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Wolfram syndrome is an autosomal recessive disorder characterized by neurodegeneration and diabetes
mellitus. The gene responsible for the syndrome (WFS1) encodes an endoplasmic reticulum (ER)-resident
transmembrane protein that is involved in the regulation of the unfolded protein response (UPR), intracellular
ion homeostasis, cyclic adenosine monophosphate production and regulation of insulin biosynthesis and
secretion. In this study, single cell Ca21 imaging with fura-2 and direct measurements of free cytosolic ATP con-
centration ([ATP]CYT) with adenovirally expressed luciferase confirmed a reduced and delayed rise in cytosolic
free Ca21 concentration ([Ca21]CYT), and additionally, diminished [ATP]CYT rises in response to elevated glucose
concentrations in WFS1-depleted MIN6 cells. We also observed that sarco(endo)plasmic reticulum ATPase
(SERCA) expression was elevated in several WFS1-depleted cell models and primary islets. We demonstrated
a novel interaction between WFS1 and SERCA by co-immunoprecipitation in Cos7 cells and with endogenous
proteins in human neuroblastoma cells. This interaction was reduced when cells were treated with the ER
stress inducer dithiothreitol. Treatment of WFS1-depleted neuroblastoma cells with the proteasome inhibitor
MG132 resulted in reduced accumulation of SERCA levels compared with wild-type cells. Together these results
reveal a role for WFS1 in the negative regulation of SERCA and provide further insights into the function of WFS1
in calcium homeostasis.

INTRODUCTION

There is increasing evidence that endoplasmic reticulum (ER)
perturbation plays a critical role in cell death in both neurodegen-
erative disorders (1,2) and diabetes mellitus (3,4). Abnormal
release of calcium from the ER has been observed in several
pathological conditions affecting the nervous system (5,6). ER
stress, oxidative stress, palmitate and chronic high glucose all
decrease pancreatic beta-cell ER calcium levels, leading to beta-
cell death (7).

The ER functions as a calcium store through the expression of
at least three types of proteins: the sarco-endoplasmic reticulum
calcium ATPase (SERCA) family of proteins that actively pump
calcium into the ER; luminal calcium binding proteins for

storing calcium and the gated calcium channels inositol trispho-
sphate receptors (IP3R) and ryanodine receptors (RyR) for the
controlled release of calcium from the ER along its electrochem-
ical gradient (8). ER calcium depletion may be associated with,
among others, toxin interaction with the IP3R (GM1 gangliosi-
dosis (9)); over-activation of the RyR (Gaucher disease (6));
SERCA inhibition (Sandhoff disease (10)) and increased
SERCA expression as a compensatory mechanism through regu-
lation by ATF6 during the ER stress response (11).

Childhood-onset diabetes mellitus and progressive optic
atrophy are the diagnostic features of Wolfram syndrome,
a genetic form of both diabetes and neurodegeneration (12).
In this disease, pancreatic beta-cells and presumably neuronal
cells are selectively destroyed due to mutations in the WFS1

∗To whom correspondence should be addressed at: School of Clinical and Experimental Medicine, The Medical School, University of Birmingham,
Birmingham B15 2TT, UK. Tel: +44-1-213339267; Fax: +44-1-213339272; Email: t.g.barrett@bham.ac.uk

# The Author 2014. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

Human Molecular Genetics, 2014, Vol. 23, No. ? 1–14
doi:10.1093/hmg/ddu499
Advance Access published on September 30, 2014

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

105

110

115

120



gene, which encodes WFS1 protein or Wolframin, an ER trans-
membrane protein (13). The mechanism is thought to be through
perturbed ER homeostasis (14,15) leading to ER stress (16,17).
Loss of function mutations in WFS1 has been shown to lead to
ER calcium depletion (18), increased cytosolic calcium concen-
trations and increased expression of a pro-apoptotic molecule
CHOP, leading to cell death (7). Reconstitution of this
ER-resident transmembrane protein into planar lipid bilayers
induced a cation-selective ion channel (19).

We have previously shown that Wolframin interacts with
the ion pumps Na+K+ATPase and vacuolar-type H+ATPase,
(20,21) supporting its role in protein folding/maturation and
insulin biosynthesis and secretion. In this study, while investi-
gating the glucose signalling pathway in WFS1-depleted
MIN6 cells, we observed increased SERCA protein expression.
These observations prompted us to investigate the possibility of
an interaction between WFS1 protein and SERCA.

RESULTS

Wolframin-depleted beta-cell lines show reduced insulin
secretion in response to elevated glucose or KCl
concentrations

Wolframin has been implicated in the normal control of
stimulus-secretion coupling during regulated insulin secretion
in vivo and in vitro (16,17). To study the effects of Wolframin de-
pletion on insulin secretion and Ca2+ signalling in beta-cells, we
used the MIN6 insulinoma cell line. These stable cell lines have
been engineered to provide reduced WFS1 expression using
RNA interference, with 0% (wild-type), 50% [knockdown A
(KDA)] or 70% [knockdown B (KDB)] reduction in Wolframin
expression achieved by expression of suitable scrambled or
anti-WFS1 shRNAs (16,20).

Insulin release in response to glucose (30 versus 3 mmol/l)
was decreased in WFS1-depleted cells (Fig. 1A). At 30 mmol/l
glucose (30G), the percentage of insulin released was decreased
7-fold for KDA (P ¼ 2.2 × 1027) and 4-fold for KDB (P ¼
4.5 × 1027) cells, respectively, in comparison to wild-type.
At 3 mmol/l glucose (3G), and after depolarization with
50 mmol/l KCl (HK), the percentage of insulin released was
also decreased in KDA and KDB cells, but only reached sig-
nificance in the KDA cells.

Wolframin-depleted primary islets from WFS1 conditional
knockout mice show defective insulin secretion in response
to glucose

To confirm that Wolframin is necessary for normal insulin secre-
tion in response to high glucose we isolated pancreatic islets
from beta-cell selective conditional WFS1 knockout (KO)
mice, a kind gift from Professor A Permutt (16). The mice
were 10–13 week old males: either WFS1 conditional KO
mice (Wfs1flox/flox Crecre/+) or Wfs1 positive ‘floxed’ littermates
(Wfs1flox/flox). We measured reduced Wolframin expression in
protein lysates prepared from the islets by immunoblotting;
beta actin (BA) was used as a loading control. The Wolframin
expression was decreased by 70% in the KO islets in comparison
to the controls (Fig. 1B). The residual Wolframin level probably
reflected the presence of WFS1 protein-positive cells in these

islets: all islet non-beta-cells were WFS1 protein positive; cre re-
combinase was expressed from the rat insulin 2 promoter (16).

The isolation of islets and insulin secretion assay were per-
formed as described in ‘Materials and Methods’. The percentage
of insulin released in response to glucose (17 versus 3 mmol/l)
during static incubation for 1 h was decreased about 65% in
islets from Wfs1 KO mice in comparison to size matched
control islets: percentage of insulin released by control islets
(C) ¼ 1.55+ 0.08%, while by KO islets ¼ 0.54+ 0.15%,
P ¼ 0.0006 (Fig. 1B). After depolarization with 20 mmol/l
KCl (HK), the percentage of insulin released from KO islets
was also reduced in comparison to the control but did not
reach statistical significance. These results confirmed the
results obtained in MIN6 cells and are consistent with previous
in vivo and the in vitro findings (16,17,22).

Wolframin depletion results in a delayed and reduced
glucose-induced rise in cytosolic free Ca21

The above results suggested that alterations in glucose sensing
may result in diminished glucose-induced insulin secretion in
WFS1-depleted cells. To explore this possibility further, we
investigated glucose- and KCl-induced cytosolic calcium
([Ca2+]i) rises in single, fura-2-loaded cells. The baseline
[Ca2+]i for each cell type was calculated as the average of the
first 180 s of each experiment in perifusion buffer containing
3 mmol/l glucose, using the ratio of the emissions after exciting
the dye at 340 and 380 nm. There were no apparent differences in
baseline [Ca2+]i between the cell lines [340:380 ratios (F/F0):
wild-type cell 0.30+ 0.005; KDA 0.28+ 0.003; KDB 0.32+
0.004 and the F/F0 at the start of experiment was assumed to
be equal for each cell line].

In contrast, a delayed and reduced [Ca2+]i rise was observed in
response to an increase in glucose concentration from 3 to
30 mmol/l in WFS1-depleted MIN6 cells in comparison to wild-
type cells; representative traces for wild-type, KDA and KDB
cells are shown in Figure 2A–C. Quantitated by measurement
of the area under the curve (AUC) following stimulation
(Fig. 2D), the response in WFS1-depleted cells was reduced
2.2- to 2.4-fold in comparison to wild-type cells (AUC for wild-
type, KDA and KDB were: 477.4+ 21.6; 211.4+ 21.6 and
199.1+ 23.6, respectively; P values: wild-type versus KDA:
P ¼ 3.2 × 10214; wild-type versus KDB: P ¼ 2.8 × 10212;
KDA versus KDB: P ¼ 0.3; wild-type n ¼ 61, KDA n ¼ 36,
KDB n ¼ 21 cells).

The delay before a detectable increase in [Ca2+]i following
stimulation with 30 mmol/l glucose was also more than 2-fold
longer in WFS1-depleted cells than in wild-type cells
(Fig. 2E). While the wild-type cells responded after 203.7+
6.8 s, KDA and KDB cells responded only after 410.0+ 12.9
and 416.7+ 15.4 s, respectively (P values: wild-type versus
KDA: P ¼ 6.2 × 10218; wild-type versus KDB: P ¼ 7.3 ×
10216; KDA v KDB: P ¼ 0.3). All cell lines responded similarly
to depolarization with 50 mmol/l KCl (Fig. 2A–C). The re-
sponse to 50 mmol/l KCl was quantitated by measurement
of the AUC and is presented on Figure 2F (AUC for
wild-type, KDA and KDB were: 435.1+ 9.0; 447.3+ 15.8,
and 445.1+16.2, respectively, wild-type n ¼ 61, KDA n ¼ 36,
KDB n ¼ 21 cells).
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Cytosolic free Ca21 concentrations at baseline are not
significantly different in Wolframin-depleted cells
compared with wild-type cells

To confirm that there was no apparent differences in baseline
[Ca2+]i between the cell lines, we measured [Ca2+]CYT in wild-
type and KDB cells with cytosolic (untargeted) aequorin. Our
results (Fig. 3) showed only a slightly higher level of cytosolic
Ca2+ in KDB than in wild-type cells. The results come from
two independent experiments (wild-type n ¼ 8; KDB n ¼ 9 sep-
arate measurements) and are consistent with our earlier findings
of no significant differences in baseline [Ca2+]i between the cell
lines in single, fura-2-loaded cells.

Wolframin depletion results in a failure of glucose-induced
rises in cytosolic free ATP concentrations

To investigate the causes of the reduced and delayed cytosolic
[Ca2+] responses to high glucose, direct measurements of free
cytosolic ATP concentration were performed by expressing
recombinant firefly luciferase using an adenoviral vector (23,24),
and using photon-counting (25). Luciferase catalyses the forma-
tion of oxyluciferin from luciferin and ATP. The production of
light, with intensity proportional to the free concentration of
ATP, can be detected with a suitably sensitive photon-counting
device (26). Representative traces showing the apparent increase
in free [ATP]CYT (as photon counts) for wild-type, KDA and
KDB, respectively, are presented in Figure 4A–C, with quanti-
tative analysis in Figure 4D. The increase in [ATP]CYT in re-
sponse to high glucose was 14.1%+ 0.6 for the wild-type
MIN6 cells (Fig. 4A), consistent with previous results
(23,24,27) but only 4%+ 1.4 for KDA (P ¼ 7.43 × 1025)
(Fig. 4B) and 1.3%+ 0.3 for KDB (P ¼ 1.8 × 10213)
(Fig. 4C). The apparent rise in [ATP]CYT in response to high

glucose was approximately 3-fold less in KDA than in wild-type
MIN6 cells and about 10-fold lower in KDB than in wild-type
MIN6 cells; (n, wt ¼ 12, n, KDA ¼ 6 and n, KDB ¼ 12 runs
in three separate experiments for KDB and two separate experi-
ments for KDA) (Fig. 4D).

To determine whether changes in the apparent [ATP]CYT in-
crease in response to glucose may be due to alterations in Ca2+

pumping into the ER or other intracellular stores, we monitored
the impact of pharmacological depletion of these stores on the
observed changes (Fig. 4). Interestingly, and in contrast to previ-
ous studies (28), inhibition of SERCA pumps with cyclopiazonic
acid (CPA) decreased the magnitude of the glucose-induced rise
in [ATP]CYT in wild-type cells, presumably reflecting enhanced
ATP consumption for Ca2+ transport by other mechanisms [e.g.
extrusion across the plasma membrane by plasma membrane
Ca2+ ATPase (PMCA) or transporting into the lumen of Golgi
with SPCA (secretory pathway Ca2+ATPase) (Fig. 4A)]. In con-
trast, in both WFS1-depleted cell lines, SERCA inhibition
increased free [ATP]CYT (Fig. 4B and C).

To confirm the above results we investigated ATP:ADP ratio
rise to glucose using a different (static) method as described in
‘Materials and Methods’. Briefly, cells were grown in six-well
plates, starved overnight in medium with low glucose and on
the day of the experiment incubated in buffers with either low
glucose (3G), high glucose (30G) or high glucose and CPA
(inhibitor of SERCA pump) and harvested in ice-cold perchloric
acid (PCA). Determination of ATP levels was performed as pre-
viously described (29) and as given under ‘Materials and
Methods’, the ATP:ADP ratio was calculated for all conditions.
Our results show that ATP:ADP ratio rise to glucose is signifi-
cantly smaller for KDB than for the control MIN6 cells:
ATP:ADP ratio rise to glucose (30G versus 3G) was 1.24+
0.06, 1.06+ 0.03 and 1.28+ 0.06 for the control, KDB and
KDA, respectively; only for KDB the difference reached the

Figure 1. Glucose and depolarization-induced insulin secretion from MIN6 cells and isolated pancreatic islets. (A) Insulin secretion from wild-type and
WFS1-depleted MIN6 cells. Quantitative analysis of insulin secreted in response to 30 mmol/l glucose and 50 mmol/l KCl. Total and released insulin were measured
by radioimmunoassay as given under ‘Materials and Methods’. Wolframin depletion resulted in a reduction of the percentage of insulin released in response to
30 mmol/l glucose (∗∗∗wt versus KDA, P ¼ 2.2 × 1027, and wt versus KDB, P ¼ 4.5 × 1027). The results were from three experiments performed in triplicate.
3G: 3 mmol/l glucose, 30G: 30 mmol/l glucose, HK (high potassium): 50 mmol/l KCl. (B) Glucose-induced insulin secretion from primary islets isolated from con-
ditional, beta-cell selective Wfs1 KO mice. Immunoblot—70% reduced WFS1 expression in islets isolated from Wfs1 KO mice in comparison to the control islets;
10 mg of protein extract was loaded per lane. BA: beta actin. Bar chart: quantitative analysis of insulin secreted in response to 17 mmol/l glucose and 20 mmol/l KCl
measured by radioimmunoassay. The percentage of insulin released in response to 17 mmol/l glucose is significantly reduced in islets from KO mice in comparison
to size matched control islets (C): (∗∗∗C versus KO, P ¼ 0.0006). The percentage of insulin released in response to high potassium (20 mmol/l) is also reduced in
islets from KO mice, but it did not reach statistical significance (C versus KO, P ¼ 0.22). No difference was measured in response to 3 mmol/l glucose (C versus
KO, P ¼ 0.21). The results come from at least three experiments in duplicates (for control islets (C), N ¼ 3; for KO islets, N ¼ 6). 3G: 3 mmol/l glucose, 17G:
17 mmol/l glucose, HK (high potassium): 20 mmol/l KCl.
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statistical significance (T test CTRL versus KDB P ¼ 0.01,
CTRL versus KDA P ¼ 0.3). These results confirmed our
earlier finding that the ATP rise in response to high glucose is
impaired in WFS1-depleted MIN6 cells.

Total ATP levels are reduced in WFS1-depleted cells

We next measured total ATP content in wild-type and WFS1-
depleted MIN6 cells as described in ‘Materials and Methods’.
The results were normalized for the cell number and presented
as relative luminescence units (RLU, proportional to the amount
of ATP) per 104 cells (Table 1). The total levels of ATP (RLU)
were significantly reduced in both WFS1-depleted cell lines to
79% (of the wild-type) in KDA and 53% in KDB.

SERCA expression is increased in WFS1-depleted cells

The decreased levels of cytosolic ATP could have been the result
of an ATP generation defect or ATP overconsumption in
WFS1-depleted cells. As no defect in oxidative phosphorylation
was identified previously in Wolfram patient biopsies (30),
there was a possibility that ATP may be over-consumed in
WFS1-depleted cells. One of the major ATP consumers in
pancreatic cells is the SERCA calcium pump. We hypothesized
that SERCA over-activity could result in ATP depletion in

WFS1-depleted cells and investigated the levels of SERCA
expression.

We examined SERCA expression levels in several
WFS1-depleted cell models: MIN6 pancreatic cells, primary
pancreatic islets isolated from conditional Wfs1 KO mice and
in WFS1-depleted SK-N-AS neuroblastoma cells (Fig. 5). All
the WFS1-depleted models displayed UPR activity, measured
as an increase in the levels of ER stress markers (16,21).

To examine SERCA expression in MIN6 cells, we prepared
extracts from microsomal fractions from control and WFS1-
depleted KDA and KDB cell lines (32) and examined the levels
of SERCA expression by immunoblotting using PanSERCA
antibody Y1F4 (31). Protein disulfide isomerase (PDI) was
used for normalization. In both WFS1-depleted cells KDA and
KDB, the SERCA expression was increased over 2-fold in
comparison to WFS1 positive control (KDA ¼ 287.1+ 82.2,
P ¼ 0.045, and KDB ¼ 282.1+ 83.0, P ¼ 0.052, n ¼ 6 for
both, C ¼ 100%, Fig. 5A).

To examine the SERCA expression levels in isolated islets,
we prepared total protein extracts from 10 and 13 weeks old
Wfs1 conditional KO males as described in ‘Materials and
Methods’. There was a greater than 50% increase of SERCA
levels in Wfs1 conditional KO islets in comparison to Wfs1
positive controls: (C ¼ 100%, KO ¼ 157.8+ 17.8, P ¼ 0.005,
n ¼ 4, Fig. 5B). Wolfram syndrome manifests also as a neurode-
generative disease. Therefore, we used three WFS1-depleted

Figure 2. Changes in cytoplasmic free Ca2+ concentration in response to 30 versus 3.0 mmol/l glucose, or 50 mmol/l KCl in wild-type and Wolframin-depleted MIN6
cells. Representative traces of cytosolic free Ca2+concentration changes in response to 30 (versus 3) mmol/l glucose for (A) wt MIN6; (B) KDA and (C) KDB cells.
The y axes (F/F0) represent the apparent free cytosolic [Ca2+] as given by the normalized fluorescence intensity ratio of fura-2 upon excitation at 340 and 380 nm. Note
the delayed and reduced rise in [Ca2+]CYT in response to 30 mmol/l glucose in WFS1-depleted cells. 3G: 3 mmol/l glucose, 30G: 30 mmol/l glucose, HK (high po-
tassium): 50 mmol/l KCl. (D) Quantitative analysis of the increase in free cytosolic Ca2+ concentration (fura-2) to 30 mmol/l glucose measured as AUC (area under
curve). The response in WFS1-depleted cells was more than 2-fold smaller than wt (∗∗∗wild-type versus KDA: P ¼ 3.2 × 10214, wild-type versus KDB: P ¼ 2.8 ×
10212, and KDA versus KDB: P ¼ 0.3). (E) Delayed response of cytosolic calcium rise to 30 mmol/l glucose in Wolframin-depleted cells. The delay before a detect-
able response was more than 2.0-fold longer in WFS1-depleted cells than in wild-type cells. (∗∗∗wild-type versus KDA: P ¼ 6.2 × 10218; wild-type versus KDB:
P ¼ 7.3 × 10216 and KDA versus KDB: P ¼ 0.3). (F) Quantitative analysis of the increase in free cytosolic calcium concentration (fura-2) to 50 mmol/l KCl mea-
sured as AUC; there were no differences between WFS1-depleted cells and WT MIN6. n, wild-type ¼ 61; n, KDA ¼ 36; n, KDB ¼ 21 cells.
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neuroblastoma cell lines (KD1–KD3) depleted by 60–80%
in comparison to the control (C) as described by Gharanei
et al. (21) and examined the SERCA expression using either

PanSERCA antibody Y1F4 (Fig. 5C) or isoform SERCA2-
specific antibody (Fig. 5D). The expression levels of SERCA
were increased in all WFS1-depleted cell lines. Figure 5C
shows the increased expression levels detected with PanSERCA
antibody (KD1 ¼ 261.8%+ 30.8, P ¼ 0.02, n ¼ 3; KD2 ¼
271.2+ 42.9%, P ¼ 004, n ¼ 8; KD3 ¼ 233.7+ 40.3%, P ¼
0.009, n ¼ 8, C ¼ 100%). We confirmed that this increase is
mainly due to an increase in SERCA2 expression. Figure 5D
shows increased levels of isoform SERCA2 (KD1 ¼ 189.8+

Figure 3. Changes in cytosolic free calcium concentration in wild-type MIN6
and Wolframin-depleted KDB cells. Cells were infected with adenovirus expres-
sing untargeted (cytosolic) aequorin. Forty-eight hours later, cells were depleted
of calcium (see ‘Materials and Methods’), then perifused in nominally Ca2+-free
buffer, followed by buffer with 1.5 mmol/l CaCl2 as indicated. The figure shows
the results obtained over 2 days of experimentation (n, wt ¼ 8, n, KDB ¼ 9 runs).

Table 1. Total ATP content (relative luciferase units) of wild-type MIN6
and WFS1-depleted MIN6 cells

Cell line RLU/104 cells+SE % (total ATP of wt)

pSuper (WT) 378 691.2+9283 100
KDA 297 797.4+10 111 78.6
KDB 198 801.5+12 976 52.5

Total ATP content was assayed using CellTiter-Glo Luminescent Cell Viability
Assay (Promega) as described under ‘Material and Methods’. The results are
presented as relative luciferase units (RLU) per 104 cells and as a per cent of ATP
content in wild-type. The results come from three independent experiments with
n wt ¼ 72, n KDB ¼ 66, n KDA ¼ 72 (t-test: wt versus KDB, P ¼ 4.8 × 10221;
wt versus KDA, P ¼ 1.0 × 1028).

Figure 4. Glucose-induced cytosolic-free ATP changes in wild-type MIN6 and Wolframin-depleted cells. Cells were infected with adenovirus expressing cytosolic
luciferase and, 48 h later, perifused in the presenceof 5 mmol/l luciferin in a photon-countingdeviceas describedunder ‘Materials and Methods’.Representative traces
for (A) wild-type MIN6 cells, (B) KDA and (C) KDB. The y axes represent photon counts, proportional to cytosolic ATP concentration ([ATP]CYT) (23,24). Note the
reduced ATP rise in response to 30 mmol/l glucose in WFS1-depleted cells. (D) Quantitative analysis of the glucose-induced rise in cytosolic ATP in wild-type MIN6
and WFS1-depleted cells. The percentage increase in apparent free cytosolic ATP concentration in response to elevated glucose was about 3-fold lower in KDA than in
wild-type MIN6 (∗∗∗wild-type versus KDA: P ¼ 7.43 × 1025) and about 10-fold lower in KDB than in wild-type MIN6 (∗∗∗wild-type versus KDB: P ¼ 1.8 ×
10213); n, wild-type ¼ 12; n, KDA ¼ 6 and n, KDB ¼ 12 runs).
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Figure 5. SERCA expression in WFS1-depleted cell models. Representative immunoblots and bar charts showing quantitative analysis. (A) SERCA expression
in WFS1-depleted MIN6 cells—microsomal fractions. Immunoblot: lane 1control (C), lane 2 KDB, 3 KDA. Top panel: PanSERCA antibody Y1F4 (31) used
for detection, bottom panel: PDI antibody used for normalization. Twenty-two micrograms of microsomal fraction extract was loaded per lane (∗C versus KDA,
P ¼ 0.045, C versus KDB, P ¼ 0.052, n ¼ 6 runs with two independently prepared microsomal fraction extracts). (B) SERCA expression in primary islets isolated
from Wfs1 conditional KO mice-whole protein extracts. (∗∗C versus KO, P ¼ 0.005, n ¼ 4, using two independently prepared extracts). Top panel: PanSERCA anti-
body Y1F4 (31), bottom panel: BA. Ten micrograms of protein extract were loaded per lane. (C) SERCA expression in WFS1-depleted neuroblastoma SK-N-AS cells,
total protein extracts. Top panel: PanSERCA antibody Y1F4 (31), bottom panel: BA. (∗C versus KD1: P ¼ 0.02, n ¼ 3; ∗∗C versus KD2: P ¼ 0.004, n ¼ 8; ∗∗C versus
KD3: P ¼ 0.009, n ¼ 8). Two independently prepared KD1 extracts and, five independently prepared KD2 and KD3 extracts were run. Seventeen micrograms of
protein extract was loaded per lane. Lanes: 1, control; 2, KD1; 3, KD2; 4, KD3. (D) Expression of SERCA2 isoform in WFS1-depleted neuroblastoma SK-N-AS
cells—total protein extracts. Top panel: isoform SERCA2-specific antibody (Santa Cruz), bottom panel: BA. (∗C versus KD1: P ¼ 0.04, n ¼ 4; C versus KD2:
P ¼ 0.02, n ¼ 6; C versus KD3: P ¼ 0.02, n ¼ 6). Two independently prepared KD1 extracts and three independently prepared KD2 and KD3 extracts were run.
Seventeen micrograms of protein extract were loaded per lane. Lanes: 1, control; 2, KD1; 3, KD2; 4, KD3.
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28.6%, P ¼ 0.04, n ¼ 4; KD2 ¼ 318.9+ 71.2%, P ¼ 0.02, n ¼
6; KD3 ¼ 301.7+ 59.3%, P ¼ 0.02, n ¼ 6, C ¼ 100%).

In summary, all WFS-depleted models showed increased
levels of SERCA expression (the main contributor being
isoform SERCA2). This is consistent with our hypothesis that
in WFS1-depleted cells SERCA may be overactive.

WFS1 interacts with SERCA2

To explain how the absence of WFS1 protein may affect the
levels of SERCA expression, we hypothesized that the two pro-
teins may be molecular partners. We first examined the potential
WFS1–SERCA2 interaction in an over-expression system.
We co-transfected FLAG-SERCA2 plasmid (constructed as
described in ‘Materials and Methods’) together with Myc-
WFS1 (20) or with the empty vectors to Cos7 cells. The follow-
ing protein extracts were used: Myc-WFS1/FLAG-SERCA2,
Myc-WFS1/empty FLAG, empty Myc/FLAG-SERCA2 and
empty Myc/empty FLAG for immunoprecipitation with anti-

FLAG antibody (Fig. 6A). Input panels at the left-hand side
show the expression of relevant proteins in extracts before
co-immunoprecipitation. Immunoprecipitation panels at the
right-hand side show co-immunoprecipitation with mouse
monoclonal anti-FLAG antibody probed with either anti
c-myc (top panel) or anti-WFS1 antibody (middle panel). The
results on Figure 6A show that with anti-FLAG antibody we
were able to precipitate Myc-WFS1 (lane 1). No WFS1 was
detected in lanes 2–4, where either Myc-WFS1/empty FLAG
(lane 2), empty Myc /FLAG-SERCA2 (lane 3) or empty Myc/
empty FLAG (lane 4) plasmids were present. We probed the
membrane with polyclonal rabbit anti-FLAG antibody (bottom
panel) to show the input.

In a reciprocal experiment (Fig. 6B, right-hand side
panel), polyclonal rabbit anti c-myc antibody was used for
co-immunoprecipitation and monoclonal mouse anti-FLAG
antibody for detection (top panel). Only in lane 1, where both
Myc-WFS1 and FLAG-SERCA2 proteins were expressed, we
observed co-immunoprecipitation of FLAG-SERCA2. There

Figure 6. Co-immunoprecipitation of WFS1 and SERCA2. (A and B) Co-immunoprecipitation of WFS1 and SERCA2 in overexpressed system in Cos7 cells
co-transfected with plasmids Myc-WFS1 and FLAG-SERCA2 or the relevant empty vectors as controls. (A) Right-hand side panels—IP: FLAG (immunoprecipita-
tion with mouse monoclonal anti-FLAG antibody, immunoblotting with either c-myc antibody (rabbit polyclonal, Sigma, top panel), WFS1 antibody (rabbit poly-
clonal, middle panel) or FLAG (rabbit polyclonal, bottom panel). Panels at the left-hand side show the input: the expression of indicated proteins in extracts before
co-immunoprecipitation (1% of extracts used in CO-IP). Lanes (on both: IP and input): 1, Myc-WFS1/FLAG-SERCA2; 2, Myc-WFS1/empty FLAG; 3, empty Myc/
FLAG-SERCA2; 4, empty Myc/empty FLAG. Lane 5 (on Co-IP gel): input—extract expressing myc-WFS1 and FLAG-SERCA2. Myc-W1 ¼Myc-WFS1,
FL-SERC ¼ FLAG-SERCA2, E-Myc ¼ empty vector Myc, E-FL ¼ empty vector FLAG. (B) Right-hand side panels: IP: Myc—immunoprecipitation with
c-myc antibody (rabbit polyclonal). Top panel: immunoblot with FLAG antibody (mouse monoclonal), bottom panel immunoblot with c-myc (mouse monoclonal).
Panels at the left-hand side show the input: the expression of indicated proteins in extracts before co-immunoprecipitation (1% of extracts used in Co-IP). Lanes
(on both: IP gel and input): 1, Myc-WFS1/FLAG-SERCA2; 2, Myc-WFS1/empty-FLAG; 3, empty Myc/FLAG-SERCA2 and 4, empty MYC/empty- FLAG.
(C) Co-IP of endogenous WFS1 and SERCA2 from SK-N-AS cells with anti-WFS1 antibodies (rabbit polyclonal). Immunoblot: SERCA2 (goat polyclonal).
Lanes 1–3: input (1% of extracts used for Co-IPs in lanes 4–6); lane 4: negative control: IP with anti-FLAG antibody (rabbit polyclonal); lane 5: IP with WFS1 anti-
body (rabbit polyclonal); lane 6: negative control: IP with FLAG antibody (mouse monoclonal), n ¼ 4. (D) Co-IP of endogenous WFS1 and SERCA2 from SK-N-AS
cells after DTT treatment (n ¼ 3). Left panel: input-expression of SERCA2 and WFS1 in DTT treated (D) and untreated (U) extracts before immunoprecipitation; note
that there is no decrease in expression levels for neither of the proteins. Right panel: IP. Lanes: 1, input (2.5% of extract used for IP); lanes 2 and 5, negative controls
(IPs with FLAG antibody with untreated and treated extracts, respectively); lane 3: IP with WFS1 antibody from DTT-treated sample and lane 4, IP with WFS1 anti-
body from untreated sample. Top panel: immunoblotting with SERCA2 antibody, bottom panel: the same membrane probed with WFS1 antibody. Numbers below the
gel panels show relative quantification of SERCA2 bands intensity normalized with WFS1.
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was no SERCA2 detected in lanes 2–4, where either Myc-
WFS1/empty FLAG (lane 2), empty Myc/FLAG-SERCA2
(lane 3) or empty Myc/empty FLAG (lane 4) were present.
The bottom panel probed with monoclonal mouse c-myc anti-
body shows the input. These results indicate that WFS1 and
SERCA2 can interact in an over-expression system.

Next we examined if endogenous WFS1 and SERCA2 can be
co-immunoprecipitated from SK-N-AS neuroblastoma cells
(Fig. 6C). WFS1 antibody (rabbit polyclonal) was used for pre-
cipitation (lane 5) and a �110 kDa band was detected with
SERCA2 antibody. No SERCA2 was detected in either lane
4 or 6 where negative controls, either FLAG- rabbit polyclonal
or FLAG-mouse monoclonal antibody, were used for co-
immunoprecipitation. Our results indicate that the two proteins
WFS1 and SERCA2 may interact with each other in SK-N-AS
neuroblastoma cells.

To understand the role of this interaction, we examined if
WFS1 and SERCA2 can interact with each other under condi-
tions of ER stress. We prepared protein extracts from neuroblast-
oma SK-N-AS cells either untreated or treated with ER stress
inducer: 1 mmol/l dithiothreitol (DTT) for 3 h. First, we exam-
ined the expression of both proteins in these extracts (Fig. 6D,
left panel): the expression levels of SERCA2 were slightly ele-
vated in DTT treated extract (D) in comparison to untreated
(U) (D: 134.8+ 8.1%, U: 100%, P ¼ 0.02, n ¼ 4), WFS1
levels were unchanged by the treatment: (D: 97.8+ 6.3%,
U ¼ 100%, P ¼ 0.75, n ¼ 4). In summary, there was no de-
crease in the expression of either of these two proteins upon
DTT treatment (Fig. 6D, left panel). Then, we performed
co-immunoprecipitation of SERCA2 with rabbit WFS1 anti-
body (Fig. 6D, right panel, n ¼ 3) using either DTT treated
extract (lane 3), or untreated extract (lane 4). We detected the
presence of SERCA2 band in lane 4 (top panel), where untreated
extract was used. Interestingly, the SERCA2 band in the
DTT-treated sample was much reduced (Fig. 6D, lane 3, top
panel). The membrane was re-probed with sheep WFS1 antibody
and the amount of precipitated WFS1 quantified showing equal
amounts in both DTT treated and untreated samples (DTT: 1.0,

untreated: 1.0, Fig. 6D, lower panel). Next, the amount of preci-
pitated SERCA2 was quantified and normalized for the WFS1
levels: (untreated sample: SERCA2 ¼ 1.0; DTT treated sample:
SERCA ¼ 0.38). In summary, DTT treatment did not affect
either the protein expression or the amounts of precipitated
WFS1 (Fig. 6D). This suggests that the 62% reduced levels of
the amount of precipitated SERCA2 in DTT-treated sample do
not result from reduced levels of precipitated WFS1 under
these conditions. Our results thus suggest that WFS1–SERCA2
interaction may be impaired under ER stress conditions.

Proteasome inhibition results in an increase of SERCA2
levels in a WFS1-dependent manner

We demonstrated above that WFS1 interacts with SERCA
and SERCA expression is increased in WFS1-depleted cells.
We hypothesized that WFS1 may be a negative regulator of
SERCA and targets SERCA to proteasome-mediated degrad-
ation. To test our hypothesis, we compared SERCA levels in
control and the WFS1-depleted cell line KD2 after treatment
with the proteasome inhibitor MG132. Control and WFS1-
depleted KD2 cells were treated with either 5 or 10 mmol/l
MG132 proteasome inhibitor as described by Gharanei et al.
(21). Equal amounts of protein (11 mg) were loaded per lane
and samples were resolved on sodium dodecyl sulphate poly-
acrylamide gel electrophoresis (SDS-PAGE) gels. SERCA ex-
pression in a DMSO-treated sample was assumed to be equal
to 100%. Quantification revealed that while in control cells
SERCA expression at 5 mmol/l increased to 226.9+ 26.5%
and at 10 mmol/l increase to 266.3+ 51.9% (2.2- and 2.6-fold,
respectively, n ¼ 6) the increase of SERCA expression was
much reduced in KD2 cells to 125.0+ 8.9% at 5 mmol/l and
106.7+ 24.3% at 10 mmol/l (1.2- and 1.1-fold, respectively,
n ¼ 4). The difference in accumulation of SERCA between
control and KD2 cells was statistically significant: C versus KD2
at 5 mmol/l: P ¼ 0.01; C versus KD2 at 10 mmol/l: P ¼ 0.03,
n ¼ 6 (Fig. 7). This result together with the previously demon-
strated interaction between the two proteins and significantly

Figure 7. Proteasome inhibition results in an increase of SERCA levels in WFS1-dependent manner. Control (C) and WFS1-depleted (KD2) neuroblastoma
(SK-N-AS) cells were grown for 24 h in six-well plates and then treated with MG132 proteasome inhibitor (5 or 10 mmol/l) for 4 h before being harvested for
protein analysis. The control samples were treated with equal volume of DMSO. The expression of SERCA was measured by western blotting using PanSERCA
antibody Y1F4 (31) and normalized to BA. Eleven grams of protein extract was loaded per lane. Lanes (both panels): 1, DMSO: treatment; 2, MG132 at 5 mmol/l
and 3, MG132 at 10 mmol/l. Bar chart—quantification of SERCA expression: (∗C versus KD2 at 5 mmol/l MG132: P ¼ 0.01; C versus KD2 at 10 mm/l MG132:
P ¼ 0.03; control n ¼ 6 runs, KD2, n ¼ 4 runs using two independently treated extracts). MG132_5: treatment with 5 mmol/l MG132; MG132_10: MG132 at
10 mmol/l.
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increased SERCA levels in WFS1-depleted cell model is con-
sistent with the possibility that WFS1 targets SERCA to the pro-
teasome for degradation. However, the ubiquitination assay, in
which we compared SERCA ubiquitination levels between
KD2 and control cells did not show impaired SERCA ubiquitina-
tion in KD2.

DISCUSSION

In Wolfram syndrome, diabetes mellitus results from multiple
defects in the glucose signalling pathway; and both the diabetes
mellitus and neurodegeneration are thought to be associated with
ER calcium depletion. This study provides additional insights
into its role in both mouse pancreatic beta-cell and human neuro-
blastoma cell models of the disease. We observed the following:
(1) our models confirmed that WFS1 protein depletion in MIN6
beta-cells and primary islets resulted in reduced glucose-
stimulated insulin secretion, and reduced and delayed cytosolic
Ca2+ rise to glucose; (2) we observed a reduced cytosolic ATP
rise in response to high glucose, and reduced total cellular
ATP content; (3) SERCA expression levels were increased in
WFS1 protein-depleted MIN6 cells, WFS1 KO primary islets,
and WFS1 protein-depleted human neuroblastoma cells; (4)
WFS1 protein interacted with SERCA in both overexpressed
and endogenous models; (5) proteasomal inhibition studies sug-
gested a role for WFS1 in SERCA protein turnover and (6) when
ER stress was induced with DTT, there was a reduced WFS1/
SERCA complex formation or partial dissociation, allowing
SERCA expression to increase. These results are consistent
with a model in which WFS1 protein negatively regulates the
ER stress response and modulates ER calcium filling by regulat-
ing SERCA expression to partially compensate for ER calcium
depletion in conditions of ER stress.

We showed that in two MIN6 beta-cell models of Wolframin
depletion, there was reduced glucose-stimulated insulin secre-
tion (Fig. 1A). We also demonstrated the defect in glucose-
stimulated insulin secretion in primary islets isolated from
conditional beta-cell-specific KO mice (Fig. 1B). In our MIN6
model of Wolframin depletion, this was associated with a
delayed and reduced amplitude of the [Ca2+]i rise (Fig. 2), and
reduced [ATP]CYT rise in response to elevated glucose (Fig. 4).
These findings thus confirm and extend previous observations
of multiple defects in the control of glucose signalling and
insulin secretion in Wolframin-depleted beta-cells (16,17,22).

Our findings of reduced [ATP]CYT rise in response to elevated
glucose, and reduced total cellular ATP, suggest reduced ATP
synthesis or increased ATP consumption after WFS1 silencing
(23,28). This reduced [ATP]CYT rise may explain the observed
reduced and delayed glucose-induced [Ca2+]i rise in these
mutants (due to failed closure of ATP-sensitive K+ channels).
ATP generation defects have not been previously reported in
Wolfram syndrome; our own previous work demonstrated
normal oxidative phosphorylation in muscle biopsies from
Wolfram patients (30). Increased ATP consumption could
arise from cellular efforts to restore ER homeostasis. SERCA
pump activity has been shown to be a major ATP-consuming
process in MIN6 cells (28) and has also been proposed as a nega-
tive regulator of [ATP]CYT, contributing to the Ca2+-dependent
oscillations in [ATP]CYT observed in beta-cells (33,34).

These observations led us to hypothesize that ATP utilization
by SERCA may increase in the absence of WFS1 protein; and
further, that increased activity/expression of SERCA would be
observed in WFS1 protein depletion. To test our hypothesis,
we studied the levels of SERCA expression in several models
of WFS1-depleted cells: pancreatic MIN6, SK-N-AS neuro-
blastoma and in primary islets isolated from WFS1 conditional
KO mice. All our models showed elevated ER stress markers
(16,21). We found that SERCA levels were significantly ele-
vated in all our models and that it was mainly due to increased
levels of isoform SERCA2 (Fig. 5). This is a novel finding and
to the best of our knowledge, there are no published reports of
SERCA expression in WFS1 protein-depleted cell models.

We demonstrated that WFS1 and SERCA interact in both an
over-expression system (Fig. 6A and B) and endogenously
(Fig. 6C); and that this interaction is reduced in the presence of
DTT-induced ER stress (Fig. 6D). Inhibition of the proteasome
with MG132 resulted in accumulation of SERCA in a WFS1-
dependent manner: the accumulation of SERCA expression
was reduced in WFS1-depleted neuroblastoma cell line KD2
in comparison to WFS1 positive control (Fig. 7). These results
suggested that WFS1 may be a negative regulator of SERCA
and were consistent with the possibility that the WFS1–
SERCA interaction regulates SERCA levels by targeting
SERCA to degradation by the proteasome. Our ubiquitination
study did not confirm impaired SERCA ubiquitination in
WFS1-depleted cells (data not shown). We tested for ‘canonical’
signals for proteasomal recognition with antibody against ubi-
quitin lysine-48 based chains. However, several ‘non-canonical’
ubiquitin-based signals for proteasomal targeting have also been
described (e.g. polyubiquitin chains assembled through residues
other than lysine 48), tagging substrates with ‘ubiquitin-like’
proteins or proteasomal degradation without prior ubiquitination
(35). Therefore, the mechanism of WFS1 regulation of SERCA
requires further confirmation.

It seems that the regulation of SERCA protein levels by WFS1
may be ER stress dependent: under conditions of ER stress
SERCA is released from the interaction with WFS1 (or alterna-
tively SERCA–WFS1 complexes are formed at a lower rate), it
may be degraded by the proteasome to a lesser extent, and
SERCA expression increases. Under normal conditions of ER
homeostasis, the physiological levels of SERCA may be main-
tained in homeostasis by interaction with WFS1. A similar func-
tion for WFS1 was described by Fonseca et al. (15) who
demonstrated that WFS1 negatively regulates a key transcription
factor involved in ER stress signalling activating transcription
factor 6a (ATF6a) through the ubiquitin-proteasome pathway.

Some forms of ER stress result in ER calcium depletion, dis-
turbed ER functions and increase in cytosolic calcium levels,
which may trigger cell death via activation of the calpain-2 apop-
totic pathway (7). We provide evidence that under conditions of
WFS1 protein depletion, there may be a secondary increase in
SERCA expression to pump calcium ions back into the ER
calcium store to try to restore ER homeostasis. Several reports
show that induction of ER stress may lead to increased
SERCA expression on both mRNA and protein levels
(11,36–39). In addition, Wu et al. (40) reported that cytosolic
calcium elevation itself increased SERCA2 expression by a
mechanism distinct from ER stress. The authors speculated
that enhanced calcium uptake into the ER might shorten the
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period of a relative ER calcium depletion subsequent to a
stimulus-induced ER calcium release, in this way responding
to an increased demand for calcium by ER chaperones system
under the conditions where unfolded proteins can be accumu-
lated. In contrast, other authors have reported that under patho-
logical conditions associated with cell death, including ER
stress, SERCA expression is decreased (7,41,42). The discrep-
ancy may relate to the degree of ER stress: in resolvable ER
stress, SERCA expression and function may increase to restore
ER calcium levels; in irresolvable ER stress, ER calcium
levels cannot be restored SERCA expression falls and apoptosis
ensues.

The absence of WFS1 is associated with ER stress (14–17),
calcium leak from the ER and an elevation of cytosolic
calcium levels (7). ER stress, ER calcium leak and elevations
of cytosolic calcium have all been associated with increases in
SERCA expression (11,36–38,40). ATF6 is also negatively
regulated by WFS1, and a downstream effect of increased
ATF6 activity is elevation of SERCA expression (11). It may
be that under these conditions for the cells to survive SERCA ex-
pression must be increased to counteract the ER calcium leak to
restore ER calcium homeostasis and to prevent activation of cell
death pathway induced by elevated cytosolic calcium levels. The
decrease of SERCA levels under ER stress and under some
pathological conditions observed by Hara et al. (7) was in the
presence of WFS1, where induction of this compensatory mech-
anism was not necessary; WFS1 exerted its pro-survival function

and prevented cell death. Our results, summarized on Figure 8,
are consistent with the possibility that WFS1 negatively regu-
lates SERCA turnover, possibly via proteasome-mediated deg-
radation and this process is dependent on the ER stress.
Release of SERCA from interaction with WFS1 in WFS1-
depleted cells or under ER stress may result in increased
SERCA levels and activity and may allow compensatory
pumping of calcium ions from cytosol to ER lumen to restore
ER calcium homeostasis and prevent cell death.

To further understand WFS1 role in calcium homeostasis, it
will be interesting to examine if/how WFS1 depletion affects
the expression of IP3R and RYR, the calcium channels that
release calcium from the ER and how WFS1 depletion affects
other intracellular Ca2+ stores.

In summary, our results support previously reported WFS1 in-
volvement in regulation of glucose sensing and insulin secretion
in pancreatic cells and demonstrate for the first time a defective
ATP response to glucose and ATP depletion in the absence of
WFS1. We also demonstrate that WFS1 is an interactive
partner and a negative regulator of SERCA.

MATERIALS AND METHODS

Cell culture and adenoviral infection

Mouse beta-cell-derived MIN6 cells expressing interfering
RNAs to provide reduction in WFS1 expression (16) were

Figure 8. Regulation of ER calcium homeostasis by WFS1 via regulation of SERCA2 levels: under conditions of calcium homeostasis (normal conditions) WFS1
interacts with SERCA and negatively regulates SERCA turnover to maintain physiological SERCA2 levels. Under conditions of ER stress or in WFS1-depleted
cells, WFS1–SERCA2 interaction is limited: the complex is either not formed or formed at a reduced level. This results in SERCA2 upregulation. SERCA2 upregula-
tionprovidesa compensatory mechanism,which allows for increasedCa2+pumping to the ER in response to Ca2+ leak from the ER causedby either ERstress or WFS1
depletion. This compensatory mechanism allows restoration of calcium homeostasis and prevention of cell death.
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cultured in Dulbecco’s modified Eagle’s medium (Sigma) con-
taining 25 mmol/l glucose, 2 mmol/l pyruvate, supplemented
with 15% (vol/vol) foetal bovine serum, 4 mmol/l glutamine,
100 units/ml penicillin, 100 mg/ml streptomycin, 143 mmol/l
b-mecaptoethanol and 0.2 mg/ml geneticin. Luciferase expres-
sion was achieved by infection of cells with adenoviral vector
encoding cytoplasmic-targeted luciferase (AdCMVcLuc) (23),
aequorin expression by using untargeted cytosolic aequorin
(Cyt.Aq) (43). Human neuroblastoma SK-N-AS cells with
stable WFS1 depletion were grown as described by Gharanei
et al. (21).

Insulin secretion from MIN6 cells

Cells were seeded in six-well plates and grown in full growth
medium for at least 16 h, before they were maintained overnight
in medium with 3 mmol/l glucose. Insulin secretion was per-
formed as previously described (http://www.jbc.org/content/
280/27/25565.long) and insulin content measured by radio-
immunoassay (Millipore).

Isolation of pancreatic islets, insulin secretion assay
and preparation of protein extracts

The mice used in this experiment were beta-cells selective con-
ditional Wfs1 KO mice (16), obtained by collaboration from Pro-
fessor A. Permutt. They were additionally back crossed with C57
wild-type females for two generations and the heterozygotes
were used as parents in matings to obtain experimental and
control littermates. Islets were isolated by collagenase digestion
from pancreata of 10–13 weeks old male mice: either Wfs1 con-
ditional KO mice (Wfs1fl/fl Crecre/+) or Wfs1 positive ‘floxed’ lit-
termates (Wfs1fl/fl). Islets of Langerhans were isolated, cultured
and insulin secretion assay performed as previously described
(27,44).

For preparation of protein lysates for immunoblotting the islet
was incubated in RPMI medium for 10–12 days, handpicked
every other day and lysed in RIPA buffer (400–500 islets were
lysed in 60–70 ml of buffer). For homogenization, the lysate
was multiple times frozen (at 280C) and defrosted at RT,
each time being passed several times through a pipette tip
followed by passing through a 21.5G size needle (27,44).

Cytosolic free Ca21 concentration measurements
with fura-2

Cells were seeded on 24 mm diameter coverslips and starved in
medium containing 3 mmol/l glucose overnight. The next day,
cells were loaded with the fluorescent dye fura-2 (5 mmol/l)
and incubated in Krebs buffer (see above) with 3 mmol/l
glucose. Next, the cells were perifused with buffer containing
3 mM glucose followed by 30 mmol/l glucose, then 50 mmol/l
KCl as a control. Changes in ([Ca2+]i) in single cells were mea-
sured as the changes in fluorescence intensity of fura-2 using an
Olympus IX-80 inverted optics epifluorescence microscope
(×40 oil immersion objective). Single cell [Ca2+]i measure-
ments were performed exciting the dye at 340 and 380 nm, and
emission was recorded at 510 nm. Images were recorded with
an IMAGO charge-coupled device camera (Till Photonics

GmbH, Grafelfing, Germany) controlled by Tillvision software
(Till Photonics).

Measurements of cytosolic free Ca21 with recombinant
targeted aequorin

Cells were seeded onto 13 mm diameter coverslips and 24 h
later, at 70–80% confluency, transfected with adenoviruses
expressing the untargeted (cytosolic) bioluminescent protein
aequorin (45,46). Forty eight hours later, cells were depleted
of Ca2+ by incubation with 10 mmol/l ionomycin, 10 mmol/l
CPA and 10 mmol/l monensin in modified Krebs-Ringer bicar-
bonate buffer containing glucose 3 mmol/l, Hepes 10 mmol/l,
KCl 3.5 mmol/l, MgSO4 0.5 mmol/l, NaCl 140 mmol/l,
NaHCO3 2 mmol/l and NaH2PO4 0.5 mmol/l (to achieve pH
7.4) and supplemented with EGTA 1 mmol/l for 5 min at 4C
(46). Cytosolic free calcium levels were measured using a cyto-
plasmic (non-targeted) aequorin construct and native coelenter-
azine (47). Aequorin was reconstituted with 5 mmol/l
coelenterazine in Krebs buffer with 0.1 mmol/l EGTA for 2 h
at 48C (48). The cells were perifused with Ca2+-free buffer, fol-
lowed by addition of buffer containing 1.5 mmol/l CaCl2 at 120 s
to permit Ca2+ entry. The photon counts were detected with a
photomultiplier device (Thorn EMI) (49) adjacent to the perifu-
sion chamber and converted to Ca2+ concentration (mmol/l)
using algorithms described previously (50,51).

Cytosol free ATP concentration measurements

Cells were seeded onto 13 mm diameter coverslips and 24 h
later, at 70–80% confluency infected with adenovirus expres-
sing untargeted (cytosolic) firefly luciferase (23,24). After 48 h
culture, the cells were ‘starved’ overnight in medium containing
3 mmol/l glucose. The following day, the cells were incubated
for a further 15 min in modified Krebs buffer containing
3 mmol/l glucose, then perifused in the same buffer containing
3 mmol/l glucose, followed by buffer with 30 mmol/l glucose
and then followed by addition of CPA (10 mmol/l), an inhibitor
of SERCA. The cytosolic free ATP concentration ([ATP]CYT)
was estimated by counting the emitted photons with a photo-
multiplier as described above.

Measurements of ATP:ADP ratio in response
to rise in glucose concentration

Cells were seeded in six-well plates in standard media. The next
day the cells were starved overnight in the medium with 3 mmol/
l glucose. On the day of experiment, the cells were incubated for
15 min in Krebs buffer with 3 mmol/l glucose; and after that they
were incubated for 15 min in Krebs buffer with either 3 mmol/l
glucose (plate 1), 30 mmol/l glucose (plate 2) or 30 mmol/l
glucose and CPA (plate 3). The plates 1 and 2 were harvested
after 15 min in 200 ml per well of 20% (v/v) ice-cold PCA and
rapidly frozen in 2808C. 10 mmol/l CPA was added to plate 3
and incubated additional 5 min before being harvested in PCA
as above. In parallel, another plate was seeded in an identical
way for measurements of protein concentration to normalize
the results and harvested in protein lysis buffer (RIPA). A stand-
ard curve for ATP and ADP (a negative control) was prepared
(gradient of concentrations versus luminescence). The samples
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(harvested in PCA) were neutralized to pH 7.4 with a known
volume of neutralization mixture (0.5 mol/l triethanolamine,
2 mol/l KOH and 100 mmol/l EDTA). The samples were
mixed with an aliquot of a reaction buffer containing sodium ar-
senate (65 mmol/l, pH7.4), MgSO4 (20 mmol/l), KCl (5 mmol/l)
and phosphoenolpyruvate (PEP). For each sample, two assays
were performed: set 1 ¼ ATP measurement with ‘mock conver-
sion’ of ADP (in the reaction buffer as stated above, without
pyruvate kinase) and set 2 ¼ ATP + ADP measurement where
ADP was converted to ATP by addition of pyruvate kinase.
After 2 h incubation at RT, 10 mg of luciferase and 1 mmol/l
luciferin were added to each sample and luminescence was mea-
sured on a luminometer for both: set 1 (ATP) and set 2
(ATP + ADP). The amount of ADP was calculated as a differ-
ence, ADP ¼ (ATP + ADP) 2 ATP (29).

Total cellular ATP content

Cells were grown to 90% confluency in standard medium (see
above) with 25 mmol/l glucose, harvested, diluted 10× in
growing medium, counted and seeded in opaque-walled 96
wells plates (Appleton Woods). The following day total ATP
assay was performed using the CellTiter-Glo Luminescent
Cell Viability Assay (Promega). Briefly, the plates were equili-
brated to room temperature for 30 min, and a volume of reconsti-
tuted CellTiter-Glo Reagent (100–100 ml of medium in each
well) was added. The content was mixed for 2 min in an
orbital shaker to induce lysis; after 10 min incubation in room
temperature the luminescence was read on a multilabel counter
Wallac 1420 Victor3 (Perkin Elmer).

Preparation of microsomal fractions

8 × T75 cm flasks of each wt, KDA and KDB MIN6 (80% con-
fluent) were harvested by trypsinization, rinsed with phosphate
buffered saline (PBS) and resuspended in 2 ml of PBS on ice.
Cells were spun down at 2000 rpm, 5 min, 48C and suspended
in 10 ml of MEMBRANE buffer (5 mM HEPES, 0.32 M

sucrose, pH 7.2 with protease inhibitors) before they were homo-
genized using electric homogenizer Polytron, ultra Turro T8 at
30 000 rpm for 10 s. Then, cells were transferred to a glass elec-
tric homogenizer and homogenized with 10 strokes. Cells were
spun down at 10 000g, 10 min, 48C to remove organelles
(nuclei and mitochondria). Cloudy supernatant (15 ml) was har-
vested to a separate tube, divided between two ultracentrifuge
tubes (3/4 full) and spun down at 100 000g for 1 h at 48C.

Pellet (microsomes) was harvested by pouring off supernatant
and resuspending in 500 ml each in MEMBR ANE buffer, no pro-
tease inhibitors cocktail. Aliquots of 100 ml were frozen in liquid
nitrogenand transferred toa 2708Cdeep freezer immediately (32).

Proteasome inhibition assay

Cells were plated at 5 × 105 cells/well in a 6-well plate. After
24 h, cells were treated with either 5 or 10 mmol/l MG132 prote-
asome inhibitor for 4 h, harvested in RIPA buffer and prepared
for western blotting as described by Gharanei et al. (21).

Immunoblotting

Antibody was diluted in 5% milk in PBS-Tween and used at the
following concentrations: PanSERCA Y1F4 (mouse monoclo-
nal (31)) 1:5000; SERCA2 (goat polyclonal Santa Cruz)
1:1000; BA (mouse monoclonal Sigma) 1:14 000 and PDI
(mouse monoclonal Abcam) 1:5000. For protein detection in
extracts from isolated islets the following concentrations of
primary antibody were used: WFS1 (rabbit polyclonal, obtained
by collaboration (20)) 1:500; PanSERCA Y1F4 1:500, BA
1:3500. Secondary antibody (anti-rabbit, goat and mouse,
Dako) was used at 1:20 000.

Co-immunoprecipitation

Construction of FLAG-SERCA2 plasmid
Full length human SERCA2 (transcript variant b, GeneBank
NM_170665.3) was amplified from a human cDNA library by
polymerase chain reaction using primers 5′-CTTGCGGCCG
CGATGGAGAACGCGCAC-3′ (forward) and 5′-GCATGGT
ACCTCAAGACCAGAAGATATCG-3′ (reverse) and was
cloned between the Not I and Kpn I site of pFLAG-CMV4
expression vector (Sigma). The sequence was confirmed by
DNA sequencing. pCMV-Myc-WFS1 plasmid was described
before (20).

Transfection
Cos7 cells were seeded at 2.0 × 106 in 10 cm plates and after
24 h co-transfected with the following combinations of plasmids
(2 mg of each): pCMV-Myc-WFS1/FLAG-SERCA2, pCMV-
Myc-WFS1/empty FLAG, empty Myc/FLAG-SERCA2 and
empty Myc/empty FLAG using Turbofect transfection reagent
(Thermo Scientific) according to manufacturer’s instructions.
After 48 h, the cells were harvested in 600 ml of RIPA buffer
(20), sonicated 3 × 10 s and centrifuged at 23 000 g at 48C.

Immunoprecipitation in over-expression system
A total of 750 mg of protein extract and either anti-FLAG mouse
monoclonal antibody (Sigma) or anti c-myc rabbit, polyclonal
antibody (Sigma), were used for co-immunoprecipitation in
the over-expression system. The extracts were incubated with
antibody overnight at 48C with end-to-end rotation. Protein G
Sepharose beads were added after overnight incubation for a
further 4 h of end-to-end rotation at 48C. Beads were separated
from lysate using Spin-X columns (Costar) by centrifugation
at 4000g for 15 min at 48C and washed four times with RIPA
buffer (for washes: 1, 2 and 4 RIPA buffer with 150 mmol/l
NaCl was used, for wash 3 RIPA buffer with NaCl increased
to 500 mmol/l was used). Each wash was performed by 15 min
incubation at 48C with end-to-end rotation, followed by spin at
4000g. Bound proteins were eluted in 50 ml sample buffer by
heating to 708C for 8 min followed by 3 min spin at a
maximum speed in a microfuge and stored in 2808C. The fol-
lowing antibody was used for immunoblotting: c-myc (rabbit
polyclonal, Sigma) 1:10 000; WFS1 (rabbit polyclonal, Protein-
tech) 1: 500; FLAG (rabbit polyclonal Sigma) 1:1000; FLAG
(mouse monoclonal, Sigma) 1:1000 and c-myc (mouse mono-
clonal Sigma) 1:1000. Secondary anti-mouse and anti-rabbit
antibody (Dako) were used 1:20 000.
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DTT treatment
Eighty percentage confluent SK-N-AS cells growing in 10 cm
dishes were treatedwith1mmol/l DTT(Sigma) for 3 h or remained
untreated before being harvested in 600 ml Tris buffer (TBD, com-
position below). Equal amounts of untreated and DTT-treated
protein lysates were used for co-immunoprecipitation as des-
cribed below.

Immunoprecipitation of endogenous proteins
To detect endogenous interaction neuroblastoma SK-N-AS cells
in 10 cm dishes were harvested in 600 ml TBD per dish
[20 mmol/l Tris, pH 7.5, with 100 mmol/l NaCl, 1% TritonX-
100, 1 mmol/l DTT, 1 mmol/l PMSF and protease inhibitors
(Complete Mini, Roche)], scraped on ice, placed in eppendorfs
and incubated at 48C with end-to-end rotation for 1 h. The
samples were sonicated 3 × 10 s on ice and the lysates cleared
by centrifugation at 23 000 g at 48C. 900 mg–1 mg of protein
extract (400 ml) were used per reaction. WFS1 rabbit polyclonal
antibody (Abcam) was used for co-immunoprecipitation and
FLAG rabbit, polyclonal antibody (Proteintech) or FLAG
mouse monoclonal antibody (Sigma) was used as negative
control. After overnight incubation with the antibody, the
lysates were transferred to Spin-X columns (Costar) with
20 ml of pre-cleared Protein G Sepharose beads, for 3 h incuba-
tion at 48C with end-to-end rotation. The samples were centri-
fuged at 4000g at 48C and the beads washed 2× in 400 ml of
buffer TBD-150 (with 150 mmol/l NaCl), 1× in TBD-500
(with 500 mmol/l NaCl) and again 1× in TBD-150. Each time
the beads were incubated 15–20 min at 48C with end-to-end
rotation. Finally, beads were separated from lysates by centrifu-
gation at 4000 g and 50 ml of SDS loading buffer was added
per sample. The proteins were released from beads by heating
to 708C for 8 min, spun down at 13 000 rpm in a microfuge
for 3 min and supernatant harvested. The samples were run on
SDS-PAGE gels, transferred to membranes at (90 V for
90 min) and boiled for 4 min in water before being blocked in
5% milk in PBS-Tween for 1 h. The membranes were incubated
with SERCA2 goat polyclonal antibody (Santa Cruz) 1:1000
followed by anti-goat secondary antibody (Dako) 1:20 000,
or WFS1 sheep polyclonal antibody (R&D systems) 1:10 000
followed by secondary anti-sheep (R&D systems) 1:30 000
overnight at 48C with rotation.

Statistical analysis

Data are given as the means+SE for the number of experiments
given. Comparisons between means were performed using
Student’s t-test with Bonferroni correction for multiple testing,
as appropriate.
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