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REVIEW Open Access

The role of iron in pulmonary pathology
Heena Khiroya1,2* and Alice M. Turner1,3

Abstract

Respiratory disease accounts for a large proportion of emergency admissions to hospital and diseaseassociated
mortality. Genetic association studies demonstrate a link between iron metabolism and pulmonary disease
phenotypes. IREB2 is a gene that produces iron regulatory protein 2 (IRP2), which has a key role in iron homeostasis.
This review addresses pathways involved in iron metabolism, particularly focusing on the role of IREB2. In addition
to this, environmental factors also influence phenotypic variation in respiratory disease, for example inhaled iron
from cigarette smoke is deposited in the lung and causes tissue damage by altering iron homeostasis. The effects
of cigarette smoke are detailed in this article, particularly in relation to lung conditions that favour the upper lobes,
such as emphysema and lung cancer. Clinical applications of iron homeostasis are also discussed in this review,
especially looking at the pathophysiology of chronic obstructive pulmonary disease, lung cancer, pulmonary
infections and acute respiratory distress syndrome. Promising new treatments involving iron are also covered.
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Introduction
Environmental risk factors, such as smoking status and air
pollution, interact with genes, in order to produce path-
ology. The variation of phenotypes seen in patients with
the same diagnosis can be vast, even if they have been
exposed to the same environmental factors. These differ-
ences in chronic disease manifestations point towards a
clear genetic component. Understanding the interaction
between the environment and genetics can theoretically
allow us to predict susceptibility towards certain diseases
and target treatments. Respiratory disease is a great socio-
economic burden on the UK’s health services, with it
accounting for 1 in 5 deaths, and being the second most
common cause of emergency admissions [1]. It is therefore
important to understand what drives pulmonary pathology.
The lungs are continually exposed to metals in the

atmosphere. Iron is in great abundance in the earth's core
[2] and from here is able to dissolute into the atmosphere.
Inhalational iron therefore may be a source of environmen-
tal variation within respiratory disease. Iron is also found in
cigarette smoke, the environmental factor with the stron-
gest causative link to pulmonary pathology. Through

cigarette smoking, iron has been shown to alter disrupt
homeostasis in the lung, making the tissue more susceptible
to damage [3]. Iron concentrations in lung cell lines and
bronchoalveolar lavage (BAL) fluid have been studied, and
are increased in cases of disease [4].
Alterations in iron homeostasis have also been examined

from a genetic viewpoint. Iron responsive element binding
protein 2 (IREB2) is a gene on chromosome 15, and its pro-
tein product is iron regulatory protein 2 (IRP2): a key player
in maintaining iron balance. IREB2 is in strong linkage dis-
equilibrium (LD) with nicotine receptor genes (CHRNA3
and 5) [5] and it is this that led IREB2 to be investigated in
relation to respiratory conditions such as chronic obstruct-
ive pulmonary disease and lung cancer. Interest in iron
came later as a result of IREB2 genetic association studies
to establish links between iron and pulmonary phenotypes.
This article reviews the role of iron metabolism and iron
homeostasis in lung disease, particularly focusing on IREB2.

Review
Cellular iron balance
Iron is most commonly found in ferric (Fe3+) and ferrous
(Fe2+) states; the more stable of these under normoxic con-
ditions is Fe3+. Fe2+ reduces oxygen to form superoxide
radicals [6] which cause damage to cells and ultimately
result in apoptosis [7]. To reduce the toxicity of free iron,
homeostatic mechanisms are in place to ensure appropriate
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systemic and intracellular iron conditions. Iron is stored in
hepatocytes, and macrophages in the liver and spleen.
These levels remain constant in spite of fluctuations in the
diet. The main regulator of systemic iron control is hepci-
din [8], a hormone produced in the liver. Dietary iron is
absorbed across the duodenal mucosa; modulation of this
is controlled by signals from the liver [8, 9]. Increasing
levels of iron in the plasma induce HAMP, a protein that
encodes hepcidin production. Hepcidin then reduces the
amount of iron moving from stores into the plasma as well
as the amount absorbed from the diet. Conversely, when
plasma levels of iron are low, hepcidin production is down-
regulated in order to increase the amount of iron that can
be moved from hepatocytes and macrophages, as well as
absorption from dietary sources [10].
There is a separate second system that regulates iron

homeostasis within cells. In the bloodstream, iron binds to
transferrin [11]. Transferrin receptor 1 is expressed on the
cell membrane, and most cells can regulate the influx of
iron via this channel [12]. Figure 1 demonstrates the
transferrin-to-cell cycle in more detail. Non-tranferrin
bound iron species are found in the plasma, the main
form is thought to be Fe3+ bound to citrate [13].
Mechanisms surrounding cellular uptake are unknown
but thought to be independent of endocytosis [13].
Iron regulatory proteins 1 and 2 (IRP1 and IRP2)
register iron concentrations in the cytosol [14] and
post-transcriptionally regulate expression of transfer-
rin receptors and iron metabolism genes to optimise
cellular iron availability [15]. Macrophages provide an
additional route for iron concentrations to be main-
tained intracellularly via phagoytosis of damaged
erythrocytes [10]. The phagocytosed iron is either
stored as ferritin in the cytoplasm and is subject to
regulation by the IRPs, or travels through ferroportin
to the extracellular fluid [10].
Genetic ablation studies in mice have shown that IRP2

has a key role in mammalian iron metabolism [16, 17].
In contrast, the absence of IRP1 has little effect on iron
homeostasis because IRP2 is able to increase its activity in
a compensatory fashion [18]. Under conditions of iron
starvation, IRPs bind to specific RNA stem-loop structures
called iron responsive elements (IREs) to stabilise the
transferrin receptor and inhibit the translation of ferritin
mRNA [15]. Iron dissociates from transferrin, and ferritin
biosynthesis is prevented, therefore iron is not stored and
able to be metabolised [19]. When cells are abundant with
iron; sulphur clusters with iron at the core of IRP1 [15],
whereas IRP2 undergoes proteosomal degradation [20].
The result of both these actions is inactivation of the IRPs,
which causes transferrin receptor 1 mRNA degradation
and ferritin mRNA translation. This ensures less iron is
taken into cells via transferrin receptor 1, and free iron is
stored in the form of ferritin [19].

Unlike IRP1, IRP2 remains stable under hypoxic condi-
tions and is highly active with regards to binding IREs
[15]. Hypoxia-inducible factors activate the IRP genes to
increase the amounts of iron available for erythropoiesis
[21]. Hypoxia appears to increase IRP2 levels by a post-
translational mechanism involving protein stability [22].
Ischaemia-reperfusion injury of the lung following pro-
longed hypoxia shows elevated levels of iron [23], which is
important to note, as both type 1 and type 2 respiratory
failure are characterised by hypoxia.

The effects of cigarette smoke
Particulate matter (including iron) from cigarette smoke is
deposited in the lungs and can cause damage by altering
iron homeostasis. Lung cells are different from other cell
lines in that they are continually exposed to changes in
oxygen levels, which also have effects on iron homeostasis.
A study done in rats showed that airway iron was ele-
vated after exposure to cigarette smoke, which led to
increased oxidative stress and release of IL-8 [3]. Gen-
eration of oxidative stress and cytokine accumulation
contribute to tissue damage by the process of neutro-
phil recruitment [24].
Conditions such as emphysema and lung cancer, which

have a predilection for the upper lobes of the lungs, may
be due to regional variation of iron. In one study, BAL
was taken from the upper and lower lobes of the lungs of
smokers and nonsmokers. Fluid from the upper lobes of
those who smoked had significantly higher concentrations
of extracellular ferritin-bound iron and less transferrin,
which may contribute to the pathogenesis of emphysema
and lung cancer via oxidative stress [25]. Another study
demonstrated that excess iron in the lung influenced the
production of human alveolar macrophage-derived IL-
1beta, and this also showed regional variation [26], giving
further support to the link between iron and inflamma-
tion, and clinical relevance to lung conditions that favour
the upper lobes.
Maternal smokers have been shown to have a higher

ferritin level in their placental cord blood than non-
smoking women, however there was a negative correl-
ation between maternal smoking and infants’ ferritin and
total body iron [27].
Iron in the lung has been shown to increase with age,

and again with smoking, although this effect is separate
from senescence [28]. This increase in iron could ac-
count for the increased risk of lung injury seen with age
[29]. Areas of emphysema in comparison to normal lung
tissue have shown greater uptake of the polyclonal anti-
body for ferritin, and the increase in staining was not
limited to alveolar macrophages but was seen through-
out the epithelium [28]. This suggests that quick re-
sponses to iron are seen throughout the lung; with cells
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trying to limit oxidative damage by storing iron as
ferritin.

Chronic Obstructive Pulmonary Disease (COPD)
IREB2 has been implicated as a COPD susceptibility gene
in a case–control study [30]. Expression of IRP2 was higher
in the lung tissue samples of those with COPD, and there
was a trend for association for five IREB2 single-nucleotide
polymorphisms (SNPs) with upper lobe emphysema [30].

Table 1 demonstrates combined p values of the seven SNPs
investigated in this study. Three of the SNPs investigated in
this study were replicated in a later study [31]. The role of
IREB2 and iron homeostasis was felt to be independent of
the effect on lung function as there was no association
between FEV1 and these SNPs [31]. Another paper showed
that after adjusting for CHRNA3 and CHRNA5 (genes that
are in strong LD with IREB2 and also known to be associ-
ated with COPD) this association was no longer significant

Fig. 1 Iron homeostasis: the transferrin-to-cell cycle. At neutral pH, apotranferrin is released at the cell membrane. The iron-transferrin complex
then binds to its receptor at the cell membrane and endosomal fusion occurs. A complex is then formed with divalent metal transporter 1. At
pH 5.5 iron is reduced and released to be used by the mitcochodria or stored as ferritin. The Golgi body package the apotransferrin-receptor
complex into a vesicle and it is transported back to the cell membrane
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[5]. Tight LD on this area of chromosome 15 complicates
isolation of causal genes for COPD. The possibility that
there are multiple functional genes in this locus controlling
for different aspects of COPD is a valid one; CHRNA3 and
CHRNA5 have been shown to be significantly associated
with pack/years smoking and emphysema in COPD pa-
tients, whereas the most significant association for FEV1

was in an intron of IREB2 [32]. Further support for this is
shown in a paper that demonstrates the effect of IREB2 on
COPD is independent from smoking [33]. Long-range con-
trol of gene expression is another concept which should be
considered, with greater than 85 % of variants being associ-
ated with disease traits outside the coding region of anno-
tated genes [34].
Alpha-1 antitrypsin deficiency (AATD) is a genetic

disorder that may manifest with symptoms of COPD [35].
Severe AATD accounts for 0.63 % of usual COPD [36]. In
UK National Registry of AATD, IREB2 SNP rs2568494
was shown to be significantly associated with emphysema,
and this effect appeared to be more prominent in males
[37]. This cohort of patients also showed significant SNP-
by-smoking interactions, contrasting the research done in
usual COPD [32]. Severity of AATD patients has been
shown to correlate with iron, with patients with ZZ
phenotype having significantly more ferritin and non-
heme iron than those with MM phenotype [38].
Neutrophil elastase and oxidative stress is increased in

the typical AATD lung. When neutrophil elastase levels
are raised, levels of iron in the airways also increase
when bronchoalveolar fluid is examined, but ferritin is
degraded: this could be to increase the overall extracellu-
lar iron pool for cellular uptake [39].

Lung cancer
As with COPD, promising candidate genes such as
CHRNA3 and CHRNA5 have been discovered in associ-
ation with lung cancer [40], and as discussed in the section
on COPD, these genes are in strong linkage disequilibrium
with IREB2. As well as being identified in relation to lung
cancer, these genes are also relevant to nicotine addiction
[41–43]. It is interesting that both COPD and lung cancer

are pathologies that are strongly linked to cigarette smok-
ing, dependence on which could be linked to the same
SNPs. The same genetic and environmental risk factors are
shared for these diseases, meaning presence of these SNPs
could confer increased susceptibility for all three things.
IRP2 has pro-oncogenic activity in human lung cancer

cells, and this is variable depending on a specific 73 amino
acid insert [44]. This pro-oncogenic activity is not able to
proceed without IRP2: a causal relationship has been estab-
lished by turning off the expression of IREB2 [44]. Deplet-
ing cancer cells of iron has been hypothesised as a potential
therapy. Promising new research is emerging on the use of
iron-chelating agents to treat lung cancer [45].

Susceptibility to lung infections
During times of infection, iron homeostasis adjusts so that
cytokines scavenge iron from tissues and sequester it within
macrophages. Microbes require iron to proliferate, and so
the purpose of this is partly to deny invading organisms the
iron they need; and partly to protect the host from the toxic
effects of Fe2+ and the subsequent formation of superoxide
radicals via the Fenton reaction that may be released during
inflammation [10]. Microbes can produce small com-
pounds called siderophores, which scavenge iron from the
host by forming complexes which are then taken up by
active transport [46]. In response, the host tries to make
less iron available for the microbe, which is a state known
as “the anaemia of inflammation” [4]. The iron status of the
host is very important in determining risk of pulmonary
infection. For example, correction of iron deficiency led to
activation of previously suppressed pre-existing infections
including malaria, brucellosis and tuberculosis, in a group
of Somali nomads [47]. As iron repletion advanced, infec-
tious activity reached a peak, showing that iron repletion
can allow infectious diseases to become more clinically
overt [47].
Mycobacterium tuberculosis employs the siderophore

system to acquire iron [48]. The link between iron and tu-
berculosis virulence is further confirmed by studies into
dietary iron. By increasing dietary intake of iron the host
macrophages appear to be overloaded by iron and unable
to suppress the spread of pulmonary tuberculosis [49]. In
vitro work has shown that by deleting the gene that codes
for siderophore production in Myocbacterium tuberculosis,
it is unable to grow and replicate within macrophages [48].
This suggests that siderophore biosynthesis may be a
promising candidate for new antibiotics to target with
regards to tuberculosis treatment. Indeed, a siderophore
analog has been coupled with the antimalarial artemisinin,
and has successfully been shown to retain antimalarial
properties as well as combat tuberculosis in vitro [50].
More recently a further siderophore-independent pathway
has been established, where Mycobacterium tuberculosis is
able to use free heme and heme from haemoglobin as an

Table 1 IREB2 single nucleotide polymorphisms and their
association with chronic obstructive pulmonary disease

SNP Risk allele Minor allele Combined p using
Fisher’s exact method

rs2568494 A A 1.64 × 10−7

rs2656069 T C 1.03 × 10−5

rs1964678 G A 5.94 × 10−4

rs12593229 G T 9.21 × 10−4

rs10851906 A G 1.65 × 10−5

rs965604 A G 5.42 × 10−4

rs13180 T C 6.42 × 10−4
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iron source [51], providing a new line of investigation for
future therapies to target.
Patients with severe pneumonia have been shown to

have elevated levels of sideromacrophages in their BAL
fluid [52], reflecting higher levels of iron in the airways
of these patients. Animal models have also shown that
iron acquisition is critically important in the pathogen-
esis of Staphylococcus aureus pneumonia [53] and Kleb-
siella pneumoniae pneumonia [54]. Host defences, such
as production of the protein lipocalin 2, are able to bind
the main siderophores produced by Klebsiella pneumo-
niae and stop them from scavenging iron [54]. Strepto-
coccus pneumoniae growth has been observed in media
containing differing levels of iron and manganese. When
the iron content was high iron homeostasis was dis-
rupted and the bacteria were susceptible to oxidative
stress [55]. However, manganese proved to protect the
bacteria via its antioxidant effect and competed with iron
for transport into the bacterium [55]. This work demon-
strates the role of other transition metal ions with regards
to pulmonary inflammation. The mechanisms by which
lipocalin 2 protects the host, and manganese works to
protect the bacteria, could be exploited with regards to
treatment of pneumonia. To our knowledge, there is a
lack of published work on therapies targeting iron in
pneumonia.
Gram negative lung pathogens such as Haemophilus

influenza have developed strategies to acquire iron by using
iron-containing human proteins such as tranferrin, lactofer-
rin, haemoglobin and ferritin [56–58]. The bacterial recep-
tors have evolved to compete with human receptors and
transferring binds to bacterial receptors preferentially [59].
Gram positive species such as Streptococcus pneumoniae
have also developed iron-acquistion strategies separate
from siderophores. Hemophores are proteins that bacteria
secrete to bind heme from the host [60]. As well as indir-
ectly using heme chelation, Streptococcus, like the Gram
negative bacteria, can directly acquire iron by hijacking
iron-containing human proteins [60].
Another pulmonary pathology that demonstrates that

iron is key for airway bacterial growth is cystic fibrosis
(CF). Elevated levels of iron have been found in the re-
spiratory tracts of these patients, implying disrupted iron
homeostasis [61]. Pseudomonas aeruginosa is the micro-
organism responsible for the majority of CF infectious
exacerbations. Around 6 % of the genes in Pseudomonas
aeruginosa are iron-responsive [62], and they take some
responsibility for production of the siderophores that
allow microbes to scavenge iron from the host. Pseudo-
monas aeruginosa exists in biofilms, which make it diffi-
cult for antibiotics to eradicate this microbe [61]. Iron
also plays a role in strengthening the structure of these
biofilms [63], enabling the bacteria to have an extra de-
fence against the host.

Pseudomonas aeruginosa may also acquire iron from
the host via siderophore-independent pathways. For ex-
ample, proteases employed by microbes have been shown
to cleave iron from host proteins in order to utilise the
iron for their own purposes [64]. Pulmonary haemorrhage
is a common complication of CF exacerbations. During
these episodes heme-bound iron can be taken up via two
separate pathways, but no formal data exists on these as
yet [61].
Novel adjuvants to anti-pseudomonal antibiotics are

under investigation, namely iron chelators such as gallium
and desferrioxamine [65]. In vitro work has shown that a
formulation containing gentamicin and gallium is more
effective than gentamicin alone against Pseudomonas aer-
uginosa grown within a biofilm [66]. Desferrioxamine in
combination with tobramycin was efficacious at disrupting
established biofilms, as well as preventing the formation
of new biofilms on epithelial cells from CF patients [67].

Acute Respiratory Distress Syndrome (ARDS)
ARDS is a severe form of inflammatory lung disease.
Ferritin levels have been shown to be a marker of both
developing ARDS and multiple organ failure in trauma pa-
tients [68]. The authors of this study discuss that ferritin
could be raised as a result of being induced by proinflam-
matory cytokines, however the role of ferritin as an acute
phase reactant is not discussed as a confounder in the
paper. Ferritin was not associated with other markers of
clinical injury in this study, for example, PaO2/FiO2 ratio,
days requiring ventilation, and mortality [68]. Samples of
BAL fluid from those with ARDS have significantly higher
levels of iron than samples from healthy volunteers [69].
This lends support to the hypothesis that disrupted iron
homeostasis causes increased oxidative stress and tissue
damage in people with ARDS.
Transfusion-related acute lung injury (TRALI) is a form

of ARDS associated with the process of blood transfusion.
Pathogenesis of TRALI is unclear, but it has been sug-
gested that iron in the blood components being transfused
elevate iron levels in the recipient, and this causes damage
to the cells by disruption of iron homeostasis [70]. At
present, there are no clinical or in vitro trials aimed at
stopping this.

Recent advancements
Over the last two years there has been increased interest
in the role of iron in pulmonary pathology. The majority
of research has been looking into how iron oxide particles
can be used as novel nanoprobes to diagnose and treat
lung disease. Superparamagnetic iron oxide nanoparticles
have successfully been administered into lungs and
detected on magnetic resonance imaging [71]. In mice,
these probes have been used to visualise areas of angio-
genesis in lung cancer [72]. In vitro drug delivery in lung
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cancer has been successfully developed by using these
nanoparticles coated in gelatin [73].

Conclusion
The role of iron in pulmonary pathology has been well
established, both from an environmental viewpoint as
well as in terms of genetic susceptibility. Disruption of
cellular iron homeostasis appears to have an adverse
effect on the lung. Further work on this metal could look
at the role of iron in prevention and treatment of pul-
monary pathology, either by dietary deficiency, venesec-
tion or chelator therapy.
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