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Abstract

The note describes the cones in the Euclidean space admitting isotonic metric
projection with respect to the coordinate-wise ordering. As a consequence it is
shown that the metric projection onto the isotonic regression cone (the cone defined
by the general isotonic regression problem) admits a projection which is isotonic
with respect to the coordinate-wise ordering.

1. Introduction

The isotonic regression problem [1, 2, 6, 7, 11, 13, 16] and its solution is intimately related
to the metric projection into a cone of the Euclidean vector space. In fact the isotonic
regression problem is a special quadratic optimization problem. It is desirable to relate
the metric projection onto a closed convex set to some order theoretic properties of the
projection itself, which can facilitate the solution of some problems. When the underlying
set is a convex cone, then the most natural is to consider the order relation defined by the
cone itself. This approach gives rise to the notion of the isotonic projection cone, which
by definition is a cone with the metric projection onto it isotonic with respect to the order
relation endowed by the cone itself. As we shall see, the two notions of isotonicity, the
first related to the regression problem and the second to the metric projection, are at the
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first sight rather different. The fact that the two notions are in fact intimately related
(this relation constitute the subject of this note) is somewhat accidental and it derives
from semantical reasons.

The relation of the two notions is observed and taken advantage in the paper [3].
There was exploited the fact that the totally ordered isotonic regression cone is an isotonic
projection cone too.

The problem occurs as a particular case of the following more general question: What
does a closed convex set in the Euclidean space which admits a metric projection isotonic
with respect to some vectorial ordering on the space look like?

It turns out, that the problem is strongly related to some lattice-like operations defined
on the space, and in particular to the Euclidean vector lattice theory. ( [8]) When the
ordering is the coordinate-wise one, the problem goes back in the literature to [4,9,10,14,
15]. However, we shall ignore these connections in order to simplify the exposition. Thus,
the present note, besides proving some new results, has the role to bring together some
previous results and to present them in a simple unified form.

2. Preliminaries

Denote by R
m the m-dimensional Euclidean space endowed with the scalar product 〈·, ·〉 :

R
m × R

m → R, and the Euclidean norm ‖.‖ and topology this scalar product defines.
Throughout this note we shall use some standard terms and results from convex ge-

ometry (see e.g. [12]).
Let K be a convex cone in R

m, i. e., a nonempty set with (i) K + K ⊂ K and (ii)
tK ⊂ K, ∀ t ∈ R+ = [0,+∞). The convex cone K is called pointed, if K ∩ (−K) = {0}.
The cone K is generating if K −K = R

m. K is generating if and only if intK 6= ∅.
A closed, pointed generating convex cone is called proper.
For any x, y ∈ R

m, by the equivalence x ≤K y ⇔ y−x ∈ K, the convex coneK induces
an order relation ≤K in R

m, that is, a binary relation, which is reflexive and transitive.
This order relation is translation invariant in the sense that x ≤K y implies x+z ≤K y+z
for all z ∈ R

m, and scale invariant in the sense that x ≤K y implies tx ≤K ty for any
t ∈ R+. Conversely, if � is a translation invariant and scale invariant order relation on
R

m, then �=≤K with K = {x ∈ R
m : 0 � x} a convex cone. If K is pointed, then ≤K

is antisymmetric too, that is x ≤K y and y ≤K x imply that x = y. Conversely, if the
translation invariant and scale invariant order relation � on R

m is also antisymmetric,
then the convex cone K = {x ∈ R

m : 0 � x} is also pointed. (In fact it would be more
appropriate to call the reflexive and transitive binary relations preorder relations and the
reflexive transitive and antisymmetric binary relations partial order relations. However,
for simplicity of the terminology we decided to call both of them order relations.)

The set

K = cone{x1, . . . , xm} := {t1x1 + · · ·+ tmxm : ti ∈ R+, i = 1, . . . ,m}
with x1, . . . , xm linearly independent vectors is called a simplicial cone. A simplicial cone
is closed, pointed and generating.
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The dual of the convex cone K is the set

K∗ := {y ∈ R
m : 〈x, y〉 ≥ 0, ∀ x ∈ K},

with 〈·, ·〉 the standard scalar product in R
m.

The cone K is called self-dual, if K = K∗. If K is self-dual, then it is a generating,
pointed, closed convex cone.

In all that follows we shall suppose that R
m is endowed with a Cartesian reference

system with the standard unit vectors e1, . . . , em. That is, e1, . . . , em is an orthonormal
system of vectors in the sense that 〈ei, ej〉 = δji , where δ

j
i is the Kronecker symbol. Then,

e1, . . . , em form a basis of the vector space R
m. If x ∈ R

m, then

x = x1e1 + · · ·+ xmem

can be characterized by the ordered m-tuple of real numbers x1, . . . , xm, called the coor-
dinates of x with respect the given reference system, and we shall write x = (x1, . . . , xm).
With this notation we have ei = (0, . . . , 0, 1, 0, . . . , 0), with 1 in the i-th position and 0
elsewhere. Let x, y ∈ R

m, x = (x1, . . . , xm), y = (y1, . . . , ym), where xi, yi are the coor-
dinates of x and y, respectively with respect to the reference system. Then, the scalar
product of x and y is the sum 〈x, y〉 = ∑m

i=1 x
iyi.

The set
R

m
+ = {x = (x1, . . . , xm) ∈ R

m : xi ≥ 0, i = 1, . . . ,m}
is called the nonnegative orthant of the above introduced Cartesian reference system. A
direct verification shows that Rm

+ is a self-dual cone. The order relation ≤Rm
+
induced by

R
m
+ is called coordinate-wise ordering.
Besides the non-negative orthant, given a Cartesian reference system, the important

class of isotonic regression cones should be mentioned. Let wi > 0, i = 1, . . . ,m be
weights and (V = {1, . . . ,m}, E) be a directed graph of vertices V and edges E ⊂ V × V
and without loops (a so called simple directed graph). (If (i, j) ∈ E, then i is called its
tail, j is called its head.) Then we shall call the set

Kw
E =

{

x ∈ R
m :

xi

√
wi

≤ xj

√
wj

, ∀(i, j) ∈ E

}

the isotonic regression cone defined by the relations E and the weights wi.
If (V,E) is connected directed simple graph for which each vertex is the tail respective

a head of at most one edge, then Kw
E is called weighted monotone cone. In this case Kw

E

can be written (after a possible permutation of the standard unit vectors) in the form

Kw
E =

{

x ∈ R
m :

x1

√
w1

≤ x2

√
w2

≤ · · · ≤ xm

√
wm

}

.

A hyperplane (through b ∈ R
m) is a set of form

H(a, b) = {x ∈ R
m : 〈a, x〉 = 〈a, b〉, a 6= 0}. (1)
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The nonzero vector a in the above formula is called the normal of the hyperplane.
A hyperplane H(a, b) determines two closed half-spaces H−(a, b) and H+(a, b) of R

m,
defined by

H−(a, b) = {x ∈ R
m : 〈a, x〉 ≤ 〈a, b〉},

and
H+(a, b) = {x ∈ R

m : 〈a, x〉 ≥ 〈a, b〉}.
The cone K ⊂ R

m is called polyhedral if it can be represented in the form

K = ∩n
k=1H−(ak, 0). (2)

If intK 6= ∅, and the representation (2) is irredundant, then K ∩H(ak, 0) is an m− 1-
dimensional convex cone (k = 1, . . . , n) and is called a facet of K.

The simplicial cone and the isotonic regression cones are polyhedral.

3. Metric projection and isotonic projection sets

Denote by PD the projection mapping onto a nonempty closed convex set D ⊂ R
m, that

is the mapping which associate to x ∈ R
m the unique nearest point of x in D ( [17]):

PDx ∈ D, and ‖x− PDx‖ = inf{‖x− y‖ : y ∈ D}.
Given an order relation � in R

m, the closed convex set is said an isotonic projection
set if from x � y, x, y ∈ R

m, it follows PDx � PDy.
If �=≤K for some cone K, then the isotonic projection set D is called K-isotonic.
If the cone K is K-isotonic then it is called an isotonic projection cone.
For K = R

m
+ we have PKx = x+ where x+ is the vector formed with the non-negative

coordinates of x and 0-s in place of negative coordinates. Since x ≤K y implies x+ ≤K y+,
it follows that Rm

+ is an isotonic projection cone.
We have the following geometric characterization of a closed, generating isotonic pro-

jection cones (Theorem 1 and Corollary 1 in [3]):

Theorem 1 The closed generating cone K ⊂ R
m is an isotonic projection cone if and

only if its dual K∗ is a simplicial cone in the subspace it spans generated by vectors with
mutually non-acute angles.

4. The nonnegative orthant and its isotonic projec-

tion subcones

If Rm
+ is the nonnegative orthant of a Cartesian system, then we have the following theorem

(Corollaries 1 and 3 in [8]):
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Theorem 2 Let C be a closed convex set with nonempty interior of the coordinate-wise
ordered Euclidean space R

m. Then, the following assertions are equivalent:

(i) The projection PC is Rm
+ -isotonic;

(ii)
C = ∩i∈NH−(ai, bi), (3)

where each hyperplane H(ai, bi) is tangent to C and the normals ai are nonzero
vectors ai = (a1i , . . . , a

m
i ) with the properties aki a

l
i ≤ 0 whenever k 6= l, i ∈ N.

Example 1 Consider the space R
3 endowed with a Cartesian reference system, and sup-

pose
K1 = H−((−2, 1, 0), 0) ∩H−((1,−2, 0), 0) ∩H−((0, 0,−1), 0),

and
K2 = H−((−2, 1, 0), 0) ∩H−((1,−2, 0), 0) ∩H−((0, 1,−1), 0).

Then K1 and K2 are simplicial cones in R
3
+, x = (1, 1, 2) ∈ intKi, i = 1, 2. Since

K1 = cone{(−2, 1, 0), (1,−2, 0), (0, 0,−1)}⊥

and
K2 = cone{(−2, 1, 0), (1,−2, 0), (0, 1,−1)}⊥,

using the main result in [5] we see that K1 is itself an isotonic projection cone, while K2

is not. Obviously, K1 and K2 are both R
3
+-isotonic projection sets.

Example 2 Let us consider the space R
3 endowed with a Cartesian reference system.

Consider the vectors

a1 = (−2, 1, 0), a2 = (1,−2, 0), a3 = (−2, 0, 1), a4 = (1, 0,−2), a5 = (0,−2, 1),

a6 = (0, 1,−2).

Then,
K = ∩6

i=1H−(ai, 0) ⊂ R
3
+

is by Theorem 2 an R
3
+-isotonic projection cone with six facets.

Indeed, 〈a1, x〉 ≤ 0 and 〈a2, x〉 ≤ 0 imply that x1 ≥ 0 and x2 ≥ 0. We can similarly
show that x ∈ K yields x3 ≥ 0. Thus, K ⊂ R

3
+. For y = (1, 1, 1) we have 〈ai, y〉 < 0.

Hence y ∈ intK. It follows that K is a proper cone and the sets H(ai, 0)∩K, i = 1, . . . , 6
are different facets of K.

Next we shall show that the cone in Example 2 is in some sense extremal among the
R

3
+-isotonic subcones in R

3
+. More precisely we have
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Theorem 3 If K is a generating cone in R
m, then it is R

m
+ -isotonic, if and only if it is

a polyhedral cone of the form

K = ∩k<l(H−(akl1, 0) ∩H−(akl2, 0)), k, l ∈ {1, . . . ,m} (4)

where akli are nonzero vectors with akklia
l
kli ≤ 0 and ajkli = 0 for j /∈ {k, l}, i = 1, 2. Hence

K possesses at most m(m − 1) facets. There exists a cone K of the above form with
exactly m(m− 1) facets.

Proof.

The sufficiency is an immediate consequence of Theorem 2. Next we prove the neces-
sity. Assume that K is an R

m
+ -isotonic generating cone. By using the same Theorem 2,

we have that
K = ∩i∈JH−(ai, 0), (5)

where J ⊂ N is a set of indices and where each hyperplane H(ai, 0) is tangent to K
and the normals ai are nonzero vectors ai = (a1i , . . . , a

m
i ) with the properties aki a

l
i ≤ 0

whenever k 6= l, i ∈ N.
First of all we introduce the notation

Akl = {i : aji = 0, j /∈ {k, l}}, k, l ∈ {1, . . . ,m}, k < l.

(In Example 2 A12 = {1, 2}, A13 = {3, 4}, A23 = {5, 6}.)
We claim that

Akl 6= ∅, k < l, and ∪k<l Akl = J . (6)

This follows from the structure of the normals ai. Indeed if ai possesses two non-zero
components, say aki and ali, k < l, then i ∈ Akl. If it has only one non-zero component,
say aki with k < m, then i ∈ Akm, or only one nonzero component ami then i ∈ Akm for
k < m.

Let us see that
∩i∈Akl

H−(ai, 0) = H−(ai1 , 0) ∩H−(ai2 , 0), (7)

where H−(aij , 0) are among those in (5) and the case i1 = i2 is possible.
Denote by Rkl the bidimensional subspace in R

m endowed by the k-th and l-th axis.
Then we have the representation

∩i∈Akl
H−(ai, 0) = R

⊥
kl × (∩i∈Akl

H−(ai, 0)) ∩ Rkl.

Now, ∩i∈Akl
H−(ai, 0))∩Rkl must be a two dimensional cone in Rkl (since K is generating),

hence it must have one or two extremal rays. That is the intersection can be expressed
by one or two terms, that is, we can suppose that 1 ≤ cardAkl ≤ 2 and (7) is proved.

With these remarks we can assert that the formula (5) becomes

K = ∩k<l (∩i∈Akl
H−(ai, 0)) = ∩k<l(H−(akl1, 0) ∩H−(akl2, 0)), (8)

where akklia
l
kli ≤ 0 and ajkli = 0 for j /∈ {k, l}, i = 1, 2.
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From formula (8) it follows that in the representation (5) of K there are at most
m(m− 1) facets H(ai, 0) ∩K of K.

Using the construction in Example 2 we can construct a K with exactly m(m − 1)
facets. To this end, let for k < l akl1 be the vector with akkl1 = −2, alkl1 = 1 and
ajkl1 = 0 for j /∈ {k, l}, and akl2 be the vector with akkl2 = 1, alkl2 = −2 and ajkl2 = 0 for
j /∈ {k, l}. We have that the vectors akli are pairwise non-parallel. Putting these vectors in
the representation (8) we get a proper subcone of Rm

+ which is Rm
+ -isotonic and possesses

exactly m(m − 1) facets. Indeed, we must see that in this case the representation (8)
is irredundant. But this follows from the fact that K ⊂ R

m
+ is a polyhedral cone with

x = (1, 1, . . . , 1) an interior point. Hence some of Fkli = H(akli, 0) ∩ K must be facets
of K. Now, from the special feature of akli it follows that the sets Fkli are structurally
equivalent and if one of them is a facet, then all of them are so.

The proof also implies that K must be a polyhedral cone and if its representation (5)
is irredundant, than the set J must be finite.

✷

Remark 1 The representation (8) can be redundant, even if the original one in (5) is
irredundant. Indeed, Rm

+ must be of form (5) and its irredundant representation contains
m terms, while its equivalent form (8) formally contains much more terms. In this case

(8) can contain m(m−1)
2

terms. But even a minimal “dual” decomposition of R
m
+ is of

cardinality [m+1
2

] and hence it contains 2[m+1
2

] half-spaces.

5. Every isotonic regression cone is an R
m
+-isotonic

projection set

Projecting y ∈ R
m into K given by (8) we have to solve the following quadratic mini-

mization problem:

PKy = argmin

{

m
∑

i=1

(xi − yi)2 : akkl1x
k + alkl1x

l ≤ 0, akkl2x
k + alkl2x

l ≤ 0, k < l

}

, (9)

where the cases akklj = 0, or alklj = 0 are not excluded.
By using Theorem 2, we see that, from

u ≤Rm
+
v,

it follows that
PKu ≤Rm

+
PKv.

A particular case of this projection problem is equivalent to the so called isotonic
regression problem [1, 2, 6, 7, 11, 13, 16] which can be described as follows:
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For a given y ∈ R
m and weights wi > 0, i = 1, . . . ,m

iso(y) := argmin

{

m
∑

i=1

wi(x
i − yi)2 : xi ≤ xj, ∀(i, j) ∈ E

}

,

where (V = {1, . . . ,m}, E) is a directed simple graph.
Indeed,

iso(y) = argmin

{

m
∑

i=1

(√
wixi −

√
wiyi

)2

:

√
wixi

√
wi

≤
√
wixj

√
wj

, ∀(i, j) ∈ E

}

=
1√
w
PKw

E
(
√
wy),

where for any z ∈ R
m we denote

√
wz = (

√
w1z1, . . . ,

√
wmzm)

and
z√
w

=

(

z1√
w1

, . . . ,
zm√
wm

)

,

and Kw
E is the isotonic regression cone defined in Section 2.

To compare with this with the general projection problem (9), we observe that the
restrictions on x for PKw

E
(y) are of the form

aiijx
i + ajijx

j ≤ 0

with aiij = 1/
√
wi and ajij = −1/

√
wj, (i, j) ∈ E. Thus we have established the

Corollary 1 Every isotonic regression cone Kw
E is an R

m
+ -isotonic projection set.

We further have that

Proposition 1 The isotonic regression cone Kw
E is an isotonic projection cone if and only

if in the oriented graph (V,E) does not exist different edges with same tail or different
edges with same head, that is, edges of form (i, j) and (i, k) with j 6= k, or edges of form
(i, j) and (k, j) with i 6= k.

Proof. Assume e. g. that (1, 2), (1, 3) ∈ E. Then the corresponding normals are

a1,2 = (1/
√
w1,−1/

√
w2, 0, . . . , 0)

and

a1,3 = (1/
√
w1, 0,−1/

√
w3, 0, . . . , 0).
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Then a1,2 and a1,3 are normals in the irreducible representation ofKw
E , and 〈a1,2, a1,3〉 >

0. Thus, according to Theorem 1 Kw
E cannot be an isotonic projection cone. Conversely,

if there are no vertices with the above type multiplicity property, then the normals in the
irreducible representation of Kw

E (which in fact generates −Kw
E
∗) form pair-wise non-acute

angles, hence by the same result Kw
E is an isotonic projection cone.

✷

Corollary 2 If Kw
E is an isotonic projection cone, then (V,E) splits in disjoint union

of connected simple graphs with vertices being the tails or heads of at most one edge.
The single (up to a permutation of the canonical basis) isotonic regression cone Kw

E , with
(V,E) a directed connected simple graph, which is also an isotonic projection cone is the
weighted monotone cone.
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