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Abstract 

Importance: A large number of structural neuroimaging studies have used voxel-based 

morphometry (VBM) to identify gray matter abnormalities in youths with conduct problems 

(CP), but the findings have been disparate and few have been replicated.   

Objective: To conduct a meta-analysis of published whole-brain structural neuroimaging 

studies on CP that used VBM methods to facilitate replication and aid further analyses by 

researchers.   

Data Sources: The PubMed, ScienceDirect, Scopus and Web-of-Science databases were 

searched identifying VBM studies published between 2007 and March 2015. Manual 

searches were conducted using title and citation information. Authors were contacted 

soliciting additional data.    

Study Selection: A literature search revealed 28 studies, with 13 eligible for inclusion (394 

youths with CP and 350 typically-developing [TD] youths).   

Data Extraction and Synthesis: Anisotropic effect-size Signed Differential Mapping was 

used for voxel-based meta-analyses. Statistical parametric maps comparing gray matter 

differences between youths with CP and TD youths were available for 11 of the studies, with 

peak coordinates available for the remaining studies.   

Main Outcome(s) and Measure(s): Regional gray matter volume (GMV) differences in 

youths with CP compared to TD youths.  

Results: Youths with CP had decreased GMV in left amygdala (SDM-estimate=-

0.218;p=0.00002) (extending into anterior insula), right insula (SDM-estimate=-

0.174;p=0.0004) (extending ventro-laterally into prefrontal cortex and inferiorly into superior 

temporal gyrus), left medial superior frontal gyrus (SDM-estimate=-0.163;p=0.001) 
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(extending into right anterior cingulate cortex) and left fusiform gyrus (SDM-estimate=-

0.146;p=0.003). Sub-group meta-analysis assessing age-of-onset effects identified reduced 

GMV in the left amygdala (SDM-estimate=-0.232;p=0.0002) extending into anterior insula. 

Meta-regression analyses revealed that greater scores on measures of callous-unemotional 

traits were associated with a lower reduction in GMV in left putamen (SDM-estimate=-

0.911;p=0.00006). The proportion of males and females in the sample related to decreased 

GMV in left amygdala (SDM-estimate=-0.31;p=0.000003) and increased GMV in right 

inferior temporal cortex (SDM-estimate=0.755;p=0.00001). Whilst there was no association 

with co-morbid ADHD or IQ, age-range did contribute to gray matter differences in left 

amygdala.   

Conclusions and Relevance: We identified gray matter reductions within the insula, 

amygdala, frontal and temporal regions as the most consistent in CP as well as 

inconsistencies in sample characteristics across studies that should be addressed in future 

research. 
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Introduction 

Youths with conduct problems (CP), such as conduct disorder (CD), oppositional 

defiant disorder (ODD) and disruptive behavior disorder (DBD), are characterized by 

aggressive, antisocial and oppositional/defiant behaviors during childhood and adolescence1,2. 

CP are one of the most prevalent child psychiatric disorders and among the most common 

reasons for a childhood referral to mental health services3. Crucially, CP in youths are not 

only predictive of antisocial and aggressive behaviors in adulthood, but also substance 

misuse, other mental health problems and poor physical health 4, 5, making them an important 

target for etiologic research and prevention efforts6. 

Youths with CP are a highly heterogeneous population incorporating different 

subgroups7, potentially reflecting distinct etiological pathways to CP8. Several approaches 

have attempted to account for this heterogeneity9, with two included within the Diagnostic 

and Statistical Manual of Mental Disorders (DSM-51). The first is the age-based distinction 

between childhood-onset and adolescent-onset CD, introduced in DSM-IV10. This distinction 

is thought to identify two qualitatively and etiologically distinct subtypes and has been well 

supported for both females and males (11; but see12). The second subtyping approach 

distinguishes youths with CP as those displaying high (CP/HCU) versus low (CP/LCU) 

callous-unemotional (CU) traits8, 13, 14. CU traits reflect a lack of empathy and guilt combined 

with a shallow affect, the callous use of others for one’s own gain and a lack of concern about 

own performance in important activities. Genetic, neuroimaging, and behavioral studies have 

shown that youths with CP/HCU versus those with CP/LCU are characterized by different 

vulnerabilities7. This resulted in the inclusion of CU traits as the 'with Limited Prosocial 

Emotions' specifier for the diagnosis of CD in DSM-51. 
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To characterize whole-brain and regional gray matter volume (GMV), recent 

structural magnetic resonance imaging (sMRI) studies on CP have used automated and 

unbiased methods such as voxel-based morphometry (VBM)15, 16. Two studies reported an 

overall reduction in GMV in youths with CP compared to TD youths17, 18. Youths with CP 

exhibit reduced GMV in a number of cortical and subcortical brain regions including 

anterior12, 19, 20,21 and posterior22 insula, temporal lobes bilaterally,17,19, 22,23right ventromedial 

prefrontal cortex (vmPFC)12,23 incorporating orbitofrontal cortex (OFC),12,17,19,24  right 

dorsolateral prefrontal cortex (dlPFC)12,21,25, anterior cingulate cortex (ACC)20,23,24 , 

hippocampus17,22, amygdala17, 19, 20,  and striatal regions12, 20.  However, there are marked 

inconsistencies across studies regarding the foci of reduced gray matter, which encompass 

several fronto-temporal and striato-limbic structures.  Two recent studies also failed to 

identify a significant difference in GMV between youths with CP and TD youths 26,27.   

These inconsistent findings coupled with the low level of replication across studies 

likely reflect variations in data analytic strategy and sample characteristics within and across 

studies. The relatively small sample size for most, but not all20, 27, studies could have resulted 

in low statistical power and increased risk of false-positive results28.  Some studies failed to 

account for heterogeneity within CP in terms of age of onset of CD and levels of CU traits. 

Some studies have also included samples exhibiting high co-morbidity with other disorders, 

notably attention deficit hyperactivity disorder (ADHD)12, 17, 19, 23, 26, 27 commonly co-morbid 

with CD 29, 30. Controlling for ADHD as a potential confound can have a significant effect on 

reported results12. Finally, potential sex differences might also have contributed to the 

inconsistent findings, with recent VBM studies reporting divergent patterns of GMV 

abnormalities across sexes12, 27.   

Given this variability, we applied seed-based d mapping31, a novel voxel-based meta-

analytical method, on published whole-brain VBM studies in CP. The inclusion of only 
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whole-brain VBM studies means that the results were not biased or restricted by previous 

findings to a priori regions of interest (ROIs)31. To increase the accuracy and sensitivity of 

our analyses, we included the original statistical parametric maps from 85% of studies in our 

meta-analysis31. Reliability analyses were performed to assess robustness of findings. To 

examine the respective contribution of age of onset of CP on heterogeneity of CP and GMV 

differences, we conducted an additional subgroup meta-analysis including only studies that 

compared childhood-onset CP youths with TD youths. Given evidence of the differential 

etiology and neurobiology for CP youths displaying high versus low CU traits7 and for CP in 

males versus females32, meta-regressions were also conducted to examine the influence of 

CU traits and sex on GMV. Based on the high comorbidity between CP and ADHD we also 

conducted a meta-regression with ADHD included as a covariate of no-interest. Finally, the 

influence of age, IQ and CD symptom severity were also examined given their influence on 

GMV20,33. 

 

Materials and methods 

Search and Study Selection 

A literature search of VBM studies published between 2007 – the year of the first 

VBM study in CP19 – and March 2015 was carried out. The study selection procedure is 

summarized in Figure 1. Titles, abstracts, citations and reference lists of the outputted studies 

were assessed to determine relevance and to identify additional studies for inclusion. Studies 

were excluded if they (1) failed to use VBM, (2) to report a voxel-wise comparison between 

youths with CP and TD youths for GMV, (2) did not report whole-brain results (i.e., limited 

their analyses to specific ROIs), (3) used different significance or extent thresholds 

throughout the whole brain, (4) included duplicated data sets, and (5) did not provide peak 

coordinates or parametric maps after contact with the authors. We contacted the 
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corresponding authors to request the original statistical parametric maps and obtain additional 

details where necessary. To assess whether the available literature is biased toward excluding 

studies with non-significant results, a Orwin's fail safe-analysis N34 was performed to 

calculate the number of studies with an effect size of 0 needed to make the mean effect size 

non-significant (p > 0.05). 

Comparison of regional gray matter volumes 

Anisotropic effect-size Signed Differential Mapping (AES-SDM; v.4.21) software 

(http://www.sdmproject.com/software/) 31, 35 was used for voxel-based meta-analyses, 

comparing GMV differences in youths with CP and TD youths. AES-SDM enables original 

statistical parametric maps and peak coordinates to be combined with established meta-

analytical statistics (eMethods 1 in the Supplement)31. Statistical parametric maps used in this 

meta-analysis refer to group-level results for the comparison between youths with CP and TD 

youths. Both positive and negative effects are reconstructed within the same map, thus 

preventing a particular voxel from appearing in opposite directions. These negative effects 

are also included in the meta-analyses31. The inclusion of the statistical parametric maps 

provides a more accurate representation of the results31. Statistical parametric maps for the 

group-wise comparison between youths with CP and TD youths were obtained for 11 (85%) 

of the 13 included studies (Table 1).  

For two studies17,21 raw statistical parametric maps were not available, but peak 

coordinates of significant group differences between youths with CP and TD youths from 

each contrast of interest were available in the manuscripts. For one study21 that reported peak 

coordinates without statistical values the threshold value was determined as the effect-size of 

the coordinates. In line with previous meta-analyses36-38, statistical significance was 

determined using standard randomization tests (N=20) and a set of recommended thresholds 

optimizing sensitivity while adequately controlling for type 1 error (voxel p<0.005, peak 

http://www.sdmproject.com/software/
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height SDM-Z=1, cluster extent=10 voxels)31. The full-width half-maximum (FWHM) was 

set to 20 mm31,35 (eMethods 1 in the Supplement). Meta-analysis Of Observational Studies in 

Epidemiology (MOOSE) guidelines were followed39. 

 

Reliability Analysis, Sub-Group Meta-Analysis and Meta-Regressions 

 A jack-knife analysis was used to establish the reliability of the results31,40. This 

sensitivity analysis consists of removing a single dataset and repeating the analysis in 

sequence. If a previously significant brain region remains significant in all or most of the 

repeated analyses, it can be concluded that the effect is highly replicable. A sub-group meta-

analysis was also carried out on studies including only youths diagnosed with childhood-

onset CP.   

Linear meta-regression analyses were used to examine the influence of: (1) the mean 

CU traits score for youths with CP, (2) the ratio of males to females with CP across studies 

and (3) the proportion of youths with CP co-morbid for ADHD on GMV. The meta-

regressions reported here should be treated as exploratory only, with a more strict threshold 

applied in all cases to control for false-positives (p < 0.00017, Bonferroni-corrected)40 and 

results only considered when significant slopes were accompanied by significant differences 

at one extreme of the independent variable (e.g. CU traits score for youths with 

CP)(eMethods 1 in the Supplement). Finally, because the assessment tools used to measure 

CU traits differed across studies (Table 1), mean CU scores for youths with CP were 

converted to the Percent of Maximum Possible (POMP)41. Scores which express raw scores 

in terms of the minimum and maximum score. This established method of standardizing 

scores42,43 allows comparisons across scoring methods, populations and measures overcoming 

problems associated with alternative standardization methods (e.g. z-scores) that do not allow 

comparison of scores across studies and samples. For two studies that used two assessment 
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tools to measure CU traits,20,22 the average POMP score across measures of CU traits was 

calculated (eTable 4 and eMethods 2 in the Supplement). In addition, the association between 

GMV and age, IQ and CD severity was examined (eFigure 2, 3 and 4; eTable 5, 6, and 7 and 

eMethods 3 and 4 in the Supplement).  

 

Include Table 1 about here 

Results 

Study Characteristics 

Twenty-eight potential studies were identified for inclusion in the meta-analysis. 

Fifteen studies were excluded based on inclusion criteria (Figure 1 and eTable 1 in the 

Supplement). Thirteen eligible studies (Table 1) were identified that included a direct 

comparison of GMV between youths with CP (N=394; M age=14.45; SD=2.94; age range=8 

– 21 years) and TD youths (N=350; M age=14.33; SD=2.98; age range=8 – 21 years). Of the 

394 youths with CP, 327 (83%) were males while 272 (78%) of the 350 TD youths were 

males. Eight of the 13 studies included only male participants, with four including male and 

female subjects and one including all female participants (Table 1).   

 

Insert Figure 1 about here 

Youths with CP vs. TD youths: Regional gray matter differences 

AES-SDM analyses revealed decreased GMV for youths with CP compared to TD 

youths in the left amygdala and the insula bilaterally, with the cluster extent larger on the 

right, extending laterally into vlPFC/OFC and inferiorly into superior temporal gyrus (STG). 

Youths with CP also showed significantly reduced GMV in left medial superior frontal gyrus 

extending into right ACC, as well as reduced GMV in left fusiform gyrus (Table 2 and Figure 

2). No significant GMV increases were observed for youths with CP compared to TD youths. 
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The Orwin's fail safe-analysis N34 indicated that a potential publication bias was unlikely, as 

302 studies showing no effect would be needed to invalidate the reported findings.    

Insert Figure 2 about here 

Insert Table 2 about here 

Reliability Analysis 

A jackknife sensitivity analysis showed that the gray matter decrease in the left 

amygdala was preserved throughout all the 14 study combinations. The left insula and right 

IFG GMV reduction failed to emerge in only one of the study combinations with the right 

insula and left medial superior frontal gyrus GMV reductions failing to emerge in only two of 

the study combinations. An additional cluster revealing reduced GMV in left postcentral 

somatosensory cortex (BA 3) was observed in five17,20,21,26,27 out of the 13 studies (eTable 2 

in the Supplement). No additional significant clusters were found in either the positive or 

negative direction. 

Sub-group Analysis: Effects of age-of-onset 

A sub-group meta-analysis was carried out on studies including only youths 

diagnosed with childhood-onset CP. Of the 13 studies that included a comparison between 

youths with CP and TD youths, six included youths diagnosed with childhood-onset CP17,19-

21,27,44. This sub-sample comprised of 159 youths with childhood-onset CP (40% of the total 

sample) and 180 TD youths (51% of the total sample). Youths with childhood-onset CP had 

decreased GMV in a large left-lateralized cluster encompassing the insula and amygdala 

(Table 2 and Figure 2E). The sensitivity analysis revealed that the gray matter decrease in left 

amygdala and insula was broadly consistent across studies, with an additional cluster in right 

insula observed in three out of the six studies (eTable3 in the Supplement). 
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Meta-regression analyses: Effects of CU traits, sex differences and ADHD comorbidity 

Higher CU trait severity in youths with CP was associated with a lower reduction in 

GMV in the left lentiform nucleus (putamen) ([-30, 0, -10], P=0.00006; SDM-Z=-3.62; k=14 

voxels) (eFigure 1B in the Supplement)1. A higher proportion of males with CP in the sample 

was associated with decreased GMV in left amygdala ([-30, 0, -24], P=0.000003; SDM-Z=-

3.31; k=165 voxels). However, only six out of the 13 studies revealed this negative 

correlation (eFigure 1A in the Supplement). A higher proportion of female youths with CP 

was associated with increased GMV in right inferior temporal gyrus ([54, -16, -24], 

P=0.00001; SDM-Z=2.99; k=115 voxels). However, this effect appeared to be driven by one 

study (eFigure 1A in the Supplement) that included only female participants with CD12 and 

reported increased GMV for the CD group compared to TD youths in almost the same locus. 

The proportion of youths with CP currently co-morbid for ADHD (Table 1) was not 

associated with significant suprathreshold clusters. The main meta-analysis results were not 

significantly influenced by IQ, but studies using samples with a larger age range were 

associated with greater GMV reduction in the left amygdala (eFigure 2 and 3, eTable 5 and 6 

and eMethods 3 and 4 in the Supplement). CD symptom severity was associated with GMV 

reduction in the right superior temporal gyrus (eFigure4 and eTable 7 in the Supplement).  

Discussion 

 To our knowledge, this is the first image-based meta-analysis of VBM studies of 

GMV examining differences between youths with CP and TD youths. The main findings 

were that, compared to TD youths, those with CP exhibited significantly reduced GMV in the 

left amygdala, extending into the left anterior insula, as well as the right insula, extending 

laterally into right vlPFC/OFC and inferiorly into STG. Reduced GMV was also observed for 

                                                           
1 Higher CU trait severity in youths with CP was also associated with a lower reduction in GMV in the right 
amygdala at a more liberal significance threshold (p < 0.0005).  
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youths with CP in left medial superior frontal gyrus, extending into right ACC, as well as in 

the left fusiform gyrus. Across the 13 studies, gray matter reduction in the left amygdala was 

the most reliable finding. A sub-group meta-analysis of studies that only included youths with 

childhood-onset CP revealed reduced GMV in the left amygdala and insula when compared 

to TD youths, broadly consistent with the main meta-results. The meta-regression analysis 

also revealed that higher levels of CU traits were associated with a lower reduction in GMV 

in the left putamen. The proportion of male youths with CP was associated with decreased 

GMV in left amygdala while the proportion of female youths with CP was related to an 

increase in GMV in the right inferior temporal gyrus. Finally, while age range and CD 

severity were associated with some of the grey matter differences observed in the left 

amygdala and right STG respectively, ADHD comorbidity and IQ did not contribute to the 

reported GMV differences.  

 The amygdala is involved in a host of different processes including, but not limited to, 

classical aversive conditioning, decision-making, face processing, emotional empathy, and 

response to threat through the initiation of the hypothalamic-pituitary-adrenal axis stress 

response45-49. The GMV reduction in the amygdala observed in youths with CP supports 

previous behavioral and fMRI evidence of impairments and atypical amygdala response in 

tasks probing those processes12,50,51. Youths with CP also exhibited reduced GMV in the 

anterior insula bilaterally, a region forming part of a network related to empathic concern for 

others52,53, and also critical for behavioral adjustment during risky decision-making54. This 

result fits well with fMRI studies reporting atypical anterior insula response in youths with 

CP while watching others in distress or pain52,55,56 and during decision-making57,58, 

suggesting that abnormality within this structure might partly underlie impaired empathy and 

poor decision-making that in turn increases risk for violence seen in CP8,59. This 

interpretation is supported by evidence that anterior insula GMV in male adolescents with CP 
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correlated positively with empathy scores19 and negatively with the number of lifetime CD 

symptoms20 and aggressive behavior19. 

We also observed decreased GMV in the right vlPFC/OFC, implicated in decision-

making, response inhibition, and emotion regulation.60-62, all of which have been shown to be 

impaired in youths with CP63. There is also evidence that antisocial personality disorder, for 

which a diagnosis of CD by age 15 is required1, is associated with GMV reduction in the 

OFC whose volume is negatively correlated with symptoms of antisocial personality disorder 

in adults.64 Therefore, decreased vlPFC/OFC GMV could compromise self-regulation in 

youths with CP and increase the risk for antisocial and aggressive behavior64. Finally, youths 

with CP exhibited reduced GMV in left medial superior frontal gyrus, extending into right 

ACC. GMV reduction in the medial superior frontal gyrus has not been commonly reported 

in previous sMRI studies on CP, illustrating the advantage of the meta-analytic approach 

adopted here. Given its central role in social cognition in general and perspective-taking in 

particular, this finding could partly explain data indicating impaired perspective taking in 

youths with CP51. The reduced GMV observed in superior frontal gyrus also extended into 

right rostral ACC, a region where atypical response has been reported in previous studies on 

CP investigating empathy for pain52,56,65 and processing of negative pictures66.  

  The sub-group meta-analysis of studies that only included youths with childhood-

onset CP and TD youths revealed reduced GMV in the left amygdala extending into anterior 

insula in the CP group. Prior to our meta-analysis, it was unclear which brain regions could 

be consistently considered as structurally abnormal in childhood-onset CP. Out of the six 

studies included in our sub meta-analysis, only one19 reported decreased GMV in both the 

amygdala and the insula while two reported decreased GMV in the amygdala only17,20 and 

three did not report group differences in those regions21,27,44. Therefore, our results may help 
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clarify this disparity and, in line with previous fMRI studies reporting atypical amygdala and 

anterior insula response in youths with childhood-onset CP in tasks probing affective 

processing and decision-making50, support the view that structural and functional 

abnormalities within those regions are associated with childhood-onset CP.  

Higher CU traits were associated with a lower reduction in GMV in left putamen, 

which forms part of the striatum, a region critical for reinforcement learning and decision-

making67. The effect in the putamen is consistent with previous sMRI studies that reported a 

positive association between striatal volume and CU traits in youths with CP20 and 

psychopathy scores in psychopathic adults68. Interestingly, however, our exploratory meta-

regression results suggest that higher levels of CU traits are associated with more similar 

GMV in youths with CP and TD youths within this region.  Subsequent meta-regression 

analyses revealed a negative association between the proportion of males with CP and 

reduced GMV in left amygdala, which contrasts with a recent VBM study where both males 

and females with CD showed similar reductions in GMV in the amygdala compared to TD 

youths12. We also observed a positive association between the proportion of females with CP 

and GMV in right inferior temporal cortex, but we consider this association as spurious given 

that it was driven by the one study that include females participants only12. Finally, ADHD 

comorbidity did not influence our main results, consistent with evidence from two recent 

SDM meta-analyses of sMRI studies in youths with ADHD that identified GMV reduction in 

the basal ganglia and, to a lesser extent, larger GMV in the left posterior cingulate cortex69,70. 

Limitations 

First, we did not include unpublished studies, but the Orwins fail-safe N34 analysis 

indicated that a potential publication bias was unlikely. Second, our results are inherently tied 

to the limitation of VBM that cannot detect spatially complex and subtle group differences in 

other brain metrics such as cortical thickness and surface area71. However, our results of 
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decreased gray matter in the vlPFC/OFC and the insula are broadly consistent with those of 

three surface-based morphometry studies that examined cortical folding and surface area71-73. 

Third, given a lack of data, we were unable to conduct a direct comparison between youths 

with adolescent-onset CP and TD youths. Fourth, a measure of CU traits in youths with CP 

was only available for five of the 13 studies further limiting any strong conclusions drawn 

from the meta-regression analyses. Finally, the 13 included studies differed in sample size, as 

well as several comorbid psychopathologies, which might have influenced our results. 

Conclusions 

The results from this meta-analysis suggest that youths with CP present significantly 

reduced GMV in the left amygdala and insula bilaterally, extending ventro-laterally into 

vlPFC/OFC and inferiorly into STG on the right, left medial superior frontal gyrus 

incorporating right rostral ACC and left fusiform gyrus compared to TD youths. These 

findings help build a more coherent account of structural abnormalities in youths with CP. 

The sub-group and meta-regression analyses provided additional information about how 

heterogeneity within CP might influence GMV abnormalities in this population. There is a 

pressing need for larger and prospective longitudinal sMRI studies of CP to examine the 

associations between those variables and GMV in the same study. 
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Figure 1 Title. Inclusion of studies in the meta-analysis  

Figure 2 Title. Decreased GMV for youths with CP (N=394) compared to TD youths 
(N=350)(A – D) and for childhood-onset CP youths (N=159) compared to TD youths 
(N=180)(E; dashed line). 

Figure 2 Legend. 

Slices are shown in the sagittal, axial and coronal planes with MNI coordinates of the 
selected slices representing the peak in the x,y,z direction. A. Peak in left amygdala extending 
into left insula. B. Peak in right insula extending ventro-laterally into right inferior frontal 
gyrus and inferiorly into superior temporal gyrus. C. Peak in left medial superior frontal 
gyrus. D. Peak in left fusiform gyrus (circled). E. Peak in left amygdala extending into insula 
for CO-CP youths compared to TD youths only. See Table 2 for further details.      



Table 1. Summary of studies included in the meta-analysis 

Study Diagnosisa N of 
DBD 

(male %) 

Mean 
age DBD 

(range) 

IQ 
DBD 

N of TD 
(male %) 

Mean age 
TD (range) 

IQ 
TD 

Sample 
Characteristics 

Measures 
of CU 
traits 

Co-
morbidity 

(ADHD %) 

Scanner 
Strength 

FWHM 
(mm) 

Significance 

Sterzer et 
al.192007  

CD  
 

12 (100%) 12.8  
(9-15 yrs) 

100.6 12 (100%) 12.5  
(9-15 yrs) 

107.2 Clinical None ADHD  
(58%) 

1.5 8 p<0.05, 
FWE-corrected 

De Brito et 
al.442009 

CP/CU traits 23(100%) 11.6  
(10-13.3 

yrs) 

95.4 25(100%) 11.8  
(10-13.3 

yrs) 

106.9 Community APSD NA 3 8 p<0.001, 
uncorrected 

Dalwani et 
al.252011 

ASD 25(100%) 16.6 
 (14-18 yrs) 

98.1 19(100%) 16.6  
(14-18 yrs) 

105.2 Clinical None ADHD  
(12%) 

3 8 p<0.05, 
FWE-corrected 

Fairchild et 
al.202011 

CD 
(childhood/ 
adolescent 

onset) 

63 (100%) 17.8  
(16-21 yrs) 

99.3 27 (100%) 18.5  
(16-21 yrs) 

101.4 Community YPI & 
ICU 

ADHD (24%), 
Substance 

abuse 

3 8 p<0.001, 
uncorrected 

Stevens & 
Haney-

Caron182012 

CD 24(67%) 16 
 (15-16 yrs) 

91.3 24(67%) 16  
(15-16 yrs) 

97.4 Community None ADHD (0%), 
Substance 

abuse 

3 8 p<0.05, 
corrected 

Fairchild et 
al.122013 

CD 
(childhood/ 
adolescent 

onset) 

22(0%) 17.2  
(14-20 yrs) 

99.8 20(0%) 17.6  
(14-20 yrs) 

105.8 Community YPI ADHD (10%), 
MDD 

3 8 p<0.001, 
uncorrected 

Olvera et 
al.232014 

CD 24(67%) 15.8  
(13-17 yrs) 

91.9 24(67%) 15.3  
(13-17 yrs) 

98.6 Prison None ADHD (75%), 
Bipolar 
disorder 

3 9.4 Equivalent to 
p<0.05, 

FWE-corrected 
Cope, Ermer, 

Gaudet et 
al.222014 

CD/ODD 
Psychopathic 

traits 

20(100%) 17.4  
(14.9-19 yrs 

93 21(100%) 16.4  
(12.8-19 

yrs) 

110.6 Prison/ 
Community 

PCL-YV ADHD (5%), 
Substance 

abuse 

1.5 10 p<0.05, 
FWE-corrected 

Hummer et 
al.262014 

DBD 33(73%) 15.3  
(13-17 yrs) 

102.7 33(73%) 15.4  
(13-17 yrs) 

106.9 Community None ADHD (58%) 3 8 p<0.05, 
corrected 

Michalska et 
al.272015b 

DBD 43(54%) 10.1  
(9-11 yrs) 

NA 68(51.5%) 10  
(9-11 yrs) 

NA Community None ADHD (NA), 
GAD & MDD 

3 NA p<0.001, 
uncorrected 

Sebastian, et 
al. 24 2015 

CP/CU traits 60(100%) 14.3  
(10-16 yrs) 

97.9 29(100%) 13.6  
(10-16 yrs) 

105.2 Community ICU NA 1.5 6 p<0.001, 
uncorrected 

Huebner et 
al.172008 

CD  
 

23(100%) 14.5 (12-17 
yrs) 

96.7 23(100%) 14.2  
(12-17 yrs) 

98.9 Clinical None ADHD  
(74%) 

1.5 10 p<0.05, 
corrected, cluster 

level 
Fahim et 
al.212011 

DBD 22(100%) 8.4  
(8 yrs) 

NA 25(100%) 8.4  
(8 yrs) 

NA Community None NA 1.5 10 p<0.05, 
FDR-corrected 
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Abbreviations: IQ = Intelligence Quotient; TD = typically developing; yrs = Years; CU-traits = callous-unemotional traits; FWHM = full-width 
half-maximum; CD = conduct disorder; DBD = disruptive behaviour disorder; ASD = antisocial substance dependence; VBM = voxel-based 
morphometry; ADHD = Attention-deficit hyperactivity-disorder; APSD = Antisocial Process Screening Device; CP = conduct problems; ICU = 
Inventory of Callous-Unemotional Traits; ODD = oppositional defiant disorder; MDD = manic depressive disorder; GAD = generalised anxiety 
disorder; PCL-YV = Psychopathy Checklist: YPI = Youth Psychopathic Traits Inventory; FWE = family-wise error; FDR = false-discovery rate; 
NA = not available. Gray: Studies for which raw statistical parametric maps were not available.  

a Consistent with the diagnosis as included in the study.  

b Following personal communication with the lead author (beginning 30/01/2015) it was made apparent that whilst the results did not yield any 
significant group differences at a significant threshold (p<.05 FWE-corrected at whole-brain level), the group differences were present at a more 
lenient threshold (height threshold: p<.001 uncorrected; extend threshold: 0 voxels). In order for this study to be included in our meta-analysis, 
the authors were asked to provide the parametric maps produced at this lower, uncorrected threshold. 

 

 

 

 

 

 

 

 

 

              



Table 2: Meta-analysis results comparing GMV in youths with CP (N=394) versus TD 
youths (N=350) (top) and childhood-onset CP youths (N=159) versus TD youths (N=180) 
(bottom) 

Abbreviations: MNI = Montreal Neurological Institute; SDM = signed differential mapping; 
CP = conduct problems; TD = typically developing; CO = childhood-onset. 

Anatomical abbreviations: IFG = inferior frontal gyrus; STG = superior temporal gyrus; ACC 
= anterior cingulate cortex. 

a Areas shown in BOLD reflect the peak anatomical location with the breakdown of local 
peaks within this cluster also shown.  

b Voxel-probability threshold: p = 0.005, cluster extent threshold: 10 voxels. Corrected using 
Gaussian Random Fields theory cluster-based correction for multiple comparisons (p < 
0.001).   

c The SDM-estimate values, equivalent to the effect-size, are reported for the cluster peaks.   

d Right amygdala GMV reduction was also observed but at a cluster extent of only 9 voxels 
(below cluster extent threshold).  

 

 

 

 

Anatomical locationa 

(Brodmann area; BA) 
Hemisphere MNI-coordinate 

(x,y,z) 
SDM  

Z value 
p valueb Effect size 

(SDM-
Estimate)c 

No. of 
voxels 

CP < TD       
Amygdalad 

      Insula (BA 48) 
Insula (BA 38) 
      IFG (triangularis)  
      (BA 45)  
      IFG (orbitalis)  
      (BA 47) 
      IFG (opercularis) 
      (BA 48)  
      Insula (BA 48)  
      STG/Temporal  
      Pole 
Superior frontal 
gyrus (medial)  
(BA 10) 
      ACC (BA 32) 
Fusiform gyrus  
(BA 19) 

Left 
 

Right 
 
 
 
 
 
 
 
 
 
 

Left 
 

Right 
Left 

-32, 2, -20 
-42, 8, -8 

 36, 20, -16 
48, 20, 2 

 
46, 24, -6 

 
54, 20, 10 

 
30, 14, -18 
38, 14, -22 

 
-6, 54, 28 

 
 

6, 50, 14 
-34, -78, -16 

-2.837 
-2.235 
-2.302 
-2.252 

 
-2.203 

 
-2.162 

 
-2.089 
-2.046 

 
-2.164 

 
 

-1.979 
-1.940 

0.00002 
0.0006 
0.0004 
0.0006 

 
0.0008 

 
0.001 

 
0.001 
0.002 

 
0.001 

 
 

0.002 
0.003 

-0.218 
 

-0.174 
 
 
 
 
 
 
 
 
 
 

-0.163 
 
 

-0.146 

114 
277 
105 
107 

 
85 

 
36 

 
48 
20 

 
77 

 
 

49 
43 

CO-CP < TD       
Insula (BA 48) Left -40, 12, -12 -2.102 0.0002 -0.232 274 
      Amygdala  -26, 0, -12 -1.923 0.0005  132 


