoint from all paths in P2.
In both cases, we obtain the good path system P from P0 by removing at most

one path which meets RG
1 or RG

2 . Let AP , BP , SP , TP be the P-partition of V (G)
and t∗ := |TP |. The only vertices which could have moved to obtain TP from TP0 are
interior vertices on the path in P0 \ P if P0 �= P , so |t∗ − t′| ≤ 5. Thus we can choose
R1 and R2 to be subpaths of length two of P1 and P2 so that |PT | = t∗, where PS

and PT are defined by C = (PSR1PTR2).
Case 2.3. a ≥ 2, k.
We note that

t′ − s′ = |(T ∪ IntT (P0)) \ IntS(P0)| − |(S ∪ IntS(P0)) \ IntT (P0)|
= |(T ∪ IntT (P2)) \ IntS(P2)| − |(S ∪ IntS(P2)) \ IntT (P2)|+ c

= (t+ 3a− 4�(4a+ k)/8�)− (s+ 4�(4a+ k)/8� − a) + c

= 4a+ k − 8�(4a+ k)/8�+ c,

where −7 ≤ c ≤ 1 is a constant representing the contribution of interior vertices on
the path in P1 if b = a + 1 and c = 0 if b = a. In particular, this implies that
|t′ − s′| ≤ 15 and

(n− 15)/2 ≤ s′, t′ ≤ (n+ 15)/2.

Apply Proposition 5.5(ii) to find long runs P ′
1, P

′
2, P

′
3, P

′
4 such that dC(P

′
i , P

′
i+1) =

�n/4
 for i = 1, 2, 3. Let xi be the initial vertex of each P ′
i . If {P ′

i , P
′
i+2} is consistent

for some i ∈ {1, 2}, consider a1 ∈ A, b1 ∈ B, which which were covered by the path
L1 ∈ P0. If P ′

i , P
′
i+2 are both forward paths, let RG

1 and RG
2 be forward paths of

the form S{b1}T and T {a1}S, respectively. If P ′
i , P

′
i+2 are both backward paths,

let RG
1 and RG

2 be backward paths of the form S{a1}T and T {b1}S, respectively.
Choose the paths RG

1 and RG
2 to be disjoint from the paths in P := P0 \ {L1}. Let

AP , BP , SP , TP be the P-partition of V (G) and let t∗ = |TP |. The only vertices which

D
ow

nl
oa

de
d 

01
/1

1/
16

 to
 1

47
.1

88
.2

24
.2

21
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Fig. 3. A good collection of long runs.

could have been added or removed to obtain TP from TP0 are interior vertices on L1

so (n − 15)/2 − 3 ≤ t∗ ≤ (n + 15)/2 + 3. Then we can choose R1 and R2 to be
subpaths of length two of P ′

i and P ′
i+2 so that |PT | = t∗, where PS , PT are defined so

that C = (PSR1PTR2).
So let us assume that {P ′

i , P
′
i+2} is not consistent for i = 1, 2. We may assume

that the paths P ′
1 and P ′

4 are both forward paths, by relabeling if necessary, and we
illustrate the situation in Figure 3.

Consider the vertices ai ∈ A and bi ∈ B covered by the paths Li ∈ P0 for i = 1, 2.
Let P := P0 \ {L1, L2} and let AP , BP , SP , TP be the P-partition of V (G). Let t∗ :=
|TP |. The only vertices which could have been added or removed to obtain TP from
TP0 are interior vertices on the paths L1 and L2, so (n−15)/2−6 ≤ t∗ ≤ (n+15)/2+6.
Find a forward path of the form S{b1}T for RG

1 . Then find backward paths of the
form T {b2}S and S{a1}T for RG

2 and RG
3 , respectively. Finally, find a forward path

of the form T {a2}S for RG
4 . We can choose the paths RG

i to be disjoint from all paths
in P . Since P ′

1 and P ′
2 are of length 20 we are able to find subpaths R1, R2, R3, R4

of P ′
1, P

′
2, P

′
3, P

′
4 so that |PT | + |P ′

T | = t∗, where PS , P
′
S , PT , P

′
T are defined so that

C = (PSR1PTR2P
′
SR3P

′
TR4).

In order to prove Lemma 5.1 in the case when σ(C) < ε4n, we first apply
Lemma 5.7 to G. We now proceed similarly as in the case when C has many sink
vertices (see Proposition 5.4) and so we only provide a sketch of the argument. We
first observe that any subpath of the cycle of length 100ε4n must contain at least

(5.1) �100ε4n/21
 − 2ε4n > 2ε3n ≥ a+ b ≥ |P|
disjoint long runs. Let s1 be the image of the initial vertex of PS . Let P ∗

S be the
subpath of PS formed by the first 100ε4n edges of PS . We can cover all S-paths in P
and all vertices x ∈ S which satisfy d+S (x) < n/2− ε3n or d−S (x) < n/2− ε3n greedily
by a path in G starting from s1 which is isomorphic to P ∗

S . Note that (5.1) ensures
that P ∗

S contains |P| disjoint long runs. So we can map the S-paths in P to subpaths
of these long runs. Let P ′′

S be the path formed by removing from PS all edges in P ∗
S .

If Lemma 5.7(i) holds and thus PS is the only path to be embedded in G[S], we
apply Proposition 4.2(i) to find a copy of P ′′

S in G[S], with the desired endvertices. If
Lemma 5.7(ii) holds, we must find copies of both PS and P ′

S in G[S]. So we split the
graph into two subgraphs of the appropriate size before applying Proposition 4.2(i) to
each. We do the same to find copies of PT (or PT and P ′

T ) in G[T ]. Thus, we obtain
a copy of C in G. This completes the proof of Lemma 5.1.
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6. G is AB-extremal. The aim of this section is to prove the following lemma,
which shows that Theorem 1.2 is satisfied when G is AB-extremal. Recall that an
AB-extremal graph closely resembles a complete bipartite graph. We will proceed as
follows. First we will find a short path which covers all the exceptional vertices (the
vertices in S ∪T ). It is important that this path leaves a balanced number of vertices
uncovered in A and B. We will then apply Proposition 4.2 to the remaining, almost
complete, balanced bipartite graph to embed the remainder of the cycle.

Lemma 6.1. Suppose that 1/n 	 ε3 	 1. Let G be a digraph on n vertices with
δ0(G) ≥ n/2 and assume that G is AB-extremal. If C is any orientation of a cycle
on n vertices which is not antidirected, then G contains a copy of C.

If b > a, the next lemma implies that E(B ∪ T,B) contains a matching of size
b−a+2. We can use b−a of these edges to pass between vertices in B while avoiding
A, allowing us to correct the imbalance in the sizes of A and B.

Proposition 6.2. Suppose 1/n 	 ε3 	 1. Let G be a digraph on n vertices
with δ0(G) ≥ n/2. Suppose A,B, S, T is a partition of V (G) satisfying (Q1)–(Q9)
and b = a+ d for some d > 0. Then there is a matching of size d+2 in E(B ∪T,B).

Proof. Consider a maximal matching M in E(B ∪ T,B) and suppose that |M | ≤
d + 1. Since a + s ≤ (n − d)/2, each vertex in B has at least d/2 inneighbors in
B ∪T . In particular, since M was maximal, each vertex in B \V (M) has at least d/2
inneighbors in V (M). Then there is a v ∈ V (M) ⊆ B ∪ T with

d+B(v) ≥
(b− 2|M |)

2|M |
d

2
≥ n

20
,

contradicting (Q9). Therefore |M | ≥ d+ 2.
We say that P is an exceptional cover of G if P ⊆ G is a copy of a subpath of C

and
(EC1) P covers S ∪ T ;
(EC2) both endvertices of P are in A;
(EC3) |A \ V (P )|+ 1 = |B \ V (P )|.
We will use the following notation when describing the form of a path. If X,Y ∈

{A,B}, then we write X ∗ Y for any path which alternates between A and B whose
initial vertex lies in X and final vertex lies in Y . For example, A ∗A(ST )2 indicates
any path of the form ABAB . . . ASTST .

Suppose that P is of the form Z1Z2 . . . Zm, where each Zi ∈ {A,B, S, T }. Let
Zi1 , Zi2 , . . . , Zij be the appearances of A and B, where ij < ij+1. If Zij = A = Zij+1 ,
we say that Zij+1 is a repeated A. We define a repeated B similarly. Let rep(A) and
rep(B) be the numbers of repeated As and repeated Bs, respectively. Suppose that
P has both endvertices in A and P uses 	+ rep(B) vertices from B. Then P will use
	 + rep(A) + 1 vertices from A (we add one because both endvertices of P lie in A).
So we have that

(6.1) |B \ V (P )| − |A \ V (P )| = b− a− rep(B) + rep(A) + 1.

Given a set of edges M ⊆ E(G) we define the graph GM ⊆ G whose vertex set is
V (G) and whose edge set is E(A,B∪S)∪E(B,A∪T )∪E(T,A)∪E(S,B)∪M ⊆ E(G).
Informally, in addition to the edges of M , GM has edges between two vertex classes
when the bipartite graph they induce in G is dense.

We will again split our argument into two cases depending on the number of sink
vertices in C.
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1570 DEBIASIO, KÜHN, MOLLA, OSTHUS, AND TAYLOR

6.1. Finding an exceptional cover when C has few sink vertices, σ(C) <
ε4n. It is relatively easy to find an exceptional cover when C has few sink vertices
by observing that C must contain many disjoint consistently oriented paths of length
three. We can use these consistently oriented paths to cover the vertices in S ∪ T by
forward paths of the form ASB or BTA, for example.

Proposition 6.3. Suppose 1/n 	 ε3 	 ε4 	 1. Let G be a digraph on n vertices
with δ0(G) ≥ n/2. Suppose A,B, S, T is a partition of V (G) satisfying (Q1)–(Q9). If
σ(C) < ε4n, then there is an exceptional cover of G of length at most 21ε4n.

Proof. Let d := b − a. Let P be any subpath of C of length 20ε4n. Let Q be
a maximum consistent collection of disjoint paths of length three in P , such that
dC(Q,Q′) ≥ 7 for all distinct Q,Q′ ∈ Q. Then

|Q| ≥ (�20ε4n/7
 − 2ε4n)/2 > 4ε3n > d+ s+ t.

If necessary, reverse the order of all vertices in C so that the paths in Q are forward
paths. Apply Proposition 6.2 to find a matching M ⊆ E(B∪T,B) of size d and write
M = {e1, . . . , em, fm+1, . . . , fd}, where ei ∈ E(B) and fi ∈ E(T,B). Map the initial
vertex of P to any vertex in A. We will greedily find a copy of P in GM which covers
M and S ∪ T as follows.

Note that, by (Q8), we can cover each edge fi ∈ M by a forward path of the
form BTB. By (Q7), each of the vertices in S can be covered by a forward path of
the form ASB. Similarly, (Q8) allows us to find a forward path of the form BTA
covering each vertex in T . Moreover, note that (Q2)–(Q5) allow us to find a path of
length three of any orientation between any pair of vertices x ∈ A and y ∈ B using
only edges from E(A,B) ∪ E(B,A). So we can find a copy of P which covers every
edge in M and every vertex in (S ∪ T ) \ V (M) by a copy of a path in Q and which
has the form

(A ∗BB)m(A ∗BTB)d−m(A ∗ASB)s(A ∗BT )t−d+mA ∗X,

where X ∈ {A,B}. We may assume that X = A by extending the path P by one
vertex if necessary. Let PG denote this copy of P in G.

Now (EC1) and (EC2) hold. It remains to check (EC3). Observe that PG contains
no repeated As and exactly d repeated Bs, these occur in the subpath of PG of the
form (A ∗BB)m(A ∗BTB)d−m. By (6.1), we see that

|B \ V (PG)| − |A \ V (PG)| = 1,

so (EC3) is satisfied. Hence PG forms an exceptional cover.

6.2. Finding an exceptional cover when C has many sink vertices,
σ(C) ≥ ε4n. When C is far from being consistently oriented, we use sink and
source vertices to cover the vertices in S ∪ T . A natural approach would be to try to
cover the vertices in S ∪ T by paths of the form ASA and BTB whose central vertex
is a sink or by paths of the form ATA and BSB whose central vertex is a source. In
essence, this is what we will do, but there are some technical issues we will need to
address. The most obvious is that each time we cover a vertex in S or T by a path
of one of the above forms, we will introduce a repeated A or a repeated B, so we will
need to cover the exceptional vertices in a “balanced” way.

Let P be a subpath of C and let m be the number of sink vertices in P . Sup-
pose that P1, P2, P3 is a partition of P into internally disjoint paths such that P =
(P1P2P3). We say that P1, P2, P3 is a useful tripartition of P if there exist Qi ⊆ V (Pi)
such that
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ARBITRARY ORIENTATIONS OF HAMILTON CYCLES 1571

• P1 and P2 have even length;
• |Qi| ≥ �m/12
 for i = 1, 2, 3;
• all vertices in Q1 ∪ Q3 are sink vertices and are an even distance apart;
• all vertices in Q2 are source vertices and are an even distance apart.

Note that a useful tripartition always exists. We say that the sets Q1,Q2,Q3 are
sink/source/sink sets for the tripartition P1, P2, P3. We say that a subpath L ⊆ P2 is
a link if L has even length and if, writing x for the initial vertex and y for the final
vertex of L, the paths (P2x) and (yP2) each contain at least |Q2|/3 elements of Q2.

Proposition 6.4. Let 1/n 	 ε 	 η 	 τ ≤ 1. Let G be a digraph on n vertices
and let A,B, S, T be a partition of V (G). Let SA, SB be disjoint subsets of S and
TA, TB be disjoint subsets of T . Let a := |A|, b := |B|, sA := |SA|, sB := |SB|,
tA := |TA|, tB := |TB| and let a1 ∈ A. Suppose that
(i) a, b ≥ τn;
(ii) sA, sB, tA, tB ≤ εn;
(iii) δ0(G[A,B]) ≥ ηn;
(iv) d±B(x) ≥ b− εn for all but at most εn vertices x ∈ A;
(v) d±A(x) ≥ a− εn for all but at most εn vertices x ∈ B;
(vi) d−A(x) ≥ ηn for all x ∈ SA, d+B(x) ≥ ηn for all x ∈ SB, d+A(x) ≥ ηn for all

x ∈ TA and d−B(x) ≥ ηn for all x ∈ TB.
Suppose that P is a path of length at most η2n which contains at least 200εn sink ver-
tices. Let P1, P2, P3 be a useful tripartition of P with sink/source/sink sets Q1,Q2,Q3.
Let L ⊆ P2 be a link. Suppose that G \ (SA ∪ SB ∪ TA ∪ TB) contains a copy LG of
L which is an AB-path if dC(P,L) is even and a BA-path otherwise. Let rA be the
number of repeated As in LG and rB be the number of repeated Bs in LG. Let G′ be
the graph with vertex set V (G) and edges

E(A,B ∪ SA) ∪E(B,A ∪ TB) ∪E(TA, A) ∪ E(SB, B) ∪ E(LG).

Then G′ contains a copy PG of P such that
• LG ⊆ PG;
• PG covers SA, SB, TA, TB;
• a1 is the initial vertex of PG;
• the final vertex of PG lies in B if P has even length and A if P has odd
length;

• PG has sA + tA + rA repeated As and sB + tB + rB repeated Bs.
Proof. We may assume, without loss of generality, that the initial vertex of P

lies in Q1. If not, let x be the first vertex on P lying in Q1 and greedily embed the
initial segment (Px) of P starting at a1 using edges in E(A,B) ∪E(B,A). Let a′1 be
the image of x. We can then use symmetry to relabel the sets A,B, SA, SB, TA, TB,
if necessary, to assume that a′1 ∈ A.

We will use (vi) to find a copy of P which covers the vertices in SA ∪ TB by sink
vertices in Q1 ∪ Q3 and the vertices in SB ∪ TA by source vertices in Q2. We will
use that |Qi| ≥ 15εn for all i and also that (iii)–(v) together imply that G′ contains
a path of length three of any orientation between any pair of vertices in x ∈ A and
y ∈ B. Consider any q1 ∈ Q1 and q2 ∈ Q2. The order in which we cover the vertices
will depend on whether dC(q1, q2) is even or odd (note that the parity of dC(q1, q2)
does not depend on the choice of q1 and q2).

Suppose first that dC(q1, q2) is even. We find a copy of P in G′ as follows. Map
the initial vertex of P to a1. Then greedily cover all vertices in TB so that they are
the images of sink vertices in Q1 using a path PG

1 which is isomorphic to P1 and has
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1572 DEBIASIO, KÜHN, MOLLA, OSTHUS, AND TAYLOR

the form (A ∗ BTBB)tBA ∗ A. Let xL be the initial vertex of L and yL be the final
vertex. Let xG

L and yGL be the images of xL and yL in LG. Cover all vertices in SB so
that they are the images of source vertices in Q2 using a path isomorphic to (P2xL)
which starts from the final vertex of PG

1 and ends at xG
L . This path has the form

(A ∗ BSBB)sBA ∗ X , where X := A if dC(P,L) is even and X := B if dC(P,L) is
odd. Now use the path LG. Next cover all vertices in TA so that they are the images
of source vertices in Q2 using a path isomorphic to (yLP2) whose initial vertex is yGL .
This path has the form Y ∗ A(B ∗ATAA)

tAB ∗B, where Y := B if dC(P,L) is even
and Y := A if dC(P,L) is odd. Let PG

2 denote the copy of P2 obtained in this way.
Finally, starting from the final vertex of PG

2 , find a copy of P3 which covers all vertices
in SA by sink vertices in Q3 and has the form (B ∗ ASAA)

sAB ∗ B if P (and thus
also P3) has even length and (B ∗ ASAA)

sAB ∗ A if P (and thus also P3) has odd
length. If dC(q1, q2) is odd, we find a copy of P which covers TB, TA, V (LG), SB, SA

(in this order) in the same way. Observe that PG has sA + tA + rA repeated As and
sB + tB + rB repeated Bs, as required.

We are now in a position to find an exceptional cover. The proof splits into a
number of cases and we will require the assumption that C is not antidirected. We
will need a matching found using Proposition 6.2 and a careful assignment of the
remaining vertices in S ∪ T to sets SA, SB, TA, and TB to ensure that the path found
by Proposition 6.4 leaves a balanced number of vertices in A and B uncovered.

Lemma 6.5. Suppose 1/n 	 ε3 	 ε4 	 1. Let G be a digraph on n vertices with
δ0(G) ≥ n/2. Suppose A,B, S, T is a partition of V (G) satisfying (Q1)–(Q9). If C is
an oriented cycle on n vertices, C is not antidirected and σ(C) ≥ ε4n, then there is
an exceptional cover P of G of length at most 2ε4n.

Proof. Let d := b− a, k := t− s and r := s+ t. Since σ(C) ≥ ε4n, we can use an
averaging argument to guarantee a subpath Q′ of C of length at most ε4n such that
Q′ contains at least 2

√
ε3n sink vertices. Let Q be an initial subpath of Q′ which has

odd length and contains
√
ε3n sink vertices.

Case 1. a < b or s < t.

We will find disjoint sets of vertices SA, SB, TA, TB, of sizes sA, sB, tA, tB, respec-
tively, and a matching M ′ = E ∪ E′ (where E and E′ are disjoint) such that the
following hold:

(E1) SA ∪ SB = S and TA ∪ TB = T \ V (E′);
(E2) E ⊆ E(B), |E| ≤ d;
(E3) E′ ⊆ E(B ∪ T,B) ∪E(A,A ∪ T ) and 1 ≤ |E′| ≤ 2;
(E4) if p := |E′ ∩ E(B)| − |E′ ∩ E(A)|, then sA + tA + d = sB + tB + p+ |E|.
We find sets satisfying (E1)–(E4) as follows. Suppose first that n is odd. Note

that we can find a matching M ⊆ E(B ∪ T,B) of size d + 1. Indeed, if a < b then
M exists by Proposition 6.2 and if a = b, and so s < t, we use that a+ s < n/2 and
δ0(G) ≥ n/2 to find M of size d + 1 = 1. Fix one edge e ∈ M and let E′ := {e}.
There are r′ := r − |V (E′) ∩ T | vertices in S ∪ T which are not covered by E′. Set
d′ := min{r′, d− p} and let E ⊆ (M \ E′) ∩ E(B) have size d− p− d′.

Suppose that n is even. If a < b, by Proposition 6.2, we find a matching M of
size d + 2 in E(B ∪ T,B). Fix two edges e1, e2 ∈ M and let E′ := {e1, e2}. Choose
r′, d′, and E as above.

If n is even and a = b, then a+s = b+s = (n−k)/2 ≤ n/2−1. So d+A∪T (x) ≥ k/2
for each x ∈ A and d−B∪T (x) ≥ k/2 for each x ∈ B. Either we can find a matching
M of size two in E(B ∪ T,B) ∪ E(A,A ∪ T ) or t = s+ 2 and there is a vertex v ∈ T
such that A ⊆ N−(v) and B ⊆ N+(v). In the latter case, move v to S to get a new
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partition satisfying (Q1)–(Q9) and the conditions of Case 2. So we will assume that
the former holds. Let E′ := M , E := ∅, r′ := r − |V (E′) ∩ T |, and d′ := −p.

In each of the above cases, note that d′ ≡ r′ mod 2 and |d′| ≤ r′. So we can
choose disjoint subsets SA, SB, TA, TB satisfying (E1) such that sA + tA = (r′ − d′)/2
and sB + tB = (r′ + d′)/2. Then (E4) is also satisfied.

We construct an exceptional cover as follows. Let L1 denote the oriented path of
length two whose second vertex is a sink and let L2 denote the oriented path of length
two whose second vertex is a source. For each e ∈ E′, we find a copy L(e) of L1 or
L2 covering e. If e ∈ E(A) let L(e) be a copy of L1 of the form AAB, if e ∈ E(B)
let L(e) be a copy of L1 of the form ABB, if e ∈ E(A, T ) let L(e) be a copy of L1 of
the form ATB, and if e ∈ E(T,B) let L(e) be a copy of L2 of the form ATB. Note
that for each e ∈ E′, the orientation of L(e) is the same regardless of whether it is
traversed from its initial vertex to final vertex or vice versa. This means that we can
embed it either as an AB-path or a BA-path.

Let a1 be any vertex in A and let e1 ∈ E′. Let rA and rB be the number of
repeated As and Bs, respectively, in L(e1). So rA = 1 if and only if e1 ∈ E(A);
otherwise rA = 0. Also, rB = 1 if and only if e1 ∈ E(B); otherwise rB = 0. Consider
a useful tripartition P1, P2, P3 of Q. Let L ⊆ P2 be a link which is isomorphic to
L(e1). Let x denote the final vertex of Q. Using Proposition 6.4 (with 2ε3, ε4, 1/4
playing the roles of ε, η, τ), we find a copy QG of Q covering SA, SB, TA, TB whose
initial vertex is a1. Moreover, L(e1) ⊆ QG ⊆ G{e1} ⊆ GM , the final vertex xG of
QG lies in A, QG has sA + tA + rA repeated As and sB + tB + rB repeated Bs. If
|E′| = 2, let e2 ∈ E′ \ {e1}. Let Q′′ := (xQ′). Let y be the second source vertex in
Q′′ if e2 ∈ E(T,B) and the second sink vertex in Q′′ otherwise. Let y− be the vertex
preceding y on C, let y+ be the vertex following y on C and let q := dC(x, y

−). Find
a path in G whose initial vertex is xG which is isomorphic to (Q′′y−) and is of the
form A ∗ A if q is even and A ∗ B if q is odd, such that the final vertex of this path
is an endvertex of L(e2). Then use the path L(e2) itself. Let Z := B if q is even and
Z := A if q is odd. Finally, extend the path to cover all edges in E using a path of
the form Z ∗ B(A ∗ ABB)|E|A which is isomorphic to an initial segment of (y+Q′′).
Let P denote the resulting extended subpath of C, so Q ⊆ P ⊆ Q′. Let PG be the
copy of P in GM .

Note that (EC1) and (EC2) hold. Each repeated A in PG is either a repeated A
in QG or it occurs when PG uses L(e2) in the case when e2 ∈ E(A). Similarly, each
repeated B in PG is either a repeated B in QG or it occurs when PG uses L(e2) in
the case when e2 ∈ E(B) or when PG uses an edge in E. Substituting into (6.1) and
recalling (E4) gives

|B \ V (PG)| − |A \ V (PG)| = b− a− (sB + tB + |E|+ |E′ ∩E(B)|)
+ (sA + tA + |E′ ∩E(A)|) + 1

= d− (sB + tB + |E|)− p+ (sA + tA) + 1 = 1.

So (EC3) is satisfied and PG is an exceptional cover.

Case 2. a = b and s = t.

If s = t = 0, then any path consisting of one vertex in A is an exceptional cover.
So we will assume that s, t ≥ 1. We say that C is close to antidirected if it contains
an antidirected subpath of length 500ε3n.

Case 2.1. C is close to antidirected.
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If there is an edge e ∈ E(T,B) ∪ E(B,S) ∪ E(S,A) ∪ E(A, T ), then we are
able to find an exceptional cover in the graph G{e}. We illustrate how to do this
when e = t1b1 ∈ E(T,B); the other cases are similar. Since C is close to but not
antidirected, it follows that C contains a path P of length 500ε3n which is antidirected
except for the initial two edges which are oriented consistently. Let s1 ∈ S. If the
initial edge of P is a forward edge, let P ′ be the subpath of P consisting of the first
three edges of P and find a copy (P ′)G of P ′ in G of the form A{s1}BA. If the
initial edge of P is a backward edge, let P ′ consist of the first two edges of P and let
(P ′)G be a backward path of the form B{s1}A. Let P ′′ be the subpath of P formed
by removing from P all edges in P ′. Let xG ∈ A be the final vertex of (P ′)G. Set
SA := S \{s1}, TB := T \{t1}, and SB, TA := ∅. Let P1, P2, P3 be a useful tripartition
of P ′′. As in Case 1, let L2 denote the oriented path of length two whose second vertex
is a source. Let L ⊆ P2 be a link which is isomorphic to L2 and map L to a path
LG of the form BTA which uses the edge t1b1. We use Proposition 6.4 to find a copy
(P ′′)G of P ′′ which uses LG and covers SA∪TB and whose initial vertex is mapped to
xG. Moreover, the final vertex of P ′′ is mapped to A ∪B and (P ′′)G has sA = s− 1
repeated As and tB = t− 1 repeated Bs. Let PG be the path (P ′)G ∪ (P ′′)G. Then
PG satisfies (EC1) and we may assume that (EC2) holds, by adding a vertex in A as
a new initial vertex and/or final vertex if necessary. The repeated As and Bs in PG

are precisely the repeated As and Bs in (P ′′)G. Therefore, (6.1) implies that (EC3)
holds and PG forms an exceptional cover.

Let us suppose then that E(T,B) ∪ E(B,S) ∪ E(S,A) ∪ E(A, T ) is empty. If
S = {s1}, T = {t1}, then, since δ0(G) ≥ n/2, G must contain the edge s1t1 and edges
a1s1, b1t1 for some a1 ∈ A, b1 ∈ B. Since C is not antidirected but has many sink
vertices we may assume that C contains a subpath P = (uvxyz), where uv, vx, yx ∈
E(C). We use the edges a1s1, s1t1, b1t1, as well as an additional AB- or BA-edge, to
find a copy PG of P in G of the form ASTBA. The path PG forms an exceptional
cover.

If s = t = 2 and e(S) = e(T ) = 2, we find an exceptional cover as follows. Write
S = {s1, s2}, T = {t1, t2}. We have that sisj , titj ∈ E(G) for all i �= j. Note that C is
not antidirected, so C must contain a path of length six which is antidirected except
for its initial two edges which are consistently oriented. Suppose first that the initial
two edges of P are forward edges. Let a1 ∈ A be an inneighbor of s1. Note that s2
has an inneighbor in T , without loss of generality t1. Let b1 ∈ B be an inneighbor of
t2 and a2 ∈ A be an outneighbor of b1. We find a copy PG of P which has the form
ASSTTBA and uses the edges a1s1, s1s2, t1s2, t1t2, b1t2, b1a2, in this order. If the
initial two edges of P are backward, we instead find a path of the form ATTSSBA.
Note that in both cases, PG satisfies (EC1) and (EC2). PG has no repeated As and
Bs and (6.1) implies that (EC3) holds. So PG forms an exceptional cover.

So let us assume that s, t ≥ 2 and, additionally, e(S) + e(T ) < 4 if s = 2.
There must exist two disjoint edges e1 = t1s1, e2 = s2t2, where s1, s2 ∈ S and
t1, t2 ∈ T (since δ0(G) ≥ n/2, and E(T,B) ∪ E(B,S) ∪ E(S,A) ∪ E(A, T ) = ∅). We
use these edges to find an exceptional cover as follows. We let SA := S \ {s1, s2},
TB := T \{t1, t2}, sA := |SA|, and tB := |TB|. We use e1 and e2 to find an antidirected
path PG which starts with a backward edge and is of the form

A{t1}{s1}A(B ∗ASAA)
sAB ∗B{s2}{t2}B(A ∗BTBB)sBA.

The length of PG is less than 500ε3n. So, as C is close to antidirected, C must contain
a subpath isomorphic to PG. We claim that PG is an exceptional cover. Clearly, PG
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satisfies (EC1) and (EC2). For (EC3), note that PG contains an equal number of
repeated As and repeated Bs. Then (6.1) implies that |B∩V (PG)| = |A∩V (PG)|+1.

Case 2.2. C is far from antidirected.

Recall that Q is a subpath of C of length at most ε4n containing at least
√
ε3n sink

vertices. Let Q be a maximum collection of sink vertices in Q such that all vertices
in Q are an even distance apart, then |Q| ≥ √

ε3n/2. Partition the path Q into 11
internally disjoint subpaths so that Q = (P1P

′
1P2P

′
2 . . . P5P

′
5P6) and each subpath

contains at least 300ε3n elements of Q. Note that each P ′
i has length greater than

500ε3n and so is not antidirected, that is, each P ′
i must contain a consistently oriented

subpath P ′′
i of length two. At least three of the P ′′

i must form a consistent set. Thus
there must exist i < j such that dC(P

′′
i , P

′′
j ) is even and {P ′′

i , P
′′
j } is consistent. We

may assume, without loss of generality, that P ′′
i , P

′′
j are forward paths and that the

second vertex of Pi is in Q. Let P be the subpath of Q whose initial vertex is the
initial vertex of Pi and whose final vertex is the final vertex of P ′′

j .
We will find an exceptional cover isomorphic to P as follows. Choose s1 ∈ S and

t1 ∈ T arbitrarily. Set SA := S \ {s1} and TB := T \ {t1}. Map the initial vertex of P
to A. We find a copy of P which maps each vertex in SA to a sink vertex in Pi and
each vertex in TB to a sink vertex in Pj . If dC(Pi, P

′′
i ) is even, P ′′

i is mapped to a
path L′ of the form A{s1}B and P ′′

j is mapped to a path L′′ of the form B{t1}A. If
dC(Pi, P

′′
i ) is odd, P

′′
i is mapped to a path L′ of the form B{t1}A and P ′′

j is mapped

to a path L′′ of the form A{s1}B. Thus, if dC(Pi, P
′′
i ) is even, we obtain a copy PG

which starts with a path of the form A(B ∗ASAA)
sAB ∗A, then uses L′ and continues

with a path of the form B ∗ B(A ∗ BTBB)tBA ∗ B. Finally, the path uses L′′. The
case when dC(Pi, P

′′
i ) is odd is similar. (EC1) holds and we may assume that (EC2)

holds by adding one vertex to P if necessary. Note that PG contains an equal number
of repeated As and Bs, so (6.1) implies that (EC3) holds and PG is an exceptional
cover.

6.3. Finding a copy of C. Proposition 6.3 and Lemma 6.5 allow us to find
a short exceptional cover for any cycle which is not antidirected. We complete the
proof of Lemma 6.1 by extending this path to cover the small number of vertices of
low degree remaining in A and B and then applying Proposition 4.2.

Proof of Lemma 6.1. Let P be an exceptional cover of G of length at most 21ε4n,
guaranteed by Proposition 6.3 or Lemma 6.5. Let

X := {v ∈ A : d+B(v) < n/2− ε3n or d−B(v) < n/2− ε3n} and

Y := {v ∈ B : d+A(v) < n/2− ε3n or d−A(v) < n/2− ε3n}.

(Q4) and (Q5) together imply that |X ∪ Y | ≤ 2ε3n. Together with (Q3), this allows
us to cover the vertices in X ∪ Y by any orientation of a path of length at most
ε4n. So we can extend P to cover the remaining vertices in X ∪ Y (by a path which
alternates between A and B). Let P ′ denote this extended path. Thus |P ′| ≤ 22ε4n.
Let x and y be the endvertices of P ′. We may assume that x, y ∈ A \ X . Let
A′ := (A \ V (P ′)) ∪ {x, y} and B′ := B \ V (P ′) and consider G′ := G[A′, B′]. Note
that |A′| = |B′|+ 1 by (EC3) and

δ0(G′) ≥ n/2− ε3n− 22ε4n ≥ (7|B′|+ 2)/8.

Thus, by Proposition 4.2(ii), G′ has a Hamilton path of any orientation between x
and y in G. We combine this path with P ′ to obtain a copy of C.
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7. G is ABST -extremal. In this section we prove that Theorem 1.2 holds for
all ABST -extremal graphs. When G is ABST -extremal, the sets A, B, S, and T
are all of significant size; G[S] and G[T ] look like cliques and G[A,B] resembles a
complete bipartite graph. The proof will combine ideas from sections 5 and 6.

Lemma 7.1. Suppose that 1/n 	 ε 	 ε1 	 η1 	 τ 	 1. Let G be a digraph
on n vertices with δ0(G) ≥ n/2 and assume that G is ABST -extremal. If C is any
orientation of a cycle on n vertices which is not antidirected, then G contains a copy
of C.

We will again split the proof into two cases, depending on how many changes
of direction C contains. In both cases, the first step is to find an exceptional cover
(defined in section 6) which uses only a small number of vertices from A ∪B.

7.1. Finding an exceptional cover when C has few sink vertices, σ(C) <
ε2n. The following lemma allows us to find an exceptional cover when C is close
to being consistently oriented. The two main components of the exceptional cover
are a path PS ⊆ G[S] covering most of the vertices in S and another path PT ⊆
G[T ] covering most of the vertices in T . We are able to find PS and PT because
G[S] and G[T ] are almost complete. A shorter path follows which uses long runs
(recall that a long run is a consistently oriented path of length 20) and a small
number of vertices from A ∪ B to cover any remaining vertices in S ∪ T . We use
edges found by Proposition 5.6 to control the number of repeated As and Bs on this
path.

Lemma 7.2. Suppose 1/n 	 ε 	 ε1 	 ε2 	 η1 	 τ 	 1. Let G be a digraph
on n vertices with δ0(G) ≥ n/2. Suppose A,B, S, T is a partition of V (G) satisfying
(R1)–(R10). Let C be an oriented cycle on n vertices. If σ(C) < ε2n, then G has an
exceptional cover P such that |V (P ) ∩ (A ∪B)| ≤ 2η21n.

Proof. Let s∗ := s− �ε2n� and d := b− a. Define S′ ⊆ S to consist of all vertices
x ∈ S with d+B∪S(x) ≥ b + s − ε1/3n and d−A∪S(x) ≥ a + s − ε1/3n. Define T ′ ⊆ T
similarly. Note that |S \ S′|, |T \ T ′| ≤ ε1n by (R9) and (R10).

We may assume that the vertices of C are labeled so that the number of forward
edges is at least the number of backward edges. Let Q ⊆ C be a forward path of
length two; this exists since σ(C) < ε2n. If C is not consistently oriented, we may
assume that Q is immediately followed by a backward edge. Define e1, e2, e3 ∈ E(C)
such that dC(e1, Q) = s∗, dC(Q, e2) = s∗ + 1, dC(Q, e3) = 2. Let P0 := (e1Ce2).

If at least one of e1, e2 is a forward edge, define paths PT and PS of order s∗ so
that P0 = (e1PTQPSe2). In this case, map Q to a path QG in G of the form T ′AS′. If
e1 and e2 are both backward edges, our choice of Q implies that e3 is also a backward
edge. Let PT and PS be defined so that P0 = (e1PTQe3PSe2). So |PT | = s∗ and
|PS | = s∗ − 1. In this case, map (Qe3) to a path QG of the form T ′ABS′.

Let pT := |PT | and pS := |PS |. Our aim is to find a copy PG
0 of P0 which maps

PS to G[S] and PT to G[T ]. We will find PG
0 of the form F as given in Table 1.

Let M be a set of d + 1 edges in E(T,B ∪ S) ∪ E(B,S) guaranteed by Propo-
sition 5.6. We also define a subset M ′ of M which we will use to extend PG

0 to an
exceptional cover. If e1, e2 are both forward edges, choose M ′ ⊆ M of size d. Oth-
erwise let M ′ := M . Let d′ := |M ′|. Let M ′

1 be the set of all edges in M ′ which
are disjoint from all other edges in M ′ and let d′1 := |M ′

1|. So M ′ \ M ′
1 consists of

(d′ − d′1)/2 =: d′2 disjoint consistently oriented paths of the form TBS.
We now fix copies eG1 and eG2 of e1 and e2. If e1 is a forward edge, let eG1 be

a BT ′-edge; otherwise let eG1 be a T ′A-edge. If e2 is a forward edge, let eG2 be a
S′B-edge; otherwise let eG2 be an AS′-edge. Let t1 be the endpoint of eG1 in T ′, let s2
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Table 1

Proof of Lemma 7.2: PG
0 has form F .

e1 Forward Forward Backward Backward
e2 Forward Backward Forward Backward

F B(T )pTA(S)pSB B(T )pTA(S)pSA A(T )pTA(S)pSB A(T )pTAB(S)pSA

be the endpoint of eG2 in S′, and let t2 ∈ T ′ and s1 ∈ S′ be the endpoints of QG. Let
v be the final vertex of eG2 and let X ∈ {A,B} be such that v ∈ X .

We now use (R5), (R6), (R9), and (R10) to find a collection P of at most 3ε1n+1
disjoint, consistently oriented paths which cover the edges in M ′ and the vertices in
S\S′ and T \T ′. P uses each edge e ∈ M ′

1 in a forward path Pe of the form B(S∪T )jB
for some 1 ≤ j ≤ 4 and P uses each path in M ′ \M ′

1 in a forward path of the form
BT jBSj′B for some 1 ≤ j, j′ ≤ 4. The remaining vertices in S \S′, T \T ′ are covered
by forward paths in P of the form A(S)jB or B(T )jA for some 1 ≤ j ≤ 3.

Let S′′ ⊆ S \ (V (P) ∪ {s1, s2}) and T ′′ ⊆ T \ (V (P) ∪ {t1, t2}) be sets of size at
most 2ε2n so that |S′′| + pS = |S \ V (P)| and |T ′′| + pT = |T \ V (P)|. Note that
S′′ ⊆ S′ and T ′′ ⊆ T ′. So we can cover the vertices in S′′ by forward paths of the
form ASB and we can cover the vertices in T ′′ by forward paths of the form BTA.
Let P ′ be a collection of disjoint paths thus obtained. Let P1 be the subpath of order
η21n following P0 on C. Note that P1 contains at least

√
ε2n disjoint long runs. Each

path in P ∪P ′ will be contained in the image of such a long run. (Each forward path
in P ∪P ′ might be traversed by PG

1 in a forward or backward direction; for example,
a forward path of the form BT jBSj′B could appear in PG

1 as a forward path of the
form BT jBSj′B or a backward path of the form BSj′BT jB.) So we can find a copy
PG
1 of P1 starting from v which uses P ∪ P ′ and has the form

X ∗AX1X2 . . . Xd′
1
Y1Y2 . . . Yd′

2
Z1Z2 . . . Z�B ∗ Y

for some 	 ≥ 0 and Y ∈ {A,B}, where

Xi ∈ {B(S ∪ T )jB ∗A : 1 ≤ j ≤ 4},
Yi ∈ {B(S ∪ T )jB(S ∪ T )j

′
B ∗A : 1 ≤ j, j′ ≤ 4}, and

Zi ∈ {BA(S ∪ T )jB ∗A,B(S ∪ T )jA ∗A : 1 ≤ j ≤ 3}.

Let S∗ be the set of uncovered vertices in S together with the vertices s1, s2 and
let T ∗ be the set of uncovered vertices in T together with t1 and t2. Write GS := G[S∗]
and GT := G[T ∗]. Now δ0(GT ) ≥ t − √

ε2n ≥ 7|GT |/8 and so GT has a Hamilton
path from t1 to t2 which is isomorphic to PT , by Proposition 4.2(i). Similarly, we find
a path isomorphic to PS from s1 to s2 in GS . Altogether, this gives us the desired
copy PG

0 of P0 in G. Let PG := PG
0 PG

1 .
We now check that PG forms an exceptional cover. Clearly (EC1) holds and we

may assume that PG has both endvertices in A (by extending the path if necessary) so
that (EC2) is also satisfied. For (EC3), observe that PG

1 contains exactly d′1+2d′2 = d′

repeated Bs, and these occur in the subpath of the form X1X2 . . .Xd′
1
Y1Y2 . . . Yd′

2

covering the edges in M ′. If e1 and e2 are both forward edges, then, consulting
Table 1, we see that PG

0 has no repeated As and that there are no other repeated As
or Bs in PG. Recall that in this case d′ = d, so (6.1) gives |B\V (PG)|−|A\V (PG)| =
d−d′+1 = 1. If at least one of e1, e2 is a backward edge, using Table 1, we see that there
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is one repeated A in PG
0 and there are no other repeated As or Bs in PG. In this case,

we have d′ = d+1, so (6.1) gives |B\V (PG)|−|A\V (PG)| = d−d′+1+1 = 1. Hence
PG satisfies (EC3) and forms an exceptional cover. Furthermore, |V (PG)∩(A∪B)| ≤
2η21n.

7.2. Finding an exceptional cover when C has many sink vertices,
σ(C) ≥ ε2n. In Lemma 7.4, we find an exceptional cover when C contains many
sink vertices. The proof will use the following result, which allows us to find short
AB- and BA-paths of even length. We will say that an AB- or BA-path P in G is
useful if it has no repeated As or Bs and uses an odd number of vertices from S ∪ T .

Proposition 7.3. Suppose 1/n 	 ε 	 ε1 	 η1 	 τ 	 1. Let G be a digraph
on n vertices with δ0(G) ≥ n/2. Suppose A,B, S, T is a partition of V (G) satisfying
(R1)–(R10). Let L1 and L2 be oriented paths of length eight. Then G contains disjoint
copies LG

1 and LG
2 of L1 and L2 such that each LG

i is a useful path. Furthermore, we
can specify whether LG

i is an AB-path or a BA-path.

Proof. Define S′ ⊆ S to be the set consisting of all vertices x ∈ S with d±S (x) ≥
η1n/2. Define T ′ ⊆ T similarly. Note that |S \ S′|, |T \ T ′| ≤ ε1n by (R9) and (R10).
We claim that G contains disjoint edges e, f ∈ E(B ∪ T, S′) ∪ E(A ∪ S, T ′). Indeed,
if a + s < n/2 it is easy to find disjoint e, f ∈ E(B ∪ T, S′), since δ0(G) ≥ n/2.
Otherwise, we must have a + s = b + t = n/2 and so each vertex in S′ has at least
one inneighbor in B ∪ T and each vertex in T ′ has at least one inneighbor in A ∪ S.
Let G′ be the bipartite digraph with vertex classes A ∪ S and B ∪ T and all edges in
E(B ∪ T, S′)∪E(A∪ S, T ′). The claim follows from applying König’s theorem to the
underlying undirected graph of G′.

We demonstrate how to find a copy LG
1 of L1 in G which is an AB-path. The

argument when LG
1 is a BA-path is very similar. The path LG

1 will have the form
A ∗ B(T )i(S)j(T )kA ∗ B or A ∗ A(T )i(S)j(T )kB ∗ B, for some i, j, k ≥ 0 such that
i+ j + k is odd. Note then that LG

1 will have no repeated As or Bs.
First suppose that L1 is not antidirected, so L1 has a consistently oriented subpath

L′ of length two. We will find a copy of L1, using (R9)–(R10) to map L′ to a forward
path of the form ASB or BTA or a backward path of the form BSA or ATB. More
precisely, if L′ is a forward path, let LG

1 be a path of the form A∗ASB∗B if dC(L1, L
′)

is even and a path of the form A ∗ BTA ∗ B if dC(L1, L
′) is odd. If L′ is backward,

let LG
1 be a path of the form A∗ATB ∗B if dC(L1, L

′) is even and a path of the form
A ∗BSA ∗B if dC(L1, L

′) is odd.
Suppose now that L1 is antidirected. We will find a copy LG

1 of L1 which contains
e. If e ∈ E(B,S′), we use (R9) and the definition of S′ to find a copy of L1 of
the following form. If the initial edge of L1 is a forward edge, we find LG

1 of the
form A(S)3B ∗ B. If the initial edge is a backward edge, we find LG

1 of the form
AB(S)3A ∗ B. If e ∈ E(A, T ′) we will use (R10) and the definition of T ′ to find a
copy of L1 of the following form. If the initial edge of L1 is a forward edge, we find
LG
1 of the form A(T )3B ∗B. If the initial edge is a backward edge, we find LG

1 of the
form AB(T )3A ∗B.

If L1 is antidirected and e ∈ E(T, S′), we will use (R4), (R6), (R9), (R10), and the
definition of S′ to find a copy of L1 containing e. If the initial edge of L1 is a forward
edge, find LG

1 of the form AB(S)2(T )2h−1A∗B, where 1 ≤ h ≤ 2. If the initial edge is
a backward edge, find LG

1 of the form A(T )2h−1(S)2B ∗B, where 1 ≤ h ≤ 2. Finally,
we consider the case when e ∈ E(S, T ′). If the initial edge of L1 is a forward edge,
we find LG

1 of the form AB(S)2h−1(T )2A ∗B, where 1 ≤ h ≤ 2. If the initial edge of
L1 is a backward edge, we find LG

1 of the form A(T )2(S)2h−1B ∗B, where 1 ≤ h ≤ 2.
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We find a copy LG
2 of L2 (which is disjoint from LG

1 ) in the same way, using the
edge f if L2 is an antidirected path.

As in the case when there were few sink vertices, we will map long paths to G[S]
and G[T ]. It will require considerable work to choose these paths so that G contains
edges which can be used to link these paths together and so that we are able to cover
the remaining vertices in S ∪ T using sink and source vertices in a “balanced” way.
In many ways, the proof is similar to the proof of Lemma 6.5. In particular, we will
use Proposition 6.4 to map sink and source vertices to some vertices in S ∪ T .

Lemma 7.4. Suppose 1/n 	 ε 	 ε1 	 ε2 	 η1 	 τ 	 1. Let G be a digraph
on n vertices with δ0(G) ≥ n/2. Suppose A,B, S, T is a partition of V (G) satisfying
(R1)–(R10). Let C be an oriented cycle on n vertices which is not antidirected. If
σ(C) ≥ ε2n, then G has an exceptional cover P such that |V (P ) ∩ (A ∪B)| ≤ 5ε2n.

Proof. Let d := b− a. Define S′ ⊆ S to be the set consisting of all vertices x ∈ S
with d±S (x) ≥ η1n/2 and define T ′ ⊆ T similarly. Let S′′ := S \ S′ and T ′′ := T \ T ′.
Note that |S′′|, |T ′′| ≤ ε1n by (R9) and (R10). By (R5), all vertices x ∈ S′′ satisfy
d−A(x) ≥ η1n/2 or d+B(x) ≥ η1n/2 and, by (R6), all x ∈ T ′′ satisfy d+A(x) ≥ η1n/2
or d−B(x) ≥ η1n/2. In our proof below, we will find disjoint sets SA, SB ⊆ S and
TA, TB ⊆ T of suitable size such that

d−A(x) ≥ η1n/2 for all x ∈ SA and d+B(x) ≥ η1n/2 for all x ∈ SB;(7.1)

d−B(x) ≥ η1n/2 for all x ∈ TB and d+A(x) ≥ η1n/2 for all x ∈ TA.(7.2)

Note that (R9) implies that all but at most ε1n vertices from S could be added to
SA or SB and satisfy the conditions of (7.1). Similarly, (R10) implies that all but at
most ε1n vertices in T are potential candidates for adding to TA or TB so as to satisfy
(7.2). We will write sA := |SA|, sB := |SB|, tA := |TA|, and tB := |TB|.

Let s∗ := s − �√ε1n� and let 	 := 2�ε2n� − 1. If C contains an antidirected
subpath of length 	, let Q2 denote such a path. We may assume that the initial edge
of Q2 is a forward edge by reordering the vertices of C if necessary. Otherwise, choose

Q2 to be any subpath of C of length 	 such that Q2 contains at least ε
1/3
1 n sink

vertices and the second vertex of Q2 is a sink. Let Q1 be the subpath of C of length
	 such that dC(Q1, Q2) = 2s∗ + 	. Note that if Q1 is antidirected, then Q2 must also
be antidirected. Let e1, e2 be the final two edges of Q1 and let f1, f2 be the initial two
edges of Q2 (where the edges are listed in the order they appear in Q1 and Q2, i.e.,
(e1e2) ⊆ Q1 and (f1f2) ⊆ Q2). Note that f1 is a forward edge and f2 is a backward
edge.

Let Q′ be the subpath of C of length 14 such that dC(Q
′, Q2) = s∗. If Q′ is

antidirected, let Q be the subpath of Q′ of length 13 whose initial edge is a forward
edge. Otherwise let Q ⊆ Q′ be a consistently oriented path of length two. We will
consider the three cases stated below.

Case 1. Q1 and Q2 are antidirected. Moreover, {e2, f1} is consistent if and only
if n is even.

We will assume that the initial edge of Q is a forward edge, and the case when Q
is a backward path of length two is very similar. We will find a copy QG of Q which
is a T ′S′-path. If Q is a forward path of length two, map Q to a forward path QG of
the form T ′AS′. If Q is antidirected, we find a copy QG of Q as follows. Let Q′′ be
the subpath of Q of length eight such that dC(Q,Q′′) = 3. Recall that a path in G is
useful if it has no repeated As or Bs and uses an odd number of vertices from S ∪ T .
Using Proposition 7.3, we find a copy (Q′′)G of Q′′ in G which is a useful AB-path.
We find QG which starts with a path of the form T ′ABA, uses (Q′′)G, and then ends
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with a path of the form BAS′. Let qS and qT be the numbers of interior vertices of
QG in S and T , respectively.

If n is even, let e := e2, and if n is odd, let e := e1. In both cases, let f := f1.
The assumptions of this case imply that e and f are both forward edges. Let P :=
(Q1CQ2) and let PT and PS be subpaths of C which are internally disjoint from e, f
and Q and are such that (eCf) = (ePTQPSf). Our plan is to find a copy of PT in
G[T ] and a copy of PS in G[S]. Let pT := |PT | and pS := |PS |. If Q is a consistently
oriented path we have that qS , qT = 0 and pS+pT = dC(e, f)−1. If Q is antidirected,
then qS + qT is odd and pS + pT = dC(e, f)− 12. So in both cases we observe that

(7.3) pS + pT + qS + qT ≡ dC(e, f)− 1 ≡ n mod 2.

Choose SA, SB, TA, TB to satisfy (7.1) and (7.2) so that S′′ \ V (QG) ⊆ SA ∪ SB,
T ′′ \ V (QG) ⊆ TA ∪ TB, s = sA + sB + pS + qS , t = tA + tB + pT + qT , and
sA + tA + d = sB + tB. To see that this can be done, first note that the choice of s∗

implies that s− pS − qS ≥ √
ε1n/2 > |S′′|+ d and t− pT − qT ≥ √

ε1n/2 > |T ′′|+ d.
Let r := s + t − (pS + pT + qS + qT ). So r is the number of vertices in S ∪ T which
will not be covered by the copies of PT , PS or Q. Then (7.3) implies that

r ≡ s+ t− n ≡ d mod 2.

Thus we can choose the required subsets SA, SB, TA, TB so that sA + tA = (r − d)/2
and sB + tB = (r + d)/2. Note that (R3) and the choice of s∗ also imply that
sA + sB , tA + tB ≤ 2

√
ε1n.

Recall that Q1 is antidirected. So we can find a path (Q1e)
G isomorphic to (Q1e)

which covers the vertices in TA by source vertices and the vertices in TB by sink
vertices. We choose this path to have the form

X ∗A(BATAA ∗A)tA(BTBB ∗A)tBB ∗BT ′,

where X ∈ {A,B}. Observe that (Q1e)
G has tA repeated As and tB repeated Bs.

Find a path QG
2 isomorphic to Q2 of the form

S′B ∗A(BASAA ∗A)sA(BSBB ∗A)sBB ∗B
which covers all vertices in SA by sink vertices and all vertices in SB by source vertices.
QG

2 has sA repeated As and sB repeated Bs. So far, we have been working under the
assumption that Q starts with a forward edge. If Q is a backward path, the main
difference is that we let e := e1 if n is even and let e := e2 if n is odd. We let f := f2
so that e and f are both backward edges and we map Q to a backward path QG of
the form T ′BS′. Then (7.3) holds and we can proceed similarly as in the case when
Q is a forward path.

We find copies of PT in G[T ′] and PS in G[S′] as follows. Greedily embed the
first

√
ε1n vertices of PT to cover all uncovered vertices x ∈ T ′ with d+T (x) ≤ t−ε1/3n

or d−T (x) ≤ t− ε1/3n. Note that, by (R10), there are at most ε1n such vertices. Write
P ′
T ⊆ PT for the subpath still to be embedded and let t1 and t2 be the images of its

endvertices in T . Let T ∗ denote the sets of so far uncovered vertices in T together
with t1 and t2 and define GT := G[T ∗]. We have that δ0(GT ) ≥ t− ε1/3n− 3

√
ε1n ≥

7|GT |/8, using (R2), and so we can apply Proposition 4.2(i) to find a copy of P ′
T

in GT with the desired endpoints. In the same way, we find a copy of PS in G[S′].
Together with QG, (Q1e)

G, and QG
2 , this gives a copy PG of P in G such that

|V (PG) ∩ (A ∪B)| ≤ 5ε2n.
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Table 2

Proof of Lemma 7.4, Cases 2 and 3: PG
0 has form F , where A denotes an A-path with no

repeated As or Bs.

Initial edge of Q Forward Forward Backward Backward
e Forward Backward Forward Backward

F BT pTASpSB AT pTASpSA BT pTBSpSB AT pTBSpSA

d′ d d+ 2 d− 2 d

The path PG satisfies (EC1) and we may assume that (EC2) holds, by extending
the path by one or two vertices, if necessary, so that both of its endvertices lie in A.
Let us now verify (EC3). All repeated As and Bs in PG are repeated As and Bs in
the paths (Q1e)

G and QG
2 . So in total, PG has sA + tA repeated As and sB + tB

repeated Bs. Then (6.1) gives that PG satisfies

|B \ V (PG)| − |A \ V (PG)| = d− (sB + tB) + (sA + tA) + 1 = 1.

So (EC3) is satisfied and PG is an exceptional cover.
Case 2. There exists e ∈ {e1, e2} and f ∈ {f1, f2} such that {e, f} is consistent

and n− dC(e, f) is even.
Let v be the final vertex of f . Recall the definitions of a useful tripartition

and a link from section 6. Consider a useful tripartition P1, P2, P3 of (vQ2) and let
Q1,Q2,Q3 be sink/source/sink sets. Let L ⊆ P2 be a link of length eight such that
dC(v, L) is even. If Q is a consistently oriented path, use Proposition 7.3 to find a
copy LG of L which is a useful BA-path if e is forward and a useful AB-path if e is
backward. Map Q to a path QG of the form T ′AS′ if Q is a forward path and T ′BS′

if Q is a backward path. If Q is antidirected, let Q′′ be the subpath of Q of length
eight such that dC(Q,Q′′) = 3. Using Proposition 7.3, we find disjoint copies (Q′′)G

of Q′′ and LG of L in G such that (Q′′)G is a useful AB-path and LG is as described
above. We find QG which starts with a path of the form T ′ABA, uses (Q′′)G, and
then ends with a path of the form BAS′. Let qS be the number of interior vertices
of QG and LG in S and let qT be the number of interior vertices of QG and LG in T .
Note that in all cases, QG is a T ′S′-path with no repeated As or Bs.

Let P := (eCQ2) and let P0 := (eCf). Define subpaths PT and PS of C which are
internally disjoint from Q, e, f and are such that P0 = (ePTQPSf). Let pT := |PT |
and pS := |PS |. Our aim will be to find a copy PG

0 of P0 which uses QG and maps
PT to G[T ] and PS to G[S]. PG

0 will have the form F given in Table 2. We fix edges
eG and fG for e and f . If e is a forward edge, then choose eG to be a BT ′-edge and
fG to be an S′B-edge. If e is a backward edge, let eG be a T ′A-edge and fG be an
AS′-edge. We also define a constant d′ in Table 2 which will be used to ensure that
the final assignment is balanced. So, if rA and rB are the numbers of repeated As
and Bs in PG

0 , respectively, we will have rA − rB = d′ − d.
Note that

(7.4) pT + pS + qT + qS ≡ dC(e, f) ≡ n mod 2.

The number of vertices in S ∪ T which will not be covered by PG
0 or LG is equal to

r := s+ t− (pT + pS + qT + qS) and (7.4) implies that

r ≡ s+ t− n ≡ d ≡ d′ mod 2.
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Also note that the choice of s∗ implies that s − pS − qS ≥ √
ε1n/2 > |S′′| + d′ and

t− pT − qT ≥ √
ε1n/2 > |T ′′|+ d′. Thus we can choose sets SA, SB, TA, TB satisfying

(7.1) and (7.2) so that S′′ \ V (QG ∪ LG) ⊆ SA ∪ SB, T
′′ \ V (QG ∪ LG) ⊆ TA ∪ TB,

s = sA + sB + pS + qS , t = tA + tB + pT + qT , and sA + tA + d′ = sB + tB. (R3)
and the choice of s∗ imply that sA + sB, tA + tB ≤ 2

√
ε1n. Recall that v denotes

the final vertex of f and let vG be the image of v in G. If vG ∈ A (i.e., if e is
backward), let v′ := v and (v′)G := vG. If vG ∈ B, let v′ denote the successor of v
on C. If vv′ ∈ E(C), map v′ to an outneighbor of vG in A and, if v′v ∈ E(C), map
v′ to an inneighbor of vG in A. Let (v′)G be the image of v′. Then we can apply
Proposition 6.4, with 2

√
ε1, η1/2, τ/2, (v

′)G playing the roles of ε, η, τ, a1, to find a
copy (v′Q2)

G of (v′Q2) which starts at (v′)G, covers SA, SB, TA, TB, and contains LG.
Note that we make use of (7.1) and (7.2) here. We obtain a copy (vQ2)

G of (vQ2)
(by combining vG(v′)G with (v′Q2)

G if v′ �= v) which has sA + tA repeated As and
sB + tB repeated Bs.

We find copies of PT in G[T ] and PS in G[S] as in Case 1. Combining these
paths with (vQ2)

G, eG, QG, and fG, we obtain a copy PG of P in G such that
|V (PG) ∩ (A ∪ B)| ≤ 3ε2n. The path PG satisfies (EC1) and we may assume that
(EC2) holds, by extending the path if necessary to have both endvertices in A. All
repeated As and Bs in PG occur as repeated As and Bs in the paths PG

0 and (vQ2)
G

so we can use (6.1) to see that

|B \ V (PG)| − |A \ V (PG)| = d− (sB + tB) + (d′ − d) + (sA + tA) + 1 = 1.

Therefore, (EC3) is satisfied and PG is an exceptional cover.
Case 3. The assumptions of Cases 1 and 2 do not hold.
Recall that f1 is a forward edge and f2 is a backward edge. Since Case 2 does not

hold, this implies that e2 is a forward edge if n is even (otherwise e := e2 and f := f2
would satisfy the conditions of Case 2) and e2 is a backward edge if n is odd (otherwise
e := e2 and f := f1 would satisfy the conditions of Case 2). In particular, since Case 1
does not hold, this in turn implies that Q1 is not antidirected. We claim that Q1\{e2}
is not antidirected. Suppose not. Then it must be the case that {e1, e2} is consistent.
If e1 and e2 are forward edges (and so n is even), then e := e1 and f := f1 satisfy
the conditions of Case 2. If e1 and e2 are both backward edges (and so n is odd),
then e := e1 and f := f2 satisfy the conditions of Case 2. Therefore, Q1 \ {e2} is not
antidirected and must contain a consistently oriented path Q′

1 of length two.
Let e := e2. If n is even, let f := f1, and if n is odd, let f := f2. In both cases, we

have that {e, f} is consistent. Let P := (Q′
1CQ2) and P0 := (ePf). Let PT and PS

be subpaths of C defined such that P0 = (ePTQPSf). Set pT := |PT | and pS := |PS |.
Our aim is to find a copy PG

0 which is of the form given in Table 2. We also define a
constant d′ as in Table 2. So if rA and rB are the numbers of repeated As and Bs in
PG
0 , respectively, then again rA − rB = d′ − d.

Let v be the final vertex of f . Consider a tripartition P1, P2, P3 of (vQ2) and a
link L ⊆ P2 of length eight such that dC(v, L) is even. Proceed exactly as in Case 2 to
find copies QG and LG of Q and L. Use (R4), (R9), and (R10) to fix a copy (Q′

1Ce)G

of (Q′
1Ce) which is disjoint from QG and LG and is of the form given in Table 3. Note

that the interior of (Q′
1Ce)G uses exactly one vertex from S ∪T and (Q′

1Ce)G has no
repeated As or Bs. Write (Q′

1)
G for the image of Q′

1. We also fix an edge fG for the
image of f which is disjoint from QG, LG, and (Q′

1Ce)G and is an S′B-edge if e is
forward and an AS′-edge if e is backward. Let qS be the number of interior vertices
of QG, LG, and (Q′

1)
G in S and let qT be the number of interior vertices of QG, LG,

and (Q′
1)

G in T .
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Table 3

Form of (Q′
1Ce)G in Case 3.

Q′
1 Forward Forward Backward Backward

dC(Q
′
1, e) Odd Even Odd Even

Form of (Q′
1Ce)G if

e is forward
BTA ∗BT ′ ASB ∗BT ′ BSA ∗BT ′ ATB ∗BT ′

Form of (Q′
1Ce)G if

e is backward
ASB ∗AT ′ BTA ∗AT ′ ATB ∗AT ′ BSA ∗AT ′

Note that pS+pT+qS+qT ≡ dC(e, f)−1 ≡ n mod 2. Using the same reasoning as
in Case 2, we find sets SA, SB, TA, TB satisfying (7.1) and (7.2) such that S′′ \V (QG∪
LG∪ (Q′

1)
G) ⊆ SA ∪SB, T

′′ \V (QG∪LG∪ (Q′
1)

G) ⊆ TA ∪TB, s = sA+ sB + pS + qS,
t = tA + tB + pT + qT , and sA + tA + d′ = sB + tB. (R3) and the choice of s∗ imply
that sA, tA, sB, tB ≤ 2

√
ε1n. Recall that v denotes the final vertex of f . Similarly as

in Case 2, we now use Proposition 6.4 to find a copy (vQ2)
G of (vQ2) which covers

SA, SB, TA, TB, contains L
G, and has sA + tA repeated As and sB + tB repeated Bs.

We find copies of PT in G[T ] and PS in G[S] as in Case 1. Together with (Q′
1Ce)G,

QG, fG, and (vQ2)
G, these paths give a copy PG of P in G such that |V (PG)∩ (A∪

B)| ≤ 5ε2n. The path PG satisfies (EC1) and we may assume that (EC2) holds, by
extending the path so that both endvertices lie in A if necessary. All repeated As and
Bs in PG occur as repeated As and Bs in the paths PG

0 and (vQ2)
G, so we can use

(6.1) to see that

|B \ V (PG)| − |A \ V (PG)| = d− (sB − tB)− (d− d′) + (sA + tA) + 1 = 1.

So (EC3) is satisfied and PG is an exceptional cover.

7.3. Finding a copy of C. As we did in the AB-extremal case, we will now
use an exceptional cover to find a copy of C in G.

Proof of Lemma 7.1. Apply Lemma 7.2 or Lemma 7.4 to find an exceptional cover
P of G which uses at most 2η21n vertices from A ∪ B. Let P ′ be the path of length√
ε1n following P on C. Extend P by a path isomorphic to P ′, using this path to

cover all x ∈ A such that d+B(x) ≤ b− ε1/3n or d−B(x) ≤ b− ε1/3n and all x ∈ B such
that d+A(x) ≤ a− ε1/3n or d−A(x) ≤ a− ε1/3n, using only edges in E(A,B)∪E(B,A).
Let P ∗ denote the resulting extended path.

We may assume that both endvertices a1, a2 of P
∗ are in A and also that d±B(ai) ≥

b − ε1/3n (by extending the path if necessary). Let A∗, B∗ denote those vertices in
A and B which have not already been covered by P ∗ together with a1 and a2 and
let G∗ := G[A∗, B∗]. We have that |A∗| = |B∗| + 1 and δ0(G∗) ≥ a − 3η21n ≥
(7|B∗| + 2)/8. Then G∗ has a Hamilton path of any orientation with the desired
endpoints by Proposition 4.2(ii). Together with P ∗, this gives a copy of C in G.

Acknowledgments. We are grateful to the referees for a careful reading of this
paper.
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