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DURING THE ADVANCED LIGO ERA

Christopher P. L. Berry
1
, Ilya Mandel

1
, Hannah Middleton

1
, Leo P. Singer

2,3,14
, Alex L. Urban

4
, Alberto Vecchio

1
,

Salvatore Vitale
5
, Kipp Cannon

6
, Ben Farr

1,7,8
, Will M. Farr

1
, Philip B. Graff

9,10
, Chad Hanna

11,12
,

Carl-Johan Haster
1
, Satya Mohapatra

5,13
, Chris Pankow

4
, Larry R. Price

2
, Trevor Sidery

1
, and John Veitch

1

1 School of Physics & Astronomy, University of Birmingham, Birmingham, B15 2TT, UK; cplb@star.sr.bham.ac.uk
2 LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA

3 Astrophysics Science Division, NASA Goddard Space Flight Center, Code 661, Greenbelt, MD 20771, USA
4 Leonard E. Parker Center for Gravitation, Cosmology, and Astrophysics, University of Wisconsin–Milwaukee, Milwaukee, WI 53201, USA

5Massachusetts Institute of Technology, 185 Albany St, Cambridge, MA 02139, USA
6 Canadian Institute for Theoretical Astrophysics, 60 St. George Street, University of Toronto, Toronto, Ontario, M5S 3H8, Canada

7 Department of Physics and Astronomy & Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA),
Northwestern University, Evanston, IL 60208, USA

8 Enrico Fermi Institute, University of Chicago, Chicago, IL 60637, USA
9 Department of Physics, University of Maryland–College Park, College Park, MD 20742, USA

10 Gravitational Astrophysics Lab, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
11 Perimeter Institute for Theoretical Physics, Ontario, N2L 2Y5, Canada
12 The Pennsylvania State University, University Park, PA 16802, USA

13 Syracuse University, Syracuse, NY 13244, USA
Received 2014 November 25; accepted 2015 February 23; published 2015 May 11

ABSTRACT

Advanced ground-based gravitational-wave (GW) detectors begin operation imminently. Their intended goal is not
only to make the first direct detection of GWs, but also to make inferences about the source systems. Binary
neutron-star mergers are among the most promising sources. We investigate the performance of the parameter-
estimation (PE) pipeline that will be used during the first observing run of the Advanced Laser Interferometer
Gravitational-wave Observatory (aLIGO) in 2015: we concentrate on the ability to reconstruct the source location
on the sky, but also consider the ability to measure masses and the distance. Accurate, rapid sky localization is
necessary to alert electromagnetic (EM) observatories so that they can perform follow-up searches for counterpart
transient events. We consider PE accuracy in the presence of non-stationary, non-Gaussian noise. We find that the
character of the noise makes negligible difference to the PE performance at a given signal-to-noise ratio. The
source luminosity distance can only be poorly constrained, since the median 90% (50%) credible interval scaled
with respect to the true distance is 0.85 (0.38). However, the chirp mass is well measured. Our chirp-mass
estimates are subject to systematic error because we used gravitational-waveform templates without component
spin to carry out inference on signals with moderate spins, but the total error is typically less than -

M10 3 . The
median 90% (50%) credible region for sky localization is ~600 deg2 (~150 deg2), with 3% (30%) of detected
events localized within 100 deg .2 Early aLIGO, with only two detectors, will have a sky-localization accuracy for
binary neutron stars of hundreds of square degrees; this makes EM follow-up challenging, but not impossible.

Key words: gravitational waves – methods: data analysis – stars: neutron – surveys
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1. INTRODUCTION

The goal of gravitational-wave (GW) astronomy is to learn
about the universe through observations of gravitational
radiation. This requires not only the ability to detect GWs,
but also to infer the properties of their source systems. In this
work, we investigate the ability to perform parameter
estimation (PE) on signals detected by the upcoming Advanced
Laser Interferometer Gravitational-wave Observatory (aLIGO)
instruments (Harry 2010; Aasi et al. 2015) in the initial phase
of their operation (Aasi et al. 2013b).

Compact binary coalescences (CBCs), the GW-driven
inspiral and merger of stellar-mass compact objects, are a
prime source for aLIGO and Advanced Virgo (AdV; Acernese
et al. 2009, 2015). Binary neutron-star (BNS) systems may be
the most abundant detectable CBCs (Abadie et al. 2010). We
focus on BNS mergers in this study.

Following the identification of a detection candidate, we
wish to extract the maximum amount of information from the
signal. It is possible to make some inferences using selected
components of the data. However, full information regarding
the source system, including the component objects’ masses
and spins, is encoded within the gravitational waveform, and
can be obtained by comparing the data to theoretical waveform
models (Cutler & Flanagan 1994; Jaranowski & Krolak 2012).
Doing so can be computationally expensive.
PE is performed within a Bayesian framework. We use

algorithms available as part of the LALINFERENCE toolkit for
the analysis of CBC signals. The most expedient code is
BAYESTAR (Singer 2014; Singer et al. 2014), which infers
sky location from data returned from the detection pipeline.
Exploring the posterior probability densities for the parameters
takes longer for models where the parameter space is larger
or the likelihood is more complicated. Calculating estimates
for parameters beyond sky location is done using the
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stochastic-sampling algorithms of LALINFERENCE (Veitch
et al. 2015). There are three interchangeable sampling
algorithms: LALINFERENCE_NEST (Veitch & Vecchio 2010),
LALINFERENCE_MCMC (van der Sluys et al. 2008a; Raymond
et al. 2009), and LALINFERENCE_BAMBI (Graff et al. 2012),
which we refer to as LALINFERENCE for short. These
compute waveform templates for use in the likelihood.
Using the least computationally expensive waveforms
allows for posteriors to be estimated on timescales of hours
to days; potentially more accurate estimates can be
calculated with more expensive waveforms. In this paper,
we discuss what can be achieved using low-latency
(BAYESTAR) and medium-latency (LALINFERENCE with inex-
pensive waveforms) PE; a subsequent paper will evaluate
what can be achieved on longer timescales using more
expensive waveform templates.

With the detection of GWs, it is also possible to perform
multi-messenger astronomy, connecting different types of
observations of the same event. BNS mergers could be
accompanied by an electromagnetic (EM) counterpart (Metz-
ger & Berger 2012). To associate an EM event with a GW
signal, it is beneficial to have an accurate sky location: timing
information can also be used for EM signals that are
independently detected, such as gamma-ray bursts (Aasi
et al. 2014b). To provide triggers for telescopes to follow up
a GW detection, it is necessary to provide rapid sky
localization.

Several large-scale studies investigated the accuracy with
which sky position can be reconstructed from observations with
ground-based detector networks. The first only used timing
information from a multi-detector network to triangulate the
source position on the sky (e.g., Fairhurst 2009, 2011).
Subsequently, further information about the phase of the
gravitational waveform was folded into the timing triangulation
(TT) analysis (Grover et al. 2014). The most sophisticated
techniques perform a coherent Bayesian analysis to reconstruct
probability distributions for the sky location (e.g., Veitch
et al. 2012; Nissanke et al. 2013; Kasliwal & Nissanke 2014;
Grover et al. 2014; Sidery et al. 2014). Singer et al. (2014)
used both BAYESTAR and LALINFERENCE to analyse the potential
performance of aLIGO and AdV in the first two years of their
operation. They assumed the detector noise was stationary and
Gaussian. Here, we further their studies (although we use the
same analysis pipeline) by using a set of injections into
observed noise from initial LIGO detectors recolored (see
Section 2.1) to the expected spectral density of early aLIGO.15

This provides results closer to those expected in practice, as
real interferometer noise includes features such as non-
stationary glitches (Aasi et al. 2013b, 2014a). Our results are
just for the first observing run (O1) of aLIGO, expected in the
latter half of 2015, assuming that this occurs before the
introduction of AdV. As the sensitivity of the detectors will
increase with time, and because the introduction of further
detectors increases the accuracy of sky localization
(Schutz 2011), these set a lower bound for the advanced-
detector era. Estimates for sky-localization accuracy in later
observing periods can be calibrated using our results.

PE beyond sky localization, considering the source system’s
mass, spin, distance and orientation, has been subject to similar
studies. The initial investigations estimated PE using the Fisher
information matrix (e.g., Cutler & Flanagan 1994; Poisson &
Will 1995; Arun et al. 2005). This only gives an approximation
of true PE potential (Vallisneri 2008). More reliable (but
computationally expensive) results are found by simulating a
GW event and analyzing it using PE codes, mapping the
posterior probability distributions (e.g., Rover et al. 2006; van
der Sluys et al. 2008b; Veitch & Vecchio 2010; Rodriguez
et al. 2014). This has even been done for a blind injection
during the run of initial LIGO (Aasi et al. 2013a). As with sky
localization, general PE can improve with the introduction of
more detectors to the network (Veitch et al. 2012).
To be as faithful as possible, our analysis is performed using

one of the pipelines intended for use during O1. We make
use of the LIGO Scientific Collaboration Algorithm Library
(LAL).16 In particular, we shall make use of GSTLAL,17

one of the detection pipelines, to search for signals and
LALINFERENCE for PE on detection candidates.
We begin by describing the source catalog and detector

sensitivity curve used for this study in Section 2. In Section 3
we explain how the data is analyzed to produce sky areas and
other parameter estimates. Many details from these two
sections are shared with the preceding work of Singer et al.
(2014), which can be consulted for further information. In
Section 4 we present the results of our work. We first discuss
the set of events that are selected by the detection pipeline in
Section 4.1 (with supplementary information in Appendix A);
then we examine PE, considering sky-localization accuracy in
Section 4.2, and mass and distance measurements in Sec-
tion 4.3. We conclude with a discussion of these results in
Section 5; this includes in Section 5.1.2 an analysis of estimates
for sky localization in later observing periods with reference to
our findings. Estimates of the computational costs associated
with running BAYESTAR and full LALINFERENCE PE are given in
Appendix B. A supplementary catalog of results is described in
Appendix C, with data available at http://www.ligo.org/
scientists/first2years/.
Our main findings are:

1. The detection pipeline returns a population of sources that
is not significantly different from the input astrophysical
population, despite a selection bias based upon the
chirp mass.

2. Both BAYESTAR and LALINFERENCE return comparable
sky-localization accuracies (for a two-detector net-
work). The latter takes more computational time (a
total CPU time of ~10 s6 per event compared with
~10 s3 ), but returns estimates for more parameters than
just location.

3. At a given signal-to-noise ratio (S/N), the character of the
noise does not affect sky localization or other PE.

4. Switching from a detection threshold based upon S/N to
one based upon the false alarm rate (FAR) changes the
S/N distribution of detected events. A selection based
upon FAR includes more low-S/N events (the distribu-
tion at high S/Ns is unaffected).

5. TT provides a poor predictor of sky localization for a
two-detector network; it does better (on average) for a15 We refer to the noise as recolored, as it is first whitened (removing its color)

to eliminate initial LIGO’s frequency dependence, and then passed through a
linear response filter (reintroducing color) so that, on average, it has the aLIGO
spectral density.

16 http://www.lsc-group.phys.uwm.edu/lal
17 https://www.lsc-group.phys.uwm.edu/daswg/projects/gstlal.html
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three-detector network when phase coherence is included,
but remains imperfect.

6. Systematic errors from uncertainty in the waveform
template are significant for chirp-mass estimation.
Neglecting the mass–spin degeneracy by using non-
spinning waveforms artificially narrows the posterior
distribution.

For O1, we find that the luminosity distance is not well-
measured: the median 50% credible interval (interquartile
range) divided by the true distance is 0.38 and the median 90%
credible interval divided by the true distance is 0.85. Despite
being subject to systematic error, the chirp mass is still
accurately measured, with the posterior mean being less than

-
M10 3 from the true value in almost all (96%) cases. We find

that the median area of 50% sky localization credible region is
154 deg2 and the median area of the 90% credible region is
632 deg2; the median searched area (area of the smallest
credible region that encompasses the source location) is
132 deg2. EM follow-up to BNS mergers in 2015 will be
challenging and require careful planning.

2. SOURCES AND SENSITIVITIES

Our input data consists of two components: simulated
detector noise and simulated BNS signals. We describe the
details of these in the following subsections, before continuing
with the analysis of the data in Section 3.

2.1. Recolored 2015 Noise

We consider the initial operation of the advanced detectors at
LIGO Hanford and LIGO Livingston. The sensitivity is
assumed to be given by the early curve of Barsotti & Fritschel
(2012), which has a BNS detection range of ~55 Mpc
(assuming Gaussian noise). This configuration corresponds to
the 2015 observing scenario in Aasi et al. (2013b). Figure 1
plots the noise spectral density, the square root of the power

spectral density (Moore et al. 2015), as measured during the
sixth science (S6) run of initial LIGO,18 the early aLIGO
sensitivity curve, and final aLIGO curve (Shoemaker 2010).
The noise is constructed from data from the S6 run of initial

LIGO (Christensen 2010; Aasi et al. 2014a), recolored to the
early aLIGO noise spectral density as was done for Aasi et al.
(2014c). We use real noise, instead of idealized Gaussian
noise, to try to capture a realistic detector response including
transients; however, the S6 noise can only serve as a proxy for
the actual noise in aLIGO since the detectors are different. Two
calendar months (2010 August 21–October 20) of S6 data were
used. The recolored data are constructed using GSTLAL_FA-

KE_FRAMES.19 The recoloring process can be thought of as
applying a finite-impulse response filter to whitened noise. The
result is a noise stream that, on average, has the same power
spectral density as expected for early aLIGO, but contains
transients that are similar to those found in S6. Recoloring
preserves the non-stationary and non-Gaussian features of the
noise, although they are distorted (Aasi et al. 2014c). The
recolored noise is the most realistic noise we can construct
ahead of having the real noise from aLIGO.

2.2. BNS Events

BNS systems constitute the most probable and best understood
source of signals for advanced ground-based GW detectors.
There is a wide range in predicted event rates as a consequence of
uncertainty in our knowledge of the astrophysics. Abadie et al.
(2010) gives a BNS merger rate for the full-sensitivity aLIGO–
AdV network of 0.01– - -10 Mpc Myr3 1, with - -1 Mpc Myr3 1 as
the most realistic estimate (Kalogera et al. 2004).
We use the same list of simulated sources as in Singer et al.

(2014). The neutron-star masses are uniformly distributed from
= m M1.2min to = m M1.6max , which safely encompasses

the observed mass range of BNS systems (Kiziltan et al. 2013).
Their (dimensionless) spin magnitudes are uniformly distrib-
uted between =a 0min and =a 0.05max . The most rapidly
rotating BNS constituent to be observed in a binary that should
merge within a Hubble time is PSR J0737−3039 A (Burgay
et al. 2003; Kramer & Wex 2009). This has been estimated to
have a spin within this range (Mandel & O’Shaughnessy 2010;
Brown et al. 2012): since we do not know precisely the
neutron-star equation of state (Lattimer 2012), it is not possible
to exactly convert from a spin period to a spin magnitude. The
spin orientations are distributed isotropically. The binaries are
uniformly scattered in volume and isotropically oriented. This
set of parameters is motivated by our understanding of the
astrophysical population of BNSs.
The GW signals were constructed using a post-Newtonian

(PN) inspiral template, the SpinTaylorT4 approximant (Buo-
nanno et al. 2003, 2009) which is a time-domain approximant
accurate to 3.5PN order in phase and 1.5PN order in amplitude.
There exist more accurate but more expensive waveforms. This
template only contains the inspiral part of the waveform and
not the subsequent merger: this should happen outside of the
sensitive band of the detector for the masses considered and so
should not influence PE (Mandel et al. 2014). We do not use
SpinTaylorT4 templates either for detection or PE, instead we
use a less expensive approximant. In a future study, we shall

Figure 1. Initial and Advanced LIGO noise amplitude spectral densities. The
upper line is the measured sensitivity of the initial LIGO Hanford detector
during S6 (Aasi et al. 2014a). The dashed line shows the early aLIGO
sensitivity and the lower solid line the final sensitivity (Barsotti &
Fritschel 2012). The early sensitivity is used as a base here.

18 http://www.ligo.caltech.edu/~jzweizig/distribution/LSC_Data/
19 https://ldas-jobs.ligo.caltech.edu/~gstlalcbc/doc/gstlal-0.7.1/html/
gstlal_fake_frames.html
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investigate the effects of using SpinTaylorT4 templates for PE,
such that the injection and recovery templates perfectly match.

3. ANALYSIS PIPELINE

To accurately forecast sky localization prospects in O1, we
run our simulated events through the same data-analysis
pipeline as is intended for real data. The results of this pipeline
are analyzed in the next section (Section 4). A GW search is
performed using GSTLAL_INSPIRAL (Cannon
et al. 2010, 2011, 2012, 2013); this is designed to provide
GW triggers in real time with ∼10–100 s latency during LIGO–
Virgo observing runs. A trigger is followed up for sky
localization if its calculated FAR is less than - -10 yr2 1, which
is roughly equivalent to a network-S/N threshold of   12
(Aasi et al. 2013b).

In using the FAR to select triggers, our method differs from
that used in Singer et al. (2014). Since they considered
Gaussian noise, which is free of glitches, their FAR would not
be representative of those computed using real noise; the FAR
calculated with Gaussian noise corresponds to a S/N-threshold
that is too low for detection in realistic noise. Therefore, they
also imposed a network-S/N cut of  ⩾ 12, in addition to the
FAR selection. This joint S/N and FAR threshold was found to
differ negligibly from an S/N-only threshold: in effect, they
select by S/N alone. While this is a small difference in selection
criteria, we shall see in Section 4.2 that this has an impact on
our sky-localization results.

To recover the GW signal, another PN inspiral approximant,
TaylorF2 (Damour et al. 2001, 2002; Buonanno et al. 2009),
was used as a template. This is a frequency-domain stationary-
phase approximation waveform accurate to 3.5PN order in
phase and Newtonian order in amplitude. It does not include
the effects of spin, although it can be modified to incorporate
these (Mikoczi et al. 2005; Arun et al. 2009; Bohé et al. 2013).
We neglect spin as this should not lead to a significant
reduction in detection efficiency for systems with low spins
(Brown et al. 2012), which we confirm in Section 4.1.2.
TaylorF2 does not incorporate as many physical effects as
SpinTaylorT4, notably it does not include precession, but is
less computationally expensive, permitting more rapid fol-
low-up.

Rapid sky localization is computed using BAYESTAR (Singer
et al. 2014). This reconstructs sky position using a combination
of information associated with the triggers: the times, phases
and amplitudes of the signals at arrival at each detector. It
coherently combines this information to reconstruct posteriors
for the sky position. BAYESTAR makes no attempt to infer
intrinsic parameters such as the BNS masses and, hence, can
avoid computationally expensive waveform calculations. The
sky-position distributions can be formulated in under a minute
(see Appendix B).

Full PE, which computes posterior distributions for sky
localization parameters as well as the other parameters for
the source system like mass, orientation, and inclination,
is performed using LALINFERENCE (Veitch et al. 2015).
LALINFERENCE maps the posterior probability distribution
by stochastically sampling the parameter space (e.g.,
MacKay 2003, chapter 29). There are three codes
within LALINFERENCE to sample these posterior distributions:
LALINFERENCE_NEST (Veitch & Vecchio 2010), a nested
sampling algorithm (Skilling 2006); LALINFERENCE_MCMC

(van der Sluys et al. 2008a; Raymond et al. 2009), a

Markov-chain Monte Carlo algorithm (Gregory 2005, chapter
12), and LALINFERENCE_BAMBI (Graff et al. 2012), another
nested sampling algorithm (Feroz et al. 2009) which
incorporates a means of speeding up likelihood evaluation
using machine learning (Graff et al. 2014). All three codes use
the same likelihood and so should recover the same posteriors;
consistency of the codes has been repeatedly checked. While
the codes produce the same results, they may not do so in the
same times, depending upon the particular problem. All the
results here were computed with LALINFERENCE_NEST.
TaylorF2 waveforms were used again in constructing the

LALINFERENCE posterior. Since these do not exactly match the
waveforms used for injection, there may be a small bias in the
recovered parameters (Buonanno et al. 2009). Using TaylorF2
is much less computationally expensive than using SpinTay-
lorT4, in this case a LALINFERENCE run takes ~10 s6 of CPU
time (see Appendix B).

4. RESULTS

4.1. Detection Catalog

We ran sky-localization codes on a set of 333 events
recovered from the detection pipeline. We shall compare these
to the results of Singer et al. (2014) who used Gaussian noise
for the same sensitivity curve. They ran BAYESTAR on a sample
of 630 events, but only ran LALINFERENCE on a sub-sample of
250 events. We first consider the set of detected events before
moving on to examine sky-localization accuracies in Sec-
tion 4.2, and mass and distance measurement in Section 4.3.

4.1.1. S/N Distribution

Unsurprisingly, the distribution of S/Ns differs between the
recolored and Gaussian data sets. This is shown in Figure 2.
The recolored S/N distribution includes a tail at low S/N

Figure 2. Cumulative fractions of events with network S/Ns smaller than the
abscissa value. The S/N distribution assuming recolored noise is denoted by the
thick solid line; we also show the distribution subject to a lower cutoff of
 ⩾ 12, denoted by the thin solid line. The S/N distribution for the complete set
of 630 events with Gaussian noise analyzed with BAYESTAR is denoted by the
thinner dashed line, and the distribution for the subset of 250 events analyzed
with both BAYESTAR and LALINFERENCE is denoted by the thicker dashed line
(Singer et al. 2014). The 68% confidence intervals ( s1 for a normal
distribution) are denoted by the shaded areas; these are estimated from a beta
distribution (Cameron 2011).
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(  10–12). If we impose a lower threshold  ⩾ 12 for the
recolored data set, as was done for the Gaussian data set, we
find that the S/N distributions are similar. With the shared S/N
cut, the distributions agree within the expected sampling error;
performing a Kolmogorov–Smirnov (KS) test (DeGroot 1975,
Section 9.5) comparing the recolored S/N distribution to the
complete (LALINFERENCE only) Gaussian S/N distribution
returns a p-value of 0.311 (0.110).

Comparing injections between the recolored and Gaussian
data sets, there are 255 events that have been detected in both
sets. There are 108 events shared between the recolored data set
and the sub-sample of the Gaussian data set analyzed with
LALINFERENCE. Considering individual events, we may contrast
the S/N for recolored noise  R and Gaussian noise G. The
ratio of the two S/Ns is shown in Figure 3. Considering the
entire population of shared detections, the mean value of the

ratio of S/Ns is   = 0.938 0.006R G , showing a small
downwards bias as an effect of the differing cutoffs used for the
two samples. To limit selection effects that could skew the
distribution of the ratio of S/Ns, we can impose an S/N cut of
 ⩾ 12R . This reduces the number of events detected in both
noise sets to 214 using the full Gaussian set and 88 for the
LALINFERENCE Gaussian sub-sample. There is a small differ-
ence between the S/N as calculated with Gaussian noise and
with recolored noise. This does not appear to be a strong
function of the S/N. However, the scatter in the ratio decreases
as S/N increases, approximately decreasing as -1. This is as
expected as the inclusion of random noise realizations in the
signal should produce fluctuations in the S/N of order ±1; these
fluctuations become less significant for louder events. After
imposing the cut  ⩾ 12 on both sets, the mean value of the
ratio of S/Ns is   = 0.955 0.006.R G Although there is a
small difference in S/Ns, we shall see that this does not impact
our PE results.

4.1.2. Selection Effects

The population of detected events should not match exactly
the injected distribution; depending upon their parameters,
some systems are louder and hence easier to detect. Here, we
look at the selection effects of the most astrophysically
interesting parameters: mass and spin. We expect there to be
a selection based upon mass, as the component masses set the
amplitude of the waveform. We do not expect there to be a
dependence upon the spin because the spin magnitude is small,
but since we injected with a spinning waveform and recovered
with a non-spinning waveform, there could potentially be a
selection effect due to waveform mismatch. Checking these
distributions confirms the effectiveness of the detection pipe-
line for this study.
To leading order, the GW amplitude is determined by the

(5 6 power of the) chirp mass (Sathyaprakash & Schutz 2009)

 =
+

m m

m m

( )

( )
, (1)c

1 2
3 5

1 2
1 5

where m1 and m2 are the individual component masses. We
therefore expect to preferentially select systems with larger
chirp masses.
Figure 4 shows the recovered distribution of (injected) chirp

masses and the injection distribution (which is calculated
numerically). We do detect fewer systems with smaller chirp
masses (and more with larger chirp masses), as indicated by the
curve for the recovered distribution lying below the curve for
the injection distribution. However, this selection effect does
not alter the overall character of population. The difference is
only marginally statistically significant with this number of
events (a KS test with the injection distribution yields p-values
of 0.315 and 0.068 for the Gaussian and recolored noise
respectively). This is consistent with expectations for this
narrow chirp-mass distribution; in Appendix A we use a simple
theoretical model to predict that we would need ~103

detections (or a broader distribution of chirp masses in the
injection set) to see a significant difference between the
injected and recovered populations. The character of the noise
does not influence the chirp-mass distribution (a KS test gives a
p-value of 0.999).
For completeness, in Appendix A we present the distribu-

tions for the individual component masses, the asymmetric

Figure 3. Comparison of S/Ns from injections with Gaussian noise G and
from injections with recolored noise  R. (a) The ratio  R G as a function of
G. The dashed line shows the locus of  = 12R . (b) Distribution of  R G
with both  ⩾ 12G and  ⩾ 12R , using a bin width of 0.5. Events that fall
within the sub-sample of Gaussian events analyzed with LALINFERENCE are
highlighted with blue (star-shaped points in (a), shading in (b)) and the
complete set of events detected in both the Gaussian and recolored data sets is
indicated by orange (round points in (a), shading in (b)).
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mass ratio and the total mass. The selection effects on these
depend upon their correlation with the chirp mass; the total
mass, which is most strongly correlated with the chirp mass,
shows the most noticeable difference between injection and
detected distributions.

Since we injected with a spinning waveform and recovered
with a non-spinning waveform, there could also be a selection
bias depending upon the spin magnitude. Figure 5 shows the
recovered distribution of (injected) spins. The detected events
are consistent with having the uniform distribution of spins
used for the injections. We conclude that the presence of spins

with magnitudes a⩽ 0.05 does not affect the detection
efficiency for BNS systems, in agreement with Brown
et al. (2012).

4.2. Sky-localization Accuracy

The recovered sky positions from BAYESTAR and
LALINFERENCE appear in good agreement. A typical example
of the recovered posterior probability density is shown in
Figure 6. This is a bimodal distribution, reflecting the
symmetry in the sensitivity of the detectors, which is common
(Singer et al. 2014). We use geographic coordinates to
emphasize the connection to the position of the detectors. A
catalog of results can be viewed online at http://www.ligo.org/
scientists/first2years/ (see Appendix C).
To quantify the accuracy of sky localization, we use credible

regions: areas of the sky that include a given total posterior
probability. We denote the credible region for a total posterior
probability p as CR p: it is defined as

º ACR min (2)p

such that the sky area A satisfies

ò=p d PΩ Ω( ), (3)
A

Ω

where P Ω( )Ω is the posterior probability density over sky
position Ω (Sidery et al. 2014). A smaller CR p at a given p
indicates more precise sky localization.
We also consider the searched area: the area of the smallest

credible region that includes the true location, and, hence, the
area of the sky that we expect would have to be observed
before the true source was found.
The self-consistency of our sky areas can be checked by

calculating the fraction of events that fall within the credible
region at the given probability. We expect that a fraction p of
true sky positions are found within CR p; that is the frequentist
confidence region agrees with our Bayesian credible region
(Sidery et al. 2014). Figure 7 shows the fraction of events
found within a given CR p as a function of p. The distributions
are consistent with expectations: performing a KS test with the
predicted distribution yields p-values of 0.455 and 0.546 for
LALINFERENCE and BAYESTAR, respectively. Both LALINFERENCE
and BAYESTAR produce self-consistent and unbiased sky areas in
the presence of recolored noise.
The recovered sky areas are plotted in Figure 8. This shows

the cumulative distribution of areas for CR0.5, CR0.9 and
searched areas A* as recovered from LALINFERENCE and
BAYESTAR. We plot both the results using recolored noise and
the results using Gaussian noise from Singer et al. (2014). All
the results are similar. LALINFERENCE produces (marginally)
more accurate sky localizations than BAYESTAR, but the rapid
code does a successful job of reconstructing the sky position in
a much shorter time (see Appendix B for estimates of
computation time). The recovered areas are (generally)
marginally smaller for LALINFERENCE as this makes use of
more information and so is expected to perform better (a KS
test returns p-values of 0.740 when comparing CR0.9 for
Gaussian noise and 0.181 for recolored noise).
The difference between the Gaussian and recolored results

can be understood as a consequence of the S/N distribution (see
Figure 2). The S/N is the dominant factor affecting sky
localization. For example, there is no strong correlation

Figure 4. Cumulative fractions of detected events with chirp masses smaller
than the abscissa value. Results using recolored noise are denoted by the solid
line, and results from the subset of 250 events with Gaussian noise analyzed
with LALINFERENCE are denoted by the dashed line (Singer et al. 2014). The
68% confidence intervals are denoted by the shaded areas. The injection
distribution, based upon a uniform distribution of component masses, is
indicated by the dotted–dashed line.

Figure 5. Cumulative fractions of detected events with spin magnitudes smaller
than the abscissa value. The spin distribution for the first neutron star a1 is
denoted by the solid line, and the distribution for the second neutron star a2 is
denoted by the dashed line. Results using recolored noise are denoted by the
thicker red–purple lines, and results from the subset of 250 events with
Gaussian noise analyzed with LALINFERENCE are denoted by the thinner blue–
green lines (Singer et al. 2014). The 68% confidence intervals are denoted by
the shaded areas. The expected distribution for spins uniform from =a 0min to

=a 0.05max is indicated by the black dotted–dashed line.
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between the time delay between detection at the two LIGO sites
and the sky-localization accuracy. The inclusion of more low-
S/N events means that, on average, the results using recolored
noise are worse.

The sky-localization accuracy is expected to scale as  −2.
The uncertainty in each direction on the sky scales inversely
with the S/N, hence the area scales inversely with the square of
the S/N (cf. Fairhurst 2009, 2011). This S/N scaling can be
verified by plotting recovered sky areas as a function of  as
shown in Figure 9. The recovered areas do show the expected
correlation, although there is considerable scatter resulting from
the variation in intrinsic parameters.

We have plotted fiducial best-fit lines with the expected
scaling. The fitting was done simply using a naive least-squares
method, fitting a straight line to log and Alog for each sky
area A. Allowing the slope of the line to vary from −2 yields
negligible change to the fit. There is little difference between
the trends for the recolored and Gaussian results, indicating that
the variation in the sky-localization accuracies is primarily an

effect of the different distribution of S/Ns. There is a small
discrepancy between LALINFERENCE and BAYESTAR in both
cases, but the difference is not significant and is within the
uncertainty expected from the scatter of results. The general
trend for the sky-localization areas can be approximated as


æ

è
çççç

ö

ø
÷÷÷÷
» - + alog

CR

deg
2 log 4.46, (4 )10

0.5

2 10


æ

è
çççç

ö

ø
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» - + blog
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2 log 5.06. (4 )10
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Sky-localization accuracy (at a given S/N) does not appear to
be sensitive to the Gaussianity of the noise.
From our fits (4), we can immediately see that the ratio

CR CR0.9 0.5 is about 10 40.6 . Considering this ratio for each
posterior, the mean value of log (CR CR )10 0.9 0.5 is 0.60 and the
standard deviation is 0.07. For comparison, if the posterior
were a 1D Gaussian, we would expect the ratio to be

- -  erf (0.9) erf (0.5) 2.4 101 1 0.39, and if it were a 2D
Gaussian, the ratio would be

- -  ln (1 0.9) ln (1 0.5) 3.3 100.52 (Fairhurst 2009, 2011).
Neither of these agree well. The sky-location posteriors can
have complicated shapes, and cannot be accurately modeled by
a simple Gaussian description.
To verify that S/N distribution is the dominant cause of

difference between the Gaussian and recolored results, we
impose a cut on the recolored data set of  ⩾ 12 to match the
Gaussian set. This reduces the number of events from 333 to
236. The cumulative distribution of sky-localization areas for
results with  ⩾ 12 are shown in Figure 10. The distributions
do overlap as expected: the Gaussian and recolored results are
in agreement (a KS test on CR0.9 gives a p-value of 0.550 when
comparing LALINFERENCE results between noise realizations
and 0.673 for BAYESTAR).
The key numbers describing the distributions are given in

Tables 1 and 2; the former gives the fraction of events with
sky-localization areas smaller than fiducial values, and the
latter gives median sky-localization areas. Our results are
discussed further in Section 5.1.

Figure 6. Posterior probability density for sky location, plotted in a Mollweide projection in geographic coordinates. The star indicates the true source location.
(a) Computed by BAYESTAR. (b) Computed by LALINFERENCE. The event has simulation ID 1243 and a network S/N of  = 13.2. Versions of these plots, and all the
other events using in this study, can be found online at http://www.ligo.org/scientists/first2years/.

Figure 7. Fraction of true locations found within a credible region as a function
of encompassed posterior probability. Results from LALINFERENCE are
indicated by the solid line, results from BAYESTAR are indicated by the dashed
line and the expected distribution is indicated by the dotted–dashed diagonal
line. The 68% confidencee interval is enclosed by the shaded regions, this
accounts for sampling errors and is estimated from a beta distribution
(Cameron 2011).
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4.3. Mass and Distance Estimation

Independent of any EM counterpart, GW astronomy is still
informative. GW observations allow for measurement of
various properties of the source system. Here, we examine
the ability to measure luminosity distance and mass (princi-
pally the chirp mass of the system).
Accurate mass and distance measurements have many

physical applications. Measurement of the chirp-mass distribu-
tion can constrain binary evolution models (Bulik &
Belczynski 2003). Determining the maximum mass of a
neutron star would shed light on its equation of state (e.g.,
Read et al. 2009), and, potentially, on the existence of a mass
gap between neutron stars and black holes (Özel et al. 2010;
Farr et al. 2011; Kreidberg et al. 2012). Combining mass and
distance measurement, it may be possible to construct a new
(independent) measure of the Hubble constant (Taylor
et al. 2012). GW observations shall give us unique insight
into the properties of BNS systems.
In addition to component masses and the distance to the

source, the component spins are of astrophysical importance
(e.g., Mandel & O’Shaughnessy 2010). Unfortunately, we
cannot estimate the component spins as we are using non-
spinning waveform templates. Measurement of the spins will
be examined in a future study investigating PE using
SpinTaylorT4 waveforms.

4.3.1. Luminosity Distance

Quantifying the precision of distance estimation is simpler
than for sky localization as we are now working in a single
dimension. The equivalent of a credible region is a credible
interval. We denote the distance credible interval for a total
posterior probability p as CI p

D. It is defined to exclude equal
posterior probabilities in each of the tails; it is given by

=
æ
è
ççç

+ ö
ø
÷÷÷ -
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è
ççç
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where -C p( )D
1 is the inverse of the cumulative distribution

function

ò= ¢ ¢C D dD P D( ) ( ) (6)D

D

D
0

for distance posterior PD(D). The same symmetric definition
for the credible interval was used by Aasi et al. (2013a). A
smaller CI p

D for a given p indicates more precise distance
estimation.
The self-consistency of our distance estimates can be verified

by calculating the fraction of true values that fall within the
credible interval at a given p. This is shown in Figure 11 for
results from both the Gaussian and recolored noise results.
Both distributions are consistent with expectations (performing
a KS test with the predicted distribution yields p-values of
0.168 and 0.057 for the recolored and Gaussian noise
respectively). LALINFERENCE does return self-consistent dis-
tance estimates.
The cumulative distributions of credible intervals are plotted

in Figure 12. We divide the credible interval by the true
(injected) distance D ; this gives an approximate analog of
twice the fractional uncertainty. The quantity DCI p

D appears

insensitive to the detection cut-off (a KS test between DCID
0.9

for the recolored and Gaussian results gives a p-value of

Figure 8. Cumulative fractions of events with sky-localization areas smaller than
the abscissa value. (a) Sky area of 50% credible region CR0.5, the (smallest) area
enclosing 50% of the total posterior probability. (b) Sky area ofCR0.9. (c) Searched
area A*, the area of the smallest credible region containing the true position.
LALINFERENCE and BAYESTAR results are denoted by thicker blue and thinner red–
orange lines respectively. The results of this study are indicated by a solid line,
while the results of Singer et al. (2014), which uses Gaussian noise, are indicated by
a dashed line. The 68% confidence intervals are denoted by the shaded areas.
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0.077). This appears in contrast to the case for sky areas, but
the differing S/N distributions are accounted for by scaling with
respect to the distance (which is inversely proportional to the
S/N). The estimation of the distance, like that for sky areas,
does not depend upon the character of the noise.

Distance estimation is imprecise: the posterior widths are
frequently comparable to the magnitude of the distance itself.
This is a consequence of a degeneracy between the distance
and the inclination (Cutler & Flanagan 1994; Aasi
et al. 2013a). The key numbers summarizing distance

estimation are given in Tables 3 and 4; the former gives the
fraction of events with DCI p

D smaller than fiducial values,
and the latter gives median values.

4.3.2. Chirp Mass

The chirp mass should be precisely measured as it
determines the GW phase evolution. We again use the credible
interval to quantify measurement precision; the chirp-mass

Figure 9. Sky-localization areas as a function of S/N ϱ. (a) Sky area of 50% credible region CR0.5. (b) Sky area of CR0.9. Individual results are indicated by points.
We include simple best-fit lines assuming that the area µ -A 2. LALINFERENCE and BAYESTAR results are denoted by thicker blue and thinner red–orange lines
respectively. The results of this study are indicated by a solid line, while the results of Singer et al. (2014), which uses Gaussian noise, are indicated by a dashed line.

Table 1
Fractions of Events With Sky-localization Areas Smaller Than a Given Size

Sky Localization Gaussian Noise Recolored Noise Recolored Noise  ⩾ 12

BAYESTAR LALINFERENCE BAYESTAR LALINFERENCE BAYESTAR LALINFERENCE

⩽CR0.5 5 deg2 — — — — — —

20 deg2 0.02 0.03 0.01 0.02 0.02 0.03

100 deg2 0.30 0.37 0.21 0.30 0.30 0.41

200 deg2 0.74 0.80 0.58 0.64 0.76 0.80

500 deg2 1.00 1.00 1.00 0.99 1.00 1.00

1000 deg2 1.00 1.00 1.00 1.00 1.00 1.00

⩽CR0.9 5 deg2 — — — — — —

20 deg2 — — — — — —

100 deg2 0.03 0.04 0.02 0.03 0.03 0.04

200 deg2 0.10 0.13 0.06 0.08 0.09 0.12

500 deg2 0.44 0.48 0.31 0.38 0.44 0.52

1000 deg2 0.98 0.93 0.78 0.80 0.96 0.94

⩽A* 5 deg2 0.03 0.04 0.03 0.04 0.03 0.06

20 deg2 0.14 0.19 0.12 0.14 0.15 0.16

100 deg2 0.45 0.54 0.40 0.45 0.47 0.52

200 deg2 0.64 0.70 0.60 0.60 0.66 0.68

500 deg2 0.87 0.89 0.82 0.83 0.87 0.89

1000 deg2 0.97 0.99 0.96 0.95 0.98 0.97

Note. Sky-localization areas used are from this study, using recolored noise, and from Singer et al. (2014), which uses Gaussian noise. Results are quoted for the full
catalog of results with recolored noise and have an imposed S/N cut of  ⩾ 12 to match the Gaussian catalog. Figures for the 50% credible region CR0.5, the 90%
credible region CR0.9 and the searched area A* are included. A dash (—) is used for fractions less than 0.01.
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credible interval CI p
c is defined equivalently to its distance

counterpart in (5).
The fraction of true chirp masses that fall within CI p

c at a
given p is plotted in Figure 13. Neither the results calculated
using Gaussian noise nor those using recolored noise fit our
expectations: the posteriors are not well calibrated. However,
the two sets of results are entirely consistent with each other (a
KS test between the two gives a p-value of 0.524), indicating
that the PE is not affected by the noise. There appears to be a
systematic error in our posterior distributions of the chirp mass.
The discrepancies between our posterior estimates for the

chirp masses and their true values are a consequence of our use
of non-spinning TaylorF2 waveform templates. This has two
effects. First, by using a non-spinning waveform, we do not
explore the degeneracy between mass and spin (Cutler &
Flanagan 1994; van der Sluys et al. 2008b; Baird et al. 2013).
This results in an artificially narrow marginalized posterior for
mass parameters such as the chirp mass. In effect, we are
pinning the spin to be zero, which is information we should not
have a priori. Second, we have used a template that does not
exactly match the injected waveform (SpinTaylorT4). The
small difference in approximants results in a mismatch in
estimated parameters (Buonanno et al. 2009; Aasi et al. 2013a).
Since the posterior on the chirp mass is narrow, because it is
intrinsically well-measured and because we have not included
degeneracy with spin, even a small difference in templates is
sufficient to offset the posterior from the true chirp mass by a
statistically significant amount.
To examine the offset between the estimated and true chirp

masses, we plot in Figure 14 the difference between the
posterior mean ̄c and the true value  divided by the
standard deviation of the posterior s c. Using the median in

place of the mean, or CI 20.68
c in place of s c, gives only a

small quantitative difference. Over this narrow mass range, the
offset is not a strong function of the chirp mass. The offset is a
combination of both error introduced by the presence of noise
and theoretical error from the mismatch between the injected
waveform and template waveforms (Cutler & Vallisneri 2007).
If only the former were significant, we would expect the mean
offset to be zero, and the typical scatter of offsets to be of order
of the posterior’s standard deviation. Neither of these is the
case. The average scaled offset   s-( ¯ )c c across the
recolored (Gaussian) data set is −1.3± 0.1 (−0.9± 0.1). This
shows that there is a systematic error. However, it is not as
simple as just systematically underestimating the chirp mass;
there is a large scatter in the offsets, the standard deviation of
the scaled offset for the recolored (Gaussian) data set is
2.07± 0.08 (2.09± 0.09). This is consistent with our expecta-
tion that the mass–spin degeneracy should broaden the
posterior; these results imply that the posterior should be a
factor of ∼2 wider (cf. Poisson & Will 1995).
While the theoretical error is important in determining the

accuracy to which we can infer the chirp mass, it does not
completely dominate the noise error. To illustrate the scale of
the errors, we plot distribution of the 50% and 90% credible
intervals in Figures 15(a) and (b), and the absolute magnitudes
of the offsets in Figure 15(c). For a well calibrated posterior,
we would expect the offset to be smaller than CI 20.9

c

( CI 20.5
c ) in approximately 90% (50%) of events. Figure 13

shows that this is not the case, that we do have systematic error.
Figure 14 confirms this and shows that the theoretical error is
of a comparable size to the noise error. In Figure 15, we see

Figure 10. Cumulative fractions of events with sky-localization areas smaller
than the abscissa value as in Figure 8 but imposing an S/N cut of  ⩾ 12R .
(a) Sky area of CR0.5. (b) Sky area of CR0.9. (c) Searched area A*.
LALINFERENCE and BAYESTAR results are denoted by thicker blue and thinner
red–orange lines respectively. The results of this study are indicated by a solid
line, while the results of Singer et al. (2014), which uses Gaussian noise, are
indicated by a dashed line. The 68% confidence intervals are denoted by the
shaded areas.
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that the presence of theoretical error does not radically affect
the distribution of offsets. The median value of the offsets are

´ -
M(2.6 10 )4 and ´ -

M(2.4 10 )4 , and the median values

of CI 20.5
c are ´ -

M(1.2 10 )4 and ´ -
M(1.3 10 )4 for the

recolored and Gaussian data sets respectively; the theoretical
error approximately doubles the total uncertainty on the chirp
mass. The key numbers summarising the distributions are given
in Tables 5 and 6, which give the fraction of events with
uncertainties smaller than fiducial values and the median
uncertainties respectively.

Furthermore, Figure 15 shows that the (in)ability to
measure the chirp mass is not significantly influenced by
the character of the noise or the detection threshold used (a
KS test comparing the CI0.9

c and  -∣ ∣¯ c distributions
between the Gaussian and recolored data sets gives p-values
of 0.805 and 0.507 respectively). The latter is a consequence
of both thresholds recovering equivalent chirp-mass distribu-
tions (Figure 4).

It should be possible to incorporate knowledge of theoretical
waveform error into PE by marginalizing out the uncertainty.
This can be done using parametric models for the uncertainty if
a specific form of the waveform error is suspected, or non-
parametrically if we wish to be agnostic. The effect of folding

in this additional uncertainty is to broaden the posteriors and
possibly shift their means; doing so should make posterior
estimates consistent with the true values.
While we cannot correctly reconstruct the posterior distribu-

tion for the chirp mass, the error in the estimate is still small.
We can measure the chirp mass accurately, even though we are
affected by systematic error.

4.3.3. Component Masses

The chirp mass is a combination of the component masses;
in some cases it can be used to infer whether the source is a
BNS or a binary black-hole system (Hannam et al. 2013; Vitale
& del Pozzo 2014), but the component masses are of greater
interest. The mass–spin degeneracy affects our ability to
construct accurate estimates for the individual masses. Since
we have already seen a systematic error in the chirp mass, we
expect an analogous (larger) phenomenon here.
We are again working in two dimensions, so we use

credible regions to quantify PE precision. The mass-space
credible region -CR p

m m1 2 is defined analogously to its sky-area
counterpart in (2); it is easier to compute as we do not have to
contend with the spherical geometry of the sky or with as
intricate posterior distributions. We plot in Figure 16 the
fraction of injected masses that fall within -CR p

m m1 2 at a given
p. As for the chirp mass, the posterior is not well calibrated,
approximately 40% (38% for results with recolored noise and
42% for Gaussian) of the true component masses lie
altogether outside the range of the estimated posterior, but
the two sets of results are consistent with each other
(performing a KS test gives a p-value of 0.969). We cannot
accurately reconstruct the component masses using our non-
spinning waveforms.
To give an indication of the scale of the uncertainty in

m1–m2 space, we plot the 90% credible region in Figure 17.
Since our estimates for the component masses are inaccurate,
with many true values lying outside the posterior, -CR p

m m1 2 is a
lower bound on the typical scale for measurement accuracy.
This does not reflect how well we can actually measure the
component masses; to produce accurate estimates, we must
include the mass–spin degeneracy which broadens the
posterior.
It is apparent that a statement regarding measurement of

component masses must wait until an analysis is done using
waveforms that include spin. We will return this question in a
future publication.

Table 2
Median Sky-localization Areas

Sky Localization Gaussian Noise Recolored Noise Recolored Noise  ⩾ 12

BAYESTAR LALINFERENCE BAYESTAR LALINFERENCE BAYESTAR LALINFERENCE

Median CR0.5 138 deg2 124 deg2 175 deg2 154 deg2 145 deg2 118 deg2

CR0.9 545 deg2 529 deg2 692 deg2 632 deg2 524 deg2 481 deg2

A* 123 deg2 88 deg2 145 deg2 132 deg2 118 deg2 88 deg2

Note. Sky-localization areas used are from this study, using recolored noise, and from Singer et al. (2014), which uses Gaussian noise. Results are quoted for the full
catalog of results with recolored noise and have an imposed S/N cut of  ⩾ 12 to match the Gaussian catalog. Figures for the 50% credible region CR0.5, the 90%
credible region CR0.9 and the searched area A* are included.

Figure 11. Fraction of true luminosity distances found within a credible
interval as a function of encompassed posterior probability. Results using
recolored noise are indicated by a solid line, while the results using Gaussian
noise (Singer et al. 2014) are indicated by a dashed line. The expected
distribution is indicated by the dotted–dashed diagonal line. The shaded regions
enclose the 68% confidence intervals accounting for sampling errors.
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5. DISCUSSION AND CONCLUSIONS

5.1. Observing Scenarios

Having determined the sky-localization accuracy expected
for O1, we now use our results to compare with current
predictions for observing scenarios in the advanced-detector
era. In Section 5.1.1 we consider the two-detector network of
O1. In Section 5.1.2 we extend our discussion to consider
predictions for sky localization in subsequent observing runs
using a three-detector network.

Figure 12. Cumulative fractions of events with luminosity-distance credible intervals (divided by the true distance) smaller than the abscissa value. (a) Scaled 50%
credible interval DCID

0.5 . (b) Scaled 90% interval DCID
0.9 . Results using recolored noise are indicated by a solid line and the results using Gaussian noise (Singer

et al. 2014) are indicated by a dashed line. The 68% confidence intervals are denoted by the shaded areas.

Table 3
Fractions of Events With Fractional Distance Estimate Uncertainties Smaller

Than a Given Size

Distance Estimate Uncertainty Gaussian Noise Recolored Noise

 ⩽DCID
0.5 0.25 0.04 0.03

0.50 0.77 0.74
0.75 0.95 0.93
1.00 0.98 0.98
2.00 1.00 1.00

 ⩽DCID
0.9 0.25 — —

0.50 — —

0.75 0.40 0.35
1.00 0.70 0.66
2.00 0.96 0.97

Note. Results using recolored noise and Gaussian noise are included (Singer
et al. 2014). Figures for the 50% credible interval CID

0.5 and the 90% credible
interval CID

0.9 are included; both are scaled with respect to the true distance D .
A dash (—) is used for fractions less than 0.01.

Table 4
Median Distance Credible Intervals (Divided by the True Distance) Using

Recolored Noise and Gaussian Noise (Singer et al. 2014)

Distance Estimate Uncertainty Gaussian Noise Recolored Noise

Median DCID
0.5 0.36 0.38

DCID
0.9 0.82 0.85

Note. Figures for the 50% credible interval CID
0.5 and the 90% credible interval

CID
0.9 are included.

Figure 13. Fraction of true source chirp masses found within a credible interval
as a function of encompassed posterior probability. Results using recolored
noise are indicated by a solid line, while the results using Gaussian noise
(Singer et al. 2014) are indicated by a dashed line. The expected distribution is
indicated by the dotted–dashed diagonal line. The shaded regions enclose the
68% confidence intervals accounting for sampling errors.
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5.1.1. Two-detector Sky-localization Accuracy

Prospects for sky localization in the advanced-detector era
are specified by Aasi et al. (2013b). This states that any events
detected in 2015 would not be well localized. This has been
shown to not be the case (e.g., Nissanke et al. 2011; Kasliwal
& Nissanke 2014; Singer et al. 2014). We see that while only a
small fraction of events have well-localized sources, this
fraction is non-zero. The 90% credible region is almost always
smaller than 10 deg3 2. The 2015 observing scenario of Aasi
et al. (2013b) does not give any figures for potential sky-
localization accuracy, but we can now be specific using the
results of this work.

The sky-localization figures currently included in Aasi et al.
(2013b) are calculated using TT (Fairhurst 2009, 2011). This is
a convenient means of predicting sky-localization accuracy; it
is not a method used to reconstruct the sky-position posterior of
detected signals. For a two-detector network, triangulation
predicts an unbroken annulus on the sky. The area of this ring
linearly scales with the uncertainty on the timing measurement,
which is inversely proportional to the S/N. Our results show
that, when using a coherent Bayesian approach, the recovered
sky area is not (always) a ring (see Figure 6), and the area
scales inversely with the square of the S/N (Raymond
et al. 2009). Hence, TT is a poor fit in this case.

In Figure 18 we plot the ratio of the predicted credible region
calculated using TT, to the actual credible region calculated
using LALINFERENCE PE. We include predictions from both
standard TT and also TT including phase coherence (Grover
et al. 2014). The former method estimates timing accuracy (and
hence the width of the sky annulus) as a function of the S/N
and detector bandwidth.20 The latter method introduces the
requirement of phase consistency between detectors, which can

Figure 14. Offset between the posterior mean estimate for the chirp mass ̄c
and the true (injected) value  divided by the standard deviation of the
posterior distribution s c. The round (green) points are for the results using
Gaussian noise (Singer et al. 2014) and the star-shaped (red) points are for
results using recolored noise.

Figure 15. Cumulative fractions of events with (a) 50% chirp-mass credible
interval, (b) 90% credible interval, and (c) offsets between the posterior mean
and true chirp mass smaller than the abscissa value. Results using recolored
noise are indicated by a solid line and the results using Gaussian noise (Singer
et al. 2014) are indicated by a dashed line. The 68% confidence intervals are
denoted by the shaded areas.

20 In calculating these values we have corrected typos in both Equation (28) of
Fairhurst (2009), where the prefactor should be »-2 erf (0.9) 1.651 rather
than 3.3, and Equation (15) of Fairhurst (2011), which has an unnecessary
factor of D.
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significantly aid source localization. These effects are modeled
via a correction factor, whose value depends on how
marginalization over polarization is taken into account. Here,
we use the larger of the two correction factors proposed in
Grover et al. (2014), their Equation (16), although the
degeneracy between phase and polarization means that the
correction factor is probably too large for the two-detector
network. The time and phase method does better, but neither
technique does a good job at matching the true localization:
both are too pessimistic. Agreement worsens at higher S/N as
a consequence of the different S/N scalings. We cannot
naively use TT to predict sky-localization accuracy for a two-
detector network.

We have found that sky areas recovered during O1 are likely
to be hundreds of square degrees. Covering such a large area to
sufficient depth to detect the most plausible EM counterparts

( r 22–26 mag; Metzger & Berger 2012; Barnes &
Kasen 2013; Metzger et al. 2015) is challenging for current
EM observatories (Kasliwal & Nissanke 2014); furthermore,
posterior distributions for the sky location are commonly
multimodal or feature long, narrow arcs making them awkward
to cover. It will be necessary to carefully consider how to most
efficiently point telescopes to maximize the probability of
observing a counterpart; using galaxy catalogs could be one
means of increasing this chance (Nuttall & Sutton 2010;
Nissanke et al. 2013; Hanna et al. 2014; Fan et al. 2014; Bartos
et al. 2015).

Table 5
Fractions of Events with Chirp-mass Estimate Errors

Smaller than a Given Value

Chirp-mass Estimate Error Gaussian Noise Recolored Noise
 ⩽CI0.5

c ´ -
M(5 10 )5 — —

´ -
M(1 10 )4 0.05 0.03

´ -
M(2 10 )4 0.34 0.33

´ -
M(5 10 )4 0.89 0.88

´ -
M(1 10 )3 1.00 0.99

´ -
M(2 10 )3 1.00 1.00

 ⩽CI0.9
c ´ -

M(5 10 )5 — —

´ -
M(1 10 )4 — —

´ -
M(2 10 )4 0.01 0.02

´ -
M(5 10 )4 0.29 0.29

´ -
M(1 10 )3 0.77 0.79

´ -
M(2 10 )3 1.00 0.97

 - ⩽¯ c ´ -
M(5 10 )5 0.09 0.11

´ -
M(1 10 )4 0.20 0.21

´ -
M(2 10 )4 0.42 0.41

´ -
M(5 10 )4 0.83 0.79

´ -
M(1 10 )3 0.98 0.96

´ -
M(2 10 )3 1.00 1.00

Note. Results using recolored noise and Gaussian noise are included (Singer
et al. 2014). Included are figures for the 50% credible interval CI0.5

c and the

90% credible interval CI0.9
c, which only include statistical error from the noise,

and for the posterior mean offset relative to the true chirp mass  -∣ ∣¯ c ,
which includes both noise error and theoretical error. A dash (—) is used for
fractions less than 0.01.

Table 6
Median Chirp-mass Credible Intervals and Posterior Estimate Offset Using

Recolored Noise and Gaussian Noise (Singer et al. 2014)

Chirp-mass Estimate Error Gaussian Noise Recolored Noise

Median CI0.5
c ´ -

M(2.6 10 )4 ´ -
M(2.5 10 )4

CI0.9
c ´ -

M(6.4 10 )4 ´ -
M(6.4 10 )4

 -¯ c ´ -
M(2.4 10 )4 ´ -

M(2.6 10 )4

Note. Included are figures for the 50% credible interval CI0.5
c and the 90%

credible interval CI0.9
c, and the posterior mean offset relative to the true value

 -∣ ∣¯ c .

Figure 16. Fraction of true source component masses m m( , )1 2 found within a
credible region as a function of encompassed posterior probability. Results
using recolored noise are indicated by a solid line, while the results using
Gaussian noise (Singer et al. 2014) are indicated by a dashed line. The
expected distribution is indicated by the dotted–dashed diagonal line. The
shaded regions enclose the 68% confidence intervals accounting for sampling
errors.

Figure 17. Cumulative fractions of events with m1–m2 90% credible regions
smaller than the abscissa value. Results using recolored noise are indicated by a
solid line and the results using Gaussian noise (Singer et al. 2014) are indicated
by a dashed line. The 68% confidence intervals are denoted by the shaded
areas. These results show the typical posterior width using non-spinning
waveforms; the failure to include the mass–spin degeneracy means that these
posteriors are too narrow.

14

The Astrophysical Journal, 804:114 (24pp), 2015 May 10 Berry et al.



5.1.2. Three-detector Sky-localization Accuracy

For 2016 onwards, we expect that AdV would also be in
operation. The addition of a third detector should significantly
improve sky-localization accuracy (Singer et al. 2014).
Aasi et al. (2013b) give figures for sky-localization

accuracies in the three-detector era. In 2016, Aasi et al.
(2013b) predict that 2% (5–12%) of BNS detections shall be
localized within 5 deg2 (20 deg2) at 90% confidence. These
values are calculated from TT. Ideally, we would like to
compare these to results using Bayesian PE using recolored
noise, but performing three-detector PE runs for later observing
periods is outside the range of this study. However, we have
demonstrated that the properties of the noise do not impact sky-

Figure 19. Ratio of the area of credible regions calculated as a function of the S/N as in Figure 18, but for a three-detector network as expected in 2016. (a) Ratio of
CR0.5. (b) Ratio of CR0.9. TT results are calculated using just time of arrivals (Fairhurst 2009, 2011), indicated by the star-shaped (blue) points, and by also including
phase coherence (Grover et al. 2014), indicated by the round (purple) points. PE results with Gaussian noise are calculated from the posteriors returned by
LALINFERENCE (Singer et al. 2014).

Figure 18. Ratio of the area of credible regions calculated using TT and PE as a function of the S/N. (a) Ratio of 50% credible regions CR0.5. (b) Ratio of CR0.9. TT
results are calculated using just time of arrivals (Fairhurst 2009, 2011), indicated by the star-shaped (blue) points, and by also including phase coherence (Grover
et al. 2014), indicated by the round (purple) points. PE results are calculated from the posteriors returned by LALINFERENCE.

Table 7
Average Values of the Logarithm of the Ratio of Credible Regions Calculated

Using TT to Those Calculated from PE log (CR CR )p p10
TT Full

Triangulation Method p Mean Median Standard Deviation

Time only 0.5 0.53 0.61 0.39
0.9 0.42 0.55 0.49

Time and phase 0.5 0.05 0.13 0.39
0.9 −0.07 0.07 0.49

Note. TT results are calculated using just time of arrivals (Fairhurst 2009, 2011)
and by also including phase coherence (Grover et al. 2014). PE results with
Gaussian noise are calculated from the posteriors returned by LALINFERENCE
(Singer et al. 2014).

15

The Astrophysical Journal, 804:114 (24pp), 2015 May 10 Berry et al.



localization accuracies, provided that the chosen detection
threshold yields similar S/N distributions in all cases.
Consequently, we can use the three-detector, Gaussian-noise
LALINFERENCE results of Singer et al. (2014) as a reference. For
comparison, they find that 2% (14%) of events have CR0.9

smaller than 5 deg2 (20 deg2). PE with LALINFERENCE provides
more optimistic sky-localization accuracies than TT.

In Figure 19 we compare the three-detector results of Singer
et al. (2014) to the equivalent results calculated using TT.
These results are for 2016, assuming the mid noise curve of
Barsotti & Fritschel (2012) for the aLIGO detectors, and the
geometric mean of the high and low bounds of the early curve
of Aasi et al. (2013b) for the Virgo interferometer. Both
triangulation and PE produce sky areas that scale with -2,
such that their ratio shows no significant trend with S/N,
although the scatter seems to decrease as S/N increases.

Comparing the entire population of points, we can calculate
average values, which are given in Table 7. We consider the
logarithm of the ratio, which should be =log (1) 010 for perfect

agreement. The median log (CR CR )10 0.5
TT

0.5
PE using only time of

arrival is 0.61, in complete agreement with the findings of
Grover et al. (2014); using time and phase, the median value is
0.13. The TT and PE results have different ratios CR CR0.9 0.5.
The mean value of log (CR CR )10 0.9

PE
0.5
PE is approximately 0.64

and the standard deviation is 0.13; again (see Section 4.2), this
does not fit well with a Gaussian model. The 90% credible
regions for triangulation and PE are in better agreement with
each other, with the time-and-phase triangulation average areas
consistent with those from LALINFERENCE. The time-and-phase
method produces a reasonable estimate when averaged over the
entire population. However, for individual events there is large
scatter because TT models are purely predictive and do not take
into account the actual data realization.

Despite the good average agreement, there is a large tail of
events at low S/Ns where credible regions are too small, and
the results suggest that at high S/Ns the credible regions may
be too large; this may introduce errors when considering the
sub-populations of the best localized or worst localized
events (or if the distribution of events is significantly
different from that considered here). Given all these findings,
we can be confident that the TT results of Aasi et al. (2013b)
are overly pessimistic.

There remains one further caveat before we can state that the
sky-localization accuracies of Aasi et al. (2013b) should be
revised to give better results. We have seen that using a realistic
FAR cut allows us to detect signals with  < 12. These
low-S/N results shift the distribution of sky-localization
accuracies, such that the performance appears worse. Thus,
while we can be confident that the events currently included
should have a better accuracy than assumed for Aasi et al.
(2013b), the total population of detectable events is potentially
larger than previously estimated, and may include some
low-S/N events with poorer localization.

5.2. Summary

We provide realistic prospects for sky localization and EM
follow-up of CBC sources in the O1 era by simulating a search
for BNS sources with a two-detector aLIGO network at
anticipated 2015 sensitivity. Our analysis is designed to be as
similar as possible to recent work investigating sky-localization
capability in the first two years of the advanced-detector era

(Singer et al. 2014). That study assumed Gaussian noise
whereas our analysis incorporates more realistic noise, using
real data from the S6 observing period recolored to the
anticipated 2015 noise spectrum.
We use the same list of simulated BNS sources as previously

used in Singer et al. (2014). The simulated events are passed
through the GSTLAL_INSPIRAL data-analysis pipeline which
will be used online in O1. Detection triggers from this search
with a FAR of - -⩽10 yr2 1 are then followed up with sky
localization and PE codes.
The pipeline should not significantly distort the population

of signals detected compared with the astrophysical population.
There appears to be no selection based upon BNS spin. There is
a selection effect determined by the chirp mass (systems with
smaller chirp masses are harder to detect), but this translates to
only a small difference for a small number (102) of
detections.
Comparison of sky-localization areas from BAYESTAR and

LALINFERENCE demonstrates that while the former only uses a
selection of the information available and employs a number of
approximations, it does successfully reconstruct sky position.
Furthermore, BAYESTAR does this with sufficiently low latency
to be of use for rapid EM follow-up.
Rapid sky localization with BAYESTAR takes on average 900 s

of CPU time per event (Appendix B). If it is parallelized in a
32-way configuration (the baseline for online analysis), this
corresponds to a wall time of 30 s. None of our runs would take
longer than 60 s to complete.
PE using LALINFERENCE_NEST with (non-spinning) Tay-

lorF2 waveforms requires a total CPU time of ~ ´2 10 s6 per
event (Appendix B). Five CPUs were used for each
LALINFERENCE_NEST run, hence the wall time, as a first
approximation, can be estimated as ~100 hr. These PE results
can be produced within a few days, although with more
expensive waveforms, the time taken is longer. Ongoing
technical improvements should reduce the computational cost
in the near future (Veitch et al. 2015).
Considering sky localization, the median area of CR0.9

(CR0.5) as estimated by LALINFERENCE is 632 deg2 (154 deg2),
and the median searched area is 132 deg2. LALINFERENCE finds
that 2% of events have CR0.5 smaller than 20 deg2; fewer than
1% of events have CR0.5 smaller than 5 deg2 or CR0.9 smaller
than 20 deg2, but 14% of events have searched areas smaller
than 20 deg2 and 4% have searched areas smaller than 5 deg2.
These are worse than predicted using Gaussian noise because
of the inclusion of more low-S/N events, but if these additional
events are excluded, the results calculated using both types of
noise are in agreement. The non-stationarity and non-
Gaussianity of the recolored noise does not noticeably affect
sky-localization accuracy, and sky areas are consistent if the
same S/N threshold is applied to the recolored and Gaussian
data sets.
The 2015 observing scenario of Aasi et al. (2013b)

currently states that any events detected would not be well
localized. This is not the case, although recovered areas are
still large.
While Aasi et al. (2013b) does not have sky-localization

figures for 2015, it does have them for later years. These are
calculated using a TT method (Fairhurst 2009, 2011). The
Gaussian results of Singer et al. (2014) show that we can
achieve better sky localization than expected from TT alone;
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this improvement can principally be explained by the
incorporation of phase consistency (Grover et al. 2014). Hence,
the figures in Aasi et al. (2013b) may be pessimistic. However,
from this study we also know that results using Gaussian noise
are liable to be optimistic because they exclude events by using
a detection threshold of  ⩾ 12; in practice, when using a FAR
threshold, there is a tail of lower S/N events that skew the
distribution. This must be accounted for when quoting the
fraction of events located to within a given area. Therefore,
updating the numbers in the observing scenarios for later years
is not straightforward.

The LALINFERENCE runs also return posteriors for other
parameters. We looked at the source luminosity distance, the
chirp mass and the component masses. The distance is not well
measured; the median DCID

0.9 ( DCID
0.5 ) is 0.85 (0.38). As a

consequence of our use of non-spinning waveform templates
that do not exactly match the injected waveforms, the chirp-
mass estimates are subject to theoretical error of a size roughly
equal to the uncertainty introduced by the noise. This means
our posteriors are not well calibrated: they are both (on
average) offset from the true position and too narrow (by a
factor of ~1 2). Using spinning waveforms, such that the
mass–spin degeneracy can be explored, will broaden the
posteriors and resolve this problem, but we will always face a
potential systematic bias unless we exactly know the true
waveforms of Nature. Despite the systematic effects, the
posterior mean of the chirp-mass distribution is within -

M10 3

of the true chirp mass in 96% of events, and the median
absolute difference between the two is ´ -

M(2.6 10 )4 . A
larger difference could occur if there is a larger discrepancy
between the waveform template and the true waveform, but we
expect it to be of a similar order of magnitude. While we can
still accurately measure the chirp mass using non-spinning
waveforms, the same does not apply for component masses.
Estimates for these must be performed using spinning wave-
forms; we shall examine this in a future study.

Aggregate PE accuracy is the same for the population of
signals with Gaussian noise and the population with
recolored noise. The inclusion of non-stationary and non-
Gaussian noise features does not degrade our average PE

ability at a given S/N. The recolored S6 noise is used as a
surrogate for real aLIGO noise; while it is more realistic than
pure Gaussian noise, it does not necessary reflect the true
form of the noise that will be recorded in O1. However, since
we do not observe any difference in PE performance using
recolored noise, we can be confident that the non-Gaussianity
of real noise should not significantly affect our PE ability
(unless the noise characteristics are qualitatively different
than anticipated). We expect that the non-stationary and non-
Gaussian noise of the advanced detectors will not be a
detriment to PE for BNSs.
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APPENDIX A
DETECTION AND COMPONENT MASSES

In Section 4.1.2, we examined selection effects of the detection pipeline. In particular, we looked at the detected distribution of
chirp masses, as this sets the GW amplitude. The magnitude of the selection effect depends on the details of the chirp-mass
distribution, but can be estimated using a simple model. For low-mass signals whose inspiral spans the sensitive band of the detector,
the amplitude of the waveform is proportional to c

5 6 (Sathyaprakash & Schutz 2009). The sensitive volume is proportional to the
cube of this, or c

5 2. Suppose that half of the injections are made at a chirp mass of  d-¯ c c and the other half at a chirp mass
value of  d+¯ c c, with  d  ¯c c. Then the expected fraction of higher-mass systems among all detected systems is

  
   




d

d d

d
=

+

+ + -
+

( )
( ) ( )

¯

¯ ¯

1

2

5

4 ¯
. (A1)high
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If N detections are made in total and the selection effects played no role, the expected number of detections from the higher-mass set
would be N 2 with a standard deviation of N 2. However, in our model, there is a predicted excess of  dN5 (4 ¯ )c c high-mass

detections because of selection effects. Consequently, we expect to have xσ confidence in observing a selection effect on chirp mass,
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where



d

=x
N5

2 ¯
. (A2)c

c

We can estimate ̄c from the mean of the chirp-mass distribution, and d c from the standard deviation; for our injections set,

 d »¯ 0.06c c . For the Gaussian data set N = 250, and so we expect to observe selection effects at only the ∼2-σ confidence

level; the actual measurements are roughly consistent with this. For such a narrow chirp-mass distribution, 103 detections are

needed to confidently observe the selection effects.
While the chirp mass is of prime importance to GW astronomers (it is their most precisely determined mass parameter), other

combinations of mass are of interest in other contexts. Parameters which are correlated with the chirp mass are also subject to
selection effects. However, their significance is proportional to the level of correlation of the parameters with chirp mass; given that
selection effects on chirp mass are small, we do not expect statistically significant effects for other mass parameters. Here, we present
the distributions of the individual component masses, the asymmetric mass ratio, and the total mass.

The distribution of recovered (injected) component masses is shown in Figure A1. The detected events show a slight over-
representation of higher-mass objects, which is the effect of selecting systems with larger chirp masses. The deviation from the
injection distribution is small (a KS test with the predicted distribution gives p-values of 0.213 and 0.182 for Gaussian noise, and
0.276 and 0.022 for the recolored noise), but noticeably more significant than for the spins.

The asymmetric mass ratio is

=q
m m
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Figure A1. Cumulative fractions of detected events with component masses smaller than the abscissa value. The mass distribution for the first neutron star m1 is
denoted by the solid line, and the distribution for the second neutron star m2 is denoted by the dashed line. Results with recolored noise are denoted by the thicker red–
purple lines, and results from the subset of 250 events analyzed with LALINFERENCE with Gaussian noise are denoted by the thinner blue–green lines (Singer
et al. 2014). The 68% confidence intervals are denoted by the shaded areas. The expected distribution for component masses drawn uniformly from = m M1.2min to

= m M1.6max is indicated by the black dotted–dashed line.
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Figure A2 shows the recovered distribution of mass ratios as well as the injection distribution given by Cq(q). There is a small
difference between the injection and recovered distributions (a KS test with the injection distribution returns p-values of 0.536 and
0.050 for the Gaussian and recolored noise respectively).

The probability density function for the total system mass, = +M m m1 2, is
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Figure A3 shows the recovered distribution of total masses as well as the injection distribution given by CM(M). The distributions are
similar to those seen for the chirp mass in Figure 4. This is not surprising, as there is a clear link between the two quantities. We are
considering a narrow mass range; individual component masses can be described as e= +m m (1 )1,2 min 1,2 , where

e -⩽ m m( )1,2 max min m 1min . The total mass is e e+ +m (2 )min 1 2 ; to first order in e1,2, the chirp mass can be described as

e e+ +- m2 (2 )6 5
min 1 2 . Hence, the total mass is approximately proportional to the chirp mass across the range of interest. We

preferentially select signals with larger total masses as these produce louder signals, although the difference between the injection and
recovered distributions is not too large (a KS test with the injection distribution yields p-values of 0.338 and 0.050 for the Gaussian and
recolored noise respectively).

All the mass distributions show a difference between the injection and detected populations. This is as expected. The difference is
small, such that for the numbers of events considered in this study, it is only marginally significant. The difference need not always
be negligible; it would become more important when considering a larger population of events, or a set of events with a broader
chirp-mass distribution.

Figure A2. Cumulative fractions of detected events with asymmetric mass ratios smaller than the abscissa value. Results using recolored noise are denoted by the solid
red line, and results from the subset of 250 events with Gaussian noise analyzed with LALINFERENCE are denoted by the dashed green line (Singer et al. 2014). The
68% confidence intervals are denoted by the shaded areas. The injection distribution Cq(q) is indicated by the black dotted–dashed line.

19

The Astrophysical Journal, 804:114 (24pp), 2015 May 10 Berry et al.



APPENDIX B
COMPUTATIONAL TIME

To perform rapid sky localization, we require that our analysis pipelines are expeditious. Following a detection, BAYESTAR promptly
returns a sky localization, and later LALINFERENCE returns estimates of the sky position plus further parameters. Here, we present
estimates for the computational time required to run BAYESTAR and LALINFERENCE.

All results are specific to a two-detector network. The LALINFERENCE results are for a (non-spinning) TaylorF2 analysis: this is the
least expensive waveform family and provides medium-latency results. Computational times can be significantly longer using other
waveforms. Efforts are being made to optimize and speed up the methods of LALINFERENCE (e.g., Canizares et al. 2013, 2015; Farr
et al. 2014; Pürrer 2014).

The LALINFERENCE PE is slower than the rapid sky localization. Distributions of estimated CPU times for the runs are shown in
Figure B1. The LALINFERENCE_NEST times are calculated from log files. This is not entirely reliable as times may not be recorded for
a variety of reasons. In this case, the reported time is a lower bound on the true value. In Figure B1(a) we show the distribution of run
times for both the set of all estimated times and the subset excluding those we suspect are inaccurate due to a reported error message.
The distributions are consistent with our expectation that the inaccurate times are lower bounds. In Figure B1(c) we show the
cumulative distribution of run times using only the more reliable set of estimates. The median (accurately estimated) total CPU time
for LALINFERENCE_NEST is ´ =1.96 10 s 545 hr6 (cf. Veitch et al. 2015) and the median total CPU time for BAYESTAR is

=921 s 15.4 min. Hence, on average, LALINFERENCE_NEST takes ∼2000 times as much CPU time as BAYESTAR.
The actual latency of a technique is given by the wall time, not the CPU time. Five CPU processes were used per

LALINFERENCE_NEST run, hence the computational wall time can be estimated as a fifth of the total CPU time. This gives a median
approximate wall time of ´ =3.92 10 s 109 hr5 . Some processes take longer to finish than others, so this is not an exact means of
estimating the time taken for a run to finish. These calculations also neglect time spent idle rather than running, which influences the
physical wall time required for a job to complete. In online mode, BAYESTAR is generally deployed in a 32–64-way parallel
configuration. This gives a median wall time of 28.8 s (14.4 s) for a 32-way (64-way) configuration. BAYESTAR provides sky
localization~104 times quicker than LALINFERENCE, furthermore, none of our BAYESTAR runs would have taken longer than a minute
to complete (Singer 2014, chapter 4).

The length of the LALINFERENCE run depends upon the desired number of posterior samples. We may characterize the
computational speed by the average rate at which independent samples are drawn from the posterior: the total number of
(independent, as determined by LALINFERENCE) posterior samples divided by the total CPU time. The distribution of sampling speeds
is shown in Figure B2. We use speeds calculated using both reliably estimated times and those we suspect might be lower bounds
(giving upper bounds for sampling speed) in Figure B2(a), but only the more reliable values in Figure B2(b). The median
(accurately estimated) LALINFERENCE_NEST sampling speed is ´ =- - -4.40 10 s 15.8 hr3 1 1 corresponding to one independent
posterior sample every = ´ -227 s 6.31 10 hr2 of CPU time (cf. Sidery et al. 2014; Veitch et al. 2015).

In contract, BAYESTAR computes the likelihood 24,576 times. Its computation speed is thus simply inversely proportional to the total
CPU time. The median BAYESTAR computational speed is -26.7 s 1 corresponding to one likelihood evaluation every 37.5 ms of CPU
time. The difference between the LALINFERENCE and BAYESTAR computational speeds reflects the difference in the complexities of
their likelihood functions.

Figure A3. Cumulative fractions of detected events with total masses smaller than the abscissa value. Results using recolored noise are denoted by the solid red line,
and results from the subset of 250 events with Gaussian noise analyzed with LALINFERENCE are denoted by the dashed green line (Singer et al. 2014). The 68%
confidence intervals are denoted by the shaded areas. The injection distribution CM(M) is indicated by the black dotted–dashed line.
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Figure B1. Computation time for a run measured in CPU seconds. (a) Distribution of run times. The left (red) distribution is for BAYESTAR and the right (blue)
distribution is for LALINFERENCE_NEST. LALINFERENCE_NEST times which are reliably estimated are shown in dark blue, while the full set of times including
potentially inaccurately estimated times are shown in light blue. (b) Cumulative fractions of BAYESTAR runs with computational times smaller than the abscissa
value. (c) Cumulative fractions of LALINFERENCE_NEST runs with total CPU times smaller than the abscissa value, only reliable times are used here. The 68%
confidence interval is enclosed by the dotted lines, this accounts for sampling errors and is estimated from a beta distribution (Cameron 2011). Each plot has a
different scale.
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The medium-latency PE runs, using the current code, finish in a few days. This is much longer than is required for BAYESTAR to
produce sky-localization estimates. However, LALINFERENCE also provides posterior probability distributions for the other parameters
as well as more accurate sky localization than BAYESTAR for three-detector networks (Singer et al. 2014).

APPENDIX C
SUPPLEMENTARY DATA

Data produced for this study are available, as shown in the following tables. In the table stub, only two example entries are
included in these tables. Further details are explained in the appendix of Singer et al. (2014). These tables, along with sky maps, are
available online at http://www.ligo.org/scientists/first2years/. Table C1 gives the injected (true) parameters of the 333 simulated
signals used for this study. Table C2 gives the detection parameters (the S/Ns, FAR and masses returned by the detection pipeline),
and the sky areas calculated by BAYESTAR and LALINFERENCE. Table C3 gives quantities related to PE for the chirp mass and distance.
The second event listed in these tables is the one used for Figure 6. Table C4 is the counterpart of Table C3, but for the 250 events
using Gaussian noise. The events shown in the table stub are the same examples used by Singer et al. (2014).

Figure B2. Computation speed of LALINFERENCE_NEST runs measured in independent posterior samples per CPU second. (a) Distribution of sampling speeds. Speeds
based on reliably estimated CPU times are shown in dark blue, while the full set of speeds, including those using potentially inaccurately estimated times, are shown in
light blue. (b) Cumulative fractions of runs with computational speeds smaller than the abscissa value (only reliable values are used here). The 68% confidence
interval is enclosed by the dotted lines. All quantities are calculated based upon total CPU times, not wall times.
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Table C1
Simulated BNS Signals of Detected Events for 2015 Scenario Using Recolored Noise (cf. Singer et al. 2014, Table 2)

Event Sim MJD d a/deg d /deg i/deg y/deg f /degc D/Mpc m M/1 m M/2 a1
x a1

y a1
z a2

x a2
y a2

z

IDa IDb

4532 899 55430.10310 99.9 −30.8 26 349 118 84 1.25 1.36 −0.04 −0.01 −0.01 0.01 0.00 −0.00
4572 1243 55430.52510 227.5 −51.7 48 27 266 61 1.25 1.33 −0.01 −0.00 −0.04 −0.01 −0.01 −0.00

Note. Given are the event ID and simulation ID which specify the signal; the Modified Julian Date (MJD) of arrival at the geocenter of the signal from last stable orbit;
the sky position in terms of the R.A. α and Decl. δ (J2000); the binary’s orbital-inclination angle ι; the polarization angle ψ (Anderson et al. 2001, Appendix B); the
orbital phase at coalescence fc; the source distance D; the component masses m1 and m2, and the x-, y-, and z-components of the spins a1and a2.
a This identifier for detection candidates is the same value as the coinc_event_id column in the GSTLAL output database and the OBJECT cards in sky map
FITS headers, with the coinc_event:coinc_event_id: prefix stripped.
b This identifier for simulateds signal is the same value as the simulation_id column in the GSTLAL output database, with the sim_inspiral:
simulation_id: prefix stripped.

(This table is available in its entirety in machine-readable form.)

Table C2
Detections and Sky-localization Areas for 2015 Scenario Using Recolored Noise (cf. Singer et al. 2014, Table 3)

BAYESTAR LALINFERENCE

Event ID Sim ID Network  H  L m M/1
ML

m M/2
ML CR /deg0.5

2 CR /deg0.9
2 A*/deg2 CR /deg0.5

2 CR /deg0.9
2 A*/deg2 FAR/ -s 1

4532 899 HL 13.9 10.1 9.5 1.60 1.08 181.76 753.06 186.22 168.57 788.15 153.09 ´ -2.14 10 14

4572 1243 HL 13.2 10.0 8.7 1.73 0.98 227.91 828.23 44.55 203.63 920.10 33.27 ´ -1.27 10 13

Notes. Given are the event and simulation IDs; the detector network;a the S/N for the network  and for the Hanford H and Livingston  L detectors;b the maximum-
likelihood estimates of component masses m1

ML and m2
ML as reported by GSTLAL; the sky areas returned by BAYESTAR and LALINFERENCE, and the FAR

corresponding to the detection.
a All detections are for a two-detector Hanford–Livingston (HL) network.
b The network S/N is calculated by adding individual detectors in quadrature so   = +2

H
2

L
2 .

(This table is available in its entirety in machine-readable form.)

Table C3
Parameter-estimation Accuracies for 2015 Scenario Using Recolored Noise

Event ID Sim ID  M/ D /Mpc  M¯ /c


MCI /0.5
c 

MCI /0.9
c D̄/Mpc CI /MpcD

0.5 CI /MpcD
0.9

4532 899 1.136613 84.2 1.136689 0.000355 0.000795 64.6 25.0 53.3
4572 1243 1.123169 60.7 1.123286 0.000410 0.000901 67.5 26.7 57.7

Note. Given are the event and simulation IDs; the injected (true) chirp mass  and distance D ; the posterior mean chirp mass ̄c; the chirp-mass credible intervals
CI0.5

c and CI0.9
c; the posterior mean distance D̄; and the distance credible intervals CID

0.5 and CID
0.9. All parameter estimates are calculated by LALINFERENCE.

(This table is available in its entirety in machine-readable form.)

Table C4
Parameter-estimation Accuracies for 2015 Scenario Using Gaussian Noise

Event ID Sim ID  M/ D /Mpc  M¯ /c


MCI /0.5
c 

MCI /0.9
c D̄/Mpc CI /MpcD

0.5 CI /MpcD
0.9

18951 10807 1.264368 74.8 1.264410 0.000457 0.001017 70.4 23.1 50.6
20342 21002 1.223944 75.0 1.223740 0.000444 0.001034 71.2 26.0 57.3

Note. The columns are the same as in Table C3.

(This table is available in its entirety in machine-readable form.)
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