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Abstract 

To date, the role of nanoparticle surface hydrophobicity has not been investigated 

quantitatively in relation to pulmonary biocompatibility. A panel of nanoparticles spanning 

three different biomaterial types, pegylated lipid nanocapsules, polyvinyl acetate (PVAc) and 

polystyrene nanoparticles, were characterized for size, surface charge, and stability in 

biofluids. Surface hydrophobicity of five nanoparticles (50-150 nm) was quantified using 

hydrophobic interaction chromatography (HIC) and classified using a purpose-developed 

hydrophobicity scale: the HIC index, range 0.00 (hydrophilic) to 1.00 (hydrophobic). This 

enabled the relationship between the nanomaterial HIC index value and acute lung 

inflammation after pulmonary administration to mice to be investigated. The nanomaterials 

with low HIC index values (between 0.50-0.64) elicited little or no inflammation at low (22 

cm
2
) or high (220 cm 

2
) nanoparticle surface area doses per animal, whereas equivalent 

surface area doses of the two nanoparticles with high HIC index values (0.88-0.96) induced 

neutrophil infiltration, elevation of pro-inflammatory cytokines and adverse histopathology 

findings. In summary, a HIC index is reported that provides a versatile, discriminatory, and 

widely available measure of nanoparticle surface hydrophobicity. The avoidance of high (HIC 

index > ~0.8) surface hydrophobicity appears to be important for the design of safe 

nanomedicines for inhalation therapy. 
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Introduction 

 

Inhalation of drug-containing nanoscale carriers has been heralded as an important 

strategy for the local or systemic delivery of therapeutic agents to or via the lungs  [1-5]. 

Inhaled nanocarriers have the potential to control drug release, prolong lung retention, target 

drug to specific sites in the lungs and reduce off-target side effects  [6, 7]. For successful 

development as inhaled medicines, however, careful biomaterial design is required to avoid 

lung toxicity. Paradigms are emerging to link specific physicochemical properties of 

nanoparticles with acute lung toxicity (e.g. tissue damage, cellular influx or cytokine release) 

or long term adverse effects such as chronic inflammation, fibrosis, or lung cancer  [8-12]. For 

example, there is a large body of evidence relating respiratory toxicity to nanoparticle 

properties such as chemically reactive surfaces, including those which generate reactive 

oxygen species [13], highly cationic or anionic surfaces  [14-16], high particle aspect ratio 

[17], excessive surface area exposure of inert nanomaterials  [18, 19], and biopersistence in 

the lungs [20]. Nanomedicine design strategies which avoid or mitigate these risk factors have 

been shown to result in enhanced biocompatibility profiles in vivo  [15, 21-23]. 

Surface hydrophobicity is often cited as an additional risk factor for nanoparticle toxicity  

[20,  24, 25], but is seldom, if ever, characterized during nanoparticle profiling, which typically 

concentrates on particle size, shape, zeta potential, crystallinity, colloidal stability, surface 

reactivity, and solubility/degradability [12]. The rare studies that have investigated the 

relationship between nanoparticle surface hydrophobicity and in vivo respiratory toxicity [15], 

appear to indicate a relationship, but have lacked a quantitative metric for hydrophobicity. 

Several analytical methods are available to quantify nanoparticle hydrophobicity, including 

small molecule adsorption assays (i.e. dyes, hydrophobic compounds, water)  [26-28] and 

hydrophobic interaction chromatography (HIC) [29], each of which has advantages and 

limitations. 

Methods that measure small molecule adsorption to the particle surface provide a highly 

information-rich characterisation of the molecular interaction forces at the particle surface. For 

example, Xia et al  [24, 25] studied the adsorption profiles of 28 different small molecule probes to 

the surface of multi-walled carbon nanotubes and their carboxylated derivatives using solid phase 

microextraction gas chromatography/mass spectroscopy. Numerical data representing five 

descriptors (hydrophobicity, hydrogen bonding, polarity, polarizability, and lone-pair electrons) 

were combined into a single value, the biological surface adsorption index (BSAI) score, which was 

proposed for use in modelling quantitative structure-activity relationships. Although this approach 

is excellent for in-depth analysis of nanoparticle surfaces, its implementation as a routine screening 

method is limited by the complexity and prolonged duration of analysis, as well as the requirement 

of specialized analytical equipment. 

The aims of this study were to develop HIC as a quantitative method for measuring 

nanoparticle surface hydrophobicity and investigate the influence of nanoparticle surface 

hydrophobicity on pulmonary biocompatibility. An HIC index value was developed to provide 

a quantitative descriptor of nanoparticle surface hydrophobicity and used to score five 

nanoparticle systems based on three different biomaterial types. Polystyrene (PS) nanoparticles 

were used as a high hydrophobicity reference nanomaterial reported to elicit an acute 

inflammatory response in the lung at elevated exposure doses  [18, 19,  22]. Nanoparticles 

fabricated from two different grades of polyvinyl acetate (PVAc) were included as 
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representative of polymeric systems previously investigated to serve as inert reference particles 

in inhalation toxicology studies  [30] and are also found in some aerosolized consumer 

products, including hairsprays [31]. Two lipid nanocapsule (LNC) formulations (nanocarriers 

characterized by a liquid triglyceride core and a solidified phospholipid shell containing 

pegylated 12-hydroxystearate) were included in the study to exemplify promising 

nanomedicine formulations for pulmonary delivery of poorly soluble compounds  [32-36]. 

The nanoparticle systems included in the study were designed such that they would 

display a range of surface hydrophobicities. All the nanoparticles were chemically inert, 

amorphous, spherical with diameters of either 50 or 150 nm and had a negligible surface 

charge. The hypothesis of the study was that increasing nanoparticle surface hydrophobicity, as 

measured by HIC, would correlate with acute respiratory toxicity when administered to the 

lungs of mice. 

 

Materials and Methods 

Two molecular weight grades of PVAc, high (48 kDa) and low (12.8 kDa), were 

purchased from Sigma-Aldrich (Dorset, UK). Poly vinyl alcohol (PVA; 8-12 kDa) was 

purchased from Sigma-Aldrich (Dorset, UK). Labrafac
®

 Lipophile WL1349 was obtained from 

Gattefosse (Saint-Priest, France), Solutol
®

 HS15 was acquired from BASF (Ludwigshafen, 

Germany) and Lipoid
®

 S75-3, from Lipoid GmbH (Ludwigshafen, Germany). Non-modified 

polystyrene nanoparticles with a diameter of 50 nm (2.62% m/v) were used as a reference 

material and were purchased from Polysciences (Eppelheim, Germany). All other materials were 

of analytical grade. 

 

2.1 Nanoparticle fabrication 

2.1.1 PVAc nanoparticles 

 

To produce differential degrees of hydroxylation, the PVAc polymers were modified by 

direct saponification according to the method described by Chana et al  [37] producing a PVAc 

polymer with 17 mol% hydroxyl groups and 83 mol% residual acetate groups (PVAc80%) 

from the high molecular weight precursor and a modified PVAc polymer with 34 mol% 

hydroxyl groups and 66 mol% residual acetate groups (PVAc60%) from the low molecular 

weight polymer. Polymer purity and degree of hydrolysis were verified by NMR analysis prior 

to use [37]. PVAc60% nanoparticles were prepared by injecting a solution of 5% w/v 

PVAc60% polymer dissolved in 2:1 methanol:water into a 0.33% w/v aqueous PVA solution, 

whilst stirring at 3500 rpm using a Silverson L4 homogenizer (Silverson Machines Ltd., 

Waterside, UK). PVAc80% nanoparticles were prepared by injecting a solution of 1% w/v 

PVAc80% polymer dissolved in 2:1 methanol:water into a 0.33% w/v aqueous PVA solution, 

whilst stirring at 3500 rpm. Following 30 min constant stirring at 4000 rpm and solvent 

evaporation overnight (~100 rpm), the nanosuspensions were dialyzed against water (72 h) to 

remove excess PVA and subsequently concentrated to the desired final concentration using 

ultrafiltration centrifuge tubes (100 kDa MWCO; Millipore, Watford, UK). Residual PVA was 

quantified colorimetrically using a method adapted from Sahoo et al. [38]. 
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2.1.2  Lipid nanocapsules 

LNCs were manufactured using a phase-inversion temperature method [39]. LNC with 

50 nm diameters (LNC50) were prepared by generating a coarse emulsion of 17% w/w 

Labrafac
®

 Lipophile WL1349, 17% w/w Solutol
®

 HS15, and 1.75% w/w Lipoid
®

 S75-3 in a 

3% w/w NaCl solution. This emulsion was then submitted to repeated heating cooling cycles 

(85°, 60°, 85°, 60°, 85°C) before adjusting to 72°C. At this point the mixture was quenched in 

a 2-fold volume of ice water and stirred at room temperature for 5-10 min. LNC with 150 nm 

diameters (LNC150) were prepared and purified using a similar method, but the relative 

concentrations of components were: 25% w/w Labrafac
®

 WL1349, 8.5% w/w Solutol
®

 HS15, 

1.5% w/w Lipoid
®

 S75-3. In the final step of manufacture, the nascent LNC150 nanoparticles 

were diluted with 2.5 volumes of ice cold water. 

Excess stabilizer (Solutol
®

 HS15) was removed from all suspensions by dialysis (72 h) 

against water containing BioBeads
®

 (BioRad, Hertfordshire, UK) and subsequent 

concentration using ultrafiltration centrifuge tubes (Millipore, UK; 100 kDa MWCO). 

Residual Solutol
®

 HS15 was determined colorimetrically[40]. Briefly, following LNC 

purification by ultrafiltration (as described above), a 50 µL aliquot of the ultrafiltrate 

containing Solutol
®

 HS15 was added to equal volumes (600 µL) of chloroform and an 

aqueous solution of ammonium ferrothiocyanate (16.2 g L
-1

 anhydrous ferric chloride; 30.4 g 

L
-1

 ammonium thiocyanate). The biphasic mixture was incubated under gentle stirring for 30 

min at room temperature. The bottom chloroform layer was assayed spectrophotometrically at 

λ= 510 nm and the Solutol
®

 HS15 content determined from a calibration curve. 

 

2.2 Nanoparticle characterization  

2.2.1  Nanoparticle size and zeta potential 

Particle size and zeta potential were determined using a Zetasizer Nano ZS (Malvern, 

Worcestershire, UK). Size was measured at 25°C in purified water and 5% dextrose over four 

weeks to assess storage stability. Stability after aerosolization was assessed by aerosolizing 25 

μL nanoparticles suspended in 5% m/v dextrose with a Microsprayer
®

device (Penn-Century 

Inc.; Wyndmoor, PA, USA) into 1 mL purified water at 25°C. Size stability in biological 

medium was assessed by aerosolizing 25 μL nanoparticles suspended in 5% m/v dextrose into 

HBSS containing 10% v/v FBS at 37°C and measuring particle size at t=0, 0.17, 4 and 24 h. 

Measurements were taken at a scattering angle of 173°. Refractive indices and viscosity values 

were adjusted for each temperature and medium used. While all nanoparticle suspensions were 

size-stable when stored in purified water at 4°C, fresh batches were prepared for each in vivo 

experiment. Zeta potential measurements were performed at 25° C with all suspensions diluted 

in 6.3 mM NaCl. 

 

2.2.2.  Hydrophobic interaction chromatography 

 

Surface hydrophobicity of nanoparticle suspensions (n=3 individual batches) was 
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assessed using HIC [29]. Briefly, nanoparticle suspensions were prepared in PBS (~1 mg mL
-1

) 

and 250 μL eluted through three different HiTrap™ substituted sepharose hydrophobic 

interaction columns: Butyl FF, Phenyl FF (high substitution) and Octyl FF (GE Healthcare Life 

Sciences, Little Chalfont, UK). The eluent was collected in 1 mL fractions and analyzed for 

particle content via turbidity measurement (Lambda 35;Perkin-Elmer, Cambridge, UK; λ=450 

nm). Particles were subsequently eluted from the column using 0.1% Triton X-100. 

Absorbance values were plotted against elution volumes and two area under the curve (AUC) 

values were calculated using Origin™ software. The particle retention in each of the three 

columns was defined according to Equation (1): 

 

(1)  % 𝐶𝑜𝑙𝑢𝑚𝑛 𝑟𝑒𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (%𝑅) = (
𝐴𝑈𝐶 𝑇𝑟𝑖𝑡𝑜𝑛𝑋

𝐴𝑈𝐶 𝑃𝐵𝑆 + 𝐴𝑈𝐶 𝑇𝑟𝑖𝑡𝑜𝑛𝑋
) × 100 

 

The HIC index value was calculated according to Equation (2): 

 

(2) 𝐻𝐼𝐶 𝐼𝑛𝑑𝑒𝑥 =  
(%𝑅𝑏𝑢𝑡𝑦𝑙 × log 𝑃𝑏𝑢𝑡𝑦𝑙) +  (%𝑅𝑝ℎ𝑒𝑛𝑦𝑙 × log 𝑃𝑝ℎ𝑒𝑛𝑦𝑙) + (%𝑅𝑜𝑐𝑡𝑦𝑙 × log 𝑃𝑜𝑐𝑡𝑦𝑙)

(100% × log 𝑃𝑏𝑢𝑡𝑦𝑙) +  (100% × log 𝑃𝑝ℎ𝑒𝑛𝑦𝑙) + (100% × log 𝑃𝑜𝑐𝑡𝑦𝑙)
 

 

whereby, log P values of each column linker were calculated as: 0.47, 0.94 and 2.05 for butyl, 

phenyl and octyl modified columns, respectively. The log P values of the column linkers were  

calculated using Marvin Sketch (version 5.5.0.1,Chem Axon Limited). In the denominator, each 

log P value was multiplied by 100%, which represents the theoretical case of 100% retention on 

each column achieved by a particle with maximum hydrophobicity. 

 

2.3  In vivo safety evaluation 

2.3.1 Nanoparticle dose and pulmonary administration  

Male Balb/c (6–8 weeks old, ~22-25 g; Harlan, UK) were used in acute respiratory 

toxicology studies utilizing a single pulmonary administration of nanoparticles. All 

experiments were in accordance with the U.K. Home Office regulations and approved by the 

King’s College London research ethics committee. Nanoparticles were administered at doses 

of 22 cm
2
 or 220 cm

2
 nanoparticle surface area per animal (equivalent mass doses are listed in 

Table 1). The use of the surface area dose metric is supported by independent studies suggesting 

that nanoparticle surface area is a more robust descriptor of respiratory toxicity for biopersistent 

nanoparticles compared to mass or particle number dose  [19,  41]. For example, it has been shown 

that nanoparticles of different diameters elicit an equivalent inflammatory response when 

administered at equal surface area doses  [18, 19]. Nanoparticle surface area doses were calculated 

from the hydrodynamic diameter of the particles, assuming a density of ca. 1 g cm
-3

 for PVAc 

nanoparticles, 0.96 g cm 
-3

 for LNC (estimated from the density of the main constituent, Labrafac
®

 

WL1349) and 1.05 g cm
-3

 for PS50 (manufacturer’s information). It should be noted that the doses 

used in this study fall within the typical dose ranges used in toxicology assessments of inhaled 

pharmaceutical compounds when determining the ‘no observed adverse effect level’ values in 

nonclinical studies. All suspensions were prepared in sterile dextrose 5% w/v to ensure isotonicity. 

Vehicle controls were prepared by suspending nanoparticles in sterile dextrose 5% w/v and using 

ultrafiltration centrifugation (Millipore, UK; 100 kDa MWCO) to separate the vehicle from the 
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suspension as described above. 

Isoflurane-induced anesthesia (1-3%) was maintained with intraperitoneal injection of 

100 mg kg
-1

 ketamine mixed with 20 mg kg
-1

 xylazine in 0.1 mL saline to allow intratracheal 

dosing with the Microsprayer
®

 aerosolizer. This combination of tranquilizer/dissociative 

yielded a moderate level of anesthesia for15-20 minutes, as assessed by paw pinch withdrawal 

reflex. Mice were suspended at a 45° angle by their upper incisors and nanosuspensions (25 

L) were administered as a coarse aerosol into the lungs using the Microsprayer
®

 device. This 

device was chosen as it has been reported to provide a more homogenous distribution of liquid 

suspensions into murine lungs compared to intratracheal bolus injections [42]. Animals were 

kept warm post-treatment with a heat lamp, then returned to their cages when ambulatory (<15 

min). 

 

2.3.2. Bronchoalveolar lavage, cytology and histopathology  

 

At 24 h after nanoparticle administration, mice were euthanized via terminal anesthesia 

with urethane (2 mg g
-1

 i.p.). The trachea was exposed, cannulated and the lungs were lavaged 

with three aliquots (0.5 mL) of sterile saline. The total number of cells in the cellular fraction of 

the lavage was counted with a Neubauer haemocytometer (Fisher Scientific, Loughborough, 

UK). Differential cell counts were performed using cytospin preparations, i.e. 100 μL BAL 

cellular fraction centrifuged at 300 g for 1 min using a Shandon Cytospin 2 (Shandon Southern 

Instruments, Sewickley, PA, USA) at room temperature. Cells were stained with Diffquick
®

 

(DADE Behring, Marburg, Germany) and a total of 200 cells were evaluated to determine the 

proportion of neutrophils, eosinophils and macrophages using standard morphological criteria. 

Eosinophils were not observed in any of the samples and are not reported. It was assumed that 

at the time point studied, the mononuclear cell population consisted primarily of resident 

alveolar macrophages and therefore lymphocyte numbers were not investigated. The alveolar 

macrophage population was assessed further by evaluating 100 macrophages to subcategorize 

their morphology as normal, finely or coarsely vacuolated. 

Cytokines present in the BAL supernatant were quantified using a murine 7-plex 

proinflammatory cytokine assay (MSD
®

 96-Well Multi-Spot Cytokine Assay; Meso-Scale 

Discovery, Gainsborough, MD, USA) coupled with an MSD Sector Imager, which measures 

cytokine content via electrochemiluminesce. The cytokines analysed were: IFN-γ, IL-1β, IL-6, 

IL-10, IL-12p70, CLCX1, and TNF-α. The only cytokines/chemokines in the BAL samples at 

levels above the limit of quantification wereIL-1β, IL-6, CLCX1, and TNF-α. As a measure of 

tissue integrity, total protein levels in BAL were quantified using a Quick Start™ Bradford 

Protein Assay (Bio-Rad, Hemel Hempstead, UK) according to manufacturer’s instructions. 

 

Lung tissue histopathology was performed in a randomized, blinded study by an 

independent pathologist according to the Organization for Economic Co-operation and 

Development (OECD) guidelines for histopathology assessment in inhalation toxicity studies, 

[43]. Lungs were removed after terminal anesthesia, inflated with 10% formalin, then immersed 

in 10% formalin for at least one week prior to tissue processing. Samples were coded prior to 
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submission to the pathologist, who produced prepared hematoxylin and eosin (HE) stained 

sections and analyzed them according to OECD guidelines. Analysis was performed in five 

animals using five different sections per lung (across different lobes). Frequency data describe 

the number of animals out of five exhibiting an adverse finding, while the severity score (scale 

of 0-5) describes the number of positive adverse findings across the 25 tissue sections in a 

group divided by five. 

 

2.4 In vitro investigations of macrophage responses  

 

2.4.1 Culture conditions 

 

J774 cells (derived from BALB/c mice) were used as a macrophage-like cell line. Cells were 

cultured at 37˚C in a 5% CO2/95% air atmosphere. Culture media consisted of phenol red-free 

Dulbecco’s Modified Eagle Medium (DMEM; Invitrogen, UK), supplemented with 10% v/v foetal 

bovine serum (FBS), 1% m/v penicillin/ streptomycin, and 2 mM L-glutamine. 

 

2.4.2 In vitro evaluation of apoptosis and mitochondrial activity 

 

J774 cells were seeded onto 8-well glass chamber slides (NuncLabTek II, Fisher 

Scientific, Loughborough, UK) at 5 x 10
4
 cells per well and cultured for 24 h to allow for cell 

attachment. Subsequently, the cell culture medium was removed and replaced with 100 μL fresh 

cell culture medium containing 0.5, 1, 5, 10 mg mL
-1

 PVAc60% or PVAc80% nanoparticles. 

Controls were fresh cell culture medium (untreated control) or vehicle control, prepared as 

previously described. After 24 h, 1 µL of NucView™ 488 (caspase 3/7 substrate; Biotium Inc., 

Hayward, CA, USA) and MitoView™ 633 (mitochondrial dye; Biotium Inc., Hayward, CA, 

USA) probe solutions were added. The probes were incubated for 30 min prior to live cell 

imaging using a Leica DMIR E2 confocal microscope (Leica Microsystems, Milton Keynes, 

UK). Transmission images plus fluorescent emissions from NucView™ 488 (ex = 488 nm; 

em = 500-530 nm) and MitoView™633 (ex = 633 nm; em = 648 nm) were collected using 

separate channels at a magnification of 40x. Instrument gain and offset values were adjusted 

using the negative control and remained constant for all subsequent experiments. Images 

obtained from each scan were pseudo-colored green (NucView™ 488) and red 

(MitoView™633). The presented results depict a representative image from n = 3 different 

sections of the same well. The prevalence of apoptotic cells in the total population was 

determined by calculating the percentage of caspase 3/7 positive cells from the total number of 

cells in n=3 different images (~100 cells per image). To conduct a quantitative evaluation of 

mitochondrial activity, cells were seeded at the same density into 96-well plates and treated 

with fresh cell culture medium containing 0.5, 1, 5, 10 mg mL
-1

 PVAc60% or PVAc80% 

nanoparticles. Controls were fresh cell culture medium (untreated control) or vehicle control, 

prepared as previously described. Following 24 h incubation, the 3-(4,5-dimethythiazol-2-yl)-

2,5-diphenyl tetrazolium bromide (MTT) assay was performed using a previously reported 

methodology  [44] with the experiment repeated on two occasions with three replicates at each 
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concentration of test substance. 

 

2.5  Statistical analysis 

SPSS version 20 (IBM, UK) was used for all statistical analyses. HIC index analysis was 

performed using a one way ANOVA comparison with a post-hoc Tukey test. BAL cell counts 

from nanoparticle- and vehicle-challenged mice were compared by using ANOVA on log 

transformed data followed by the Sidak correction. Data pertaining to the different 

macrophage phenotypes and BAL cytokine levels were analysed using Kruskall Wallis 

followed by multiple distribution free post-hoc test. P<0.05 were considered significant and 

denoted as: * p<0.05, ** p<0.01, and *** p<0.001. 

 

3. Results  

3.1 Nanoparticle characterization  

All nanoparticles possessed a narrow size distribution (Table 2) and a slightly negative to 

neutral zeta potential, consistent with the use of non-ionic stabilizers (e.g. polyetheylene glycol 

and polyvinyl alcohol) which were chosen to reduce the impact of high surface charge as a 

confounding factor in the toxicity studies [14]. Following manufacture, all formulations were 

extensively purified resulting in low levels of excess stabilizer in the vehicle (Table 2). 

Although the nanoparticles formed two distinct size groups (~50 and 150 nm) within the panel, 

this was accounted for in subsequent in vivo studies by administration of equivalent surface 

area doses  [19,  41]. 

Surface hydrophobicity was quantified by HIC using three different column chemistries 

to enhance the discriminatory power of the method (Figure 1a). HIC index values were 

calculated on a scale ranging from 0.00 (maximum theoretical hydrophilicity) to 1.00 

(maximum theoretical hydrophobicity). The nanoparticle panel spanned the upper 50% of the 

HIC scale with values ranging from 0.50 ± 0.09 to 0.96 ± 0.04 (Table 2). Statistical analysis 

revealed two groupings in the data: LNC50, LNC150 and PVAc60% nanoparticles had 

significantly lower HIC index values (p<0.05) compared to the high hydrophobicity 

nanoparticles, PVAc80% and PS50 (Figure 1b). A full statistical comparison is provided in 

Supporting Information (Table S1). 

Nanoparticle surface hydrophobicity influenced colloidal stability in different dispersion 

media. All nanoparticle suspensions were stable in water and 5% dextrose at room temperature 

over four weeks. Microsprayer
®

 aerosolization of 25 µL suspension into 1 mL purified water 

did not alter the particle size distribution (Figure 2a-e, red and green traces). However, 

differences in colloidal stability were observed when suspensions were aerosolized into a model 

physiological fluid, i.e. HBSS containing 10% FBS maintained at 37°C. Under those conditions, 

low hydrophobicity systems (LNC50, LNC150 and PVAc60%) remained stable over 24 h 

(Figure 2a-c, blue and black traces), while PVAc80% and PS50 aggregated immediately upon 

exposure to the model physiological fluid (Figure 2d-e, blue traces). At 10 min, the aggregate 

size was two and six-fold the original particle size for the PVAc80% and PS50 systems 

respectively, (Figure 2d-e, black traces). By 24 h the aggregates were too large to measure by 

dynamic light scattering. These observations provide indirect confirmation of the HIC results, as 

the aggregation of neutral nanoparticles in electrolyte solutions is driven primarily by 

hydrophobic interactions [45]. 
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3.2 Impact of high surface hydrophobicity nanoparticles on acute respiratory toxicity 

 

Inflammation was measured as neutrophil influx (Figure 3a), hypercellularity (Figure 

3b) and cytokine levels (Figures 4a-d) in BAL samples 24h post-exposure to the different 

nanoformulations. Elevated BAL protein levels were considered indicative of tissue damage 

and were also measured 24 h nanoparticle post-exposure (Figure 4e). Low hydrophobicity 

nanoparticle systems (HIC index values < 0.7) showed no evidence of inflammation compared 

to PVAc80% and PS50 (HIC > 0.8), which both induced an acute dose-dependent 

inflammatory reaction evidenced through an increase in BAL neutrophils, inflammatory 

cytokines and, to a lesser extent, total cells counts. The high dose of LNC150 and the low 

dose of PVAc60% nanoparticles showed mild evidence of tissue damage; however no further 

trends were observed in the low hydrophobicity nanoparticle group. In contrast, PVAc80% 

and PS 50 nanoparticle exposure induced a significant dose-dependent increase in BAL 

protein content, indicative of acute tissue damage. 

As reported by others  [18, 19,  41], particle size did not appear to influence respiratory 

toxicity; i.e. the smaller PS50 and LNC50 systems produced findings aligned with particles of 

similar hydrophobicity rather than size (Figures 3 and 4). The level of PS50 induced 

inflammation corresponded with that reported in the literature reports for PS beads of similar 

size and surface area dose  [19,  22] (taking into consideration that the total numbers of cells in 

a mouse lung are roughly one magnitude of order lower than that observed in the rat lung [46]). 

At the low surface area dose (22 cm
2
), PVAc80% was the only nanomaterial on the panel to 

elicit an inflammatory response in the form of significantly elevated IL-1β, IL-6 and TNF-α 

levels (Figure 4a-d). At the high surface area dose (220 cm
2
) PVAc80% nanoparticles elicited 

significant release of CXCL1, IL-1β, IL-6 and TNF-α, with PS50 nanoparticles producing 

statistically equivalent responses in all cytokines apart from TNF-α. 

Total protein levels in BAL can be used as a marker of tissue damage [22]. A significant 

dose-dependent increase in BAL protein levels was observed following treatment with 

hydrophobic nanomaterials, PVAc80% and PS50 (Figure 4e). LNC150 treatment at the higher 

dose was also associated with significantly elevated protein levels, indicating potential tissue 

damage or irritation following exposure to these systems. However, a clear mechanism for this 

observation is not obvious from the current data set. For example, if the elevated BAL protein 

levels resulted from a higher exposure level to LNC components, such as the stabilizing 

surfactant, Solutol
®

 HS15, it would be expected that the high dose LNC50 treatment groups 

would show a similar effect, which was not the case. Therefore, this observation requires 

further investigation. 

Lung tissue histopathology, a major component of nonclinical safety studies for inhaled 

pharmaceuticals, was performed in a blinded analysis by an independent pathologist to assess 

toxicity in response to nanoparticle exposure. Histopathology findings (Figure 5) were broadly 

concordant with the results of the BAL analysis (Figures 3 and 4). Animals treated with high 

surface hydrophobicity nanomaterials (Figure 5e-g) showed an elevated incidence of adverse 

effects, with PVAc80% treatment eliciting a more profound response compared to PS50 

according to the pathology report (Figure 5g). Notable findings in response to PVAc60%, 
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PVAc80% and PS50 nanoparticles included evidence of mild perivascular oedema and 

bronchiolar epithelial vacuolation in response to nanoparticle exposure (Figure 5g). Both LNC 

formulations were associated with a lower frequency and severity histopathology findings 

(Figure 5b,c, g), although the high dose LNC150 treatment was associated with reports of acute 

bronchopneumonia in three out of five animals. This observation may be related to the 

significant increase in BAL protein levels observed in this treatment group, although as stated 

previously further studies are required to understand the underlying mechanism. Increased 

numbers of alveolar luminal macrophages were observed after administration of all 

nanoparticle types, although not to levels greater than the vehicle controls (vehicle control 

images provided in Figure S1, Supporting Information). The cause of this elevation in luminal 

macrophage numbers is not currently understood, although qualitative assessment of histology 

data from animals treated with 5% m/v dextrose and 0.9% saline vehicles indicate that the 

dextrose vehicle may be slightly more irritating to the lung (e.g. causing mild bronchial 

epithelial hyperplasia, mild thickening of the alveolar walls and mild increases in alveolar 

macrophage numbers). This hypothesis is currently under investigation in greater detail. It 

should be noted that the dextrose vehicle was necessary in this study to avoid aggregation of 

high hydrophobicity nanomaterials prior to administration. 

 

3.3  Macrophage responses to polymeric nanoparticles. 

Analysis of the BAL macrophage population revealed two distinct morphological 

phenotypes following treatment with polymeric nanoparticles. Firstly, a minority population of 

enlarged macrophages with a finely vacuolated cytoplasm was observed, the frequency of which 

was dose-dependent in the PVAc80% and PS 50 treatment groups (Figure 6a,b). The second 

phenotype consisted of macrophages with a coarsely vacuolated cytoplasm (Figure 6a). This 

phenotype was observed most frequently following treatment with PVAc60% > PVAc80% > PS 

50 (Figure 6c). 

Preliminary in vitro studies performed with PVAc60% and PVAc80% nanoparticles 

indicated that PVAc60% treatment induced the same coarsely vacuolated phenotype in the J774 

cell murine macrophage line (Figure 7c-e) and that this response was dose-dependent. In 

contrast, PVAc80% exposure to J774 cells did not induce the coarsely vacuolated phenotype 

under the conditions tested (Figure 7f-h); however the PVAc80% nanoparticles were observed 

to aggregate substantially in cell culture medium, thus perhaps altering their presentation to 

cells under in vitro conditions. It may be speculated that PVAc60% nanoparticle-related effects 

occur in response to internalized and processed nanomaterials, while PVAc80% effects may be 

driven either by small amounts of internalized particles or by responses to external nanoparticle 

agglomerates. A significant increase in the frequency of apoptotic cells in the total cell 

population was observed at the highest dose tested (10mg/mL) for both PVAc60% and 

PVAc80%, whereby PVAc80% exposure led to a significantly higher prevalence of apoptotic 

cells compared to PVAc60% (p=0.03). The MTT assay and MitoView™688 staining indicated 

that there was no dose-dependent reduction in mitochondrial activity for either nanoparticle 

type, even at the highest concentrations tested (supplementary data, Figure S2). 

 

4. Discussion 
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The nanomaterials investigated in this study were carefully chosen to exhibit a spectrum 

of hydrophobicity values across a range of different material classes. The LNCs were ideal 

representatives of nanomaterials with relatively hydrophilic surfaces because they are highly 

stable colloids under physiological conditions and there is little evidence that the pegylated 

surface is displaced or altered substantially by the presence of biomolecules in physiological 

fluids [47]. The PVAc nanomaterials are equally useful with respect to studying nanoparticle 

hydrophobicity, as the core PVAc polymer can be easily modified via controlled hydrolysis 

generate polymeric NP with a range of hydrophobicity values. Therefore, even if the PVA 

stabilizer is displaced from the particle surface over the duration of the experiment, the 

substantial differences in the hydrophobicity values of the core polymers will ensure that the 

effects of hydrophobicity can still be examined in a valid manner. The observations that the 

more hydrophilic PVAC60% nanoconstructs showed a greater similarity to the pegylated LNC 

in terms of colloidal stability and inflammatory profile provide supporting evidence for validity 

of this approach. 

 

It was hypothesized that increases in nanoparticle surface hydrophobicity would correlate 

with a higher frequency and severity of adverse pulmonary effects, such as acute inflammation and 

tissue damage. This hypothesis was based on reports that show high material hydrophobicity to be 

implicated in the inflammatory foreign body response to implantable medical devices  [48-50] as 

well as studies which demonstrate that hydrophobicity is generally recognized by the immune 

system as a damage-associated molecular pattern  [51,  52]. In order to systematically assess the 

impact of nanoparticle surface hydrophobicity on pulmonary biocompatibility, a versatile and 

accessible quantitative method for surface hydrophobicity analysis was required. The HIC method  

[29] provided the combined advantages of sensitivity, robustness, versatility and accessibility for 

routine evaluation of nanoparticle surface hydrophobicity. To improve the discriminatory power of 

the original HIC assay, nanoparticle systems were eluted through three different HIC columns with 

varying column chemistries and Equation 2 was developed to calculate the HIC index values 

reported here. This approach is simple, sensitive and can be applied to biomaterials of very 

different compositions. 

 

Administration of the five nanoparticle systems at two doses revealed that the two 

nanomaterials with the highest HIC index values (> 0.8) induced significant, dose-dependent 

inflammatory responses and tissue damage, while nanoparticles with lower HIC index values 

(~0.5-0.7) were not inflammatory under the conditions tested. The relationship between 

surface hydrophobicity and respiratory toxicity was not a linear correlation. For example, plots 

(not shown) of the HIC index value vs. number of neutrophils in BAL reveal low coefficient 

of determination values: R
2
=0.1455 at the 22 cm

2
 dose and R

2
=0.2901 at the 220 cm

2
 dose. 

Instead, significant inflammation and tissue damage occurred only in high hydrophobicity 

nanoparticle treatment groups (Figures 3-5). 

 

The relationship between hydrophobicity and toxicity is multifactorial. It is well known 

that proteins and opsonins may absorb more favorably onto a hydrophobic surface, promoting 

recognition by phagocytic cells and differences in intracellular processing  [53, 54]. In the lung, 

this role may be filled by surfactant-associated proteins (SP), in particular SP-A, which has been 
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implicated in recognition and uptake of nanoparticles by alveolar macrophages  [53,  55]. In 

addition, colloidal instability and particle aggregation in the lung lining fluid may be highly 

influential in promoting an inflammatory response or tissue damage. For example, studies have 

shown that biopolymer particles larger than 500 nm exhibit preferential uptake by phagocytic 

cells and elicit a stronger inflammatory response compared to nanoparticles < 500 nm [56]. 

Furthermore, it would appear that the clustering of nanoparticles during aggregation creates a 

new entity with an irregular surface that may present a higher pro-inflammatory potential than 

comparable smooth-surface particles [57]. The in situ formation of nanoaggregate structures in 

lung lining may occur for high surface hydrophobicity particles and it therefore follows that the 

morphology and stability of such constructs might explain, either entirely or in part, the toxicity 

profiles observed for PVAc80% and PS50 particles. Finally, it should be noted that the role of 

mechanical properties, such as particle rigidity / elasticity, has yet to be explored systematically 

in relation to nanoparticle biocompatibility. Banquay et al  [58] have shown that polyacrylamide 

hydrogel nanoparticles with increasing rigidity achieved through increasing crosslinker density 

were internalized by macrophage cells in greater amounts compared to low rigidity 

nanoparticles of the same material. Further, the mechanism of internalization was different, with 

high rigidity nanoparticles being taken up through clathrin-mediated endocytosis, whereas low 

rigidity materials were primarily taken up passively through macropinocytosis. It is possible that 

the low hydrophobicity nanomaterials included in this study (e.g. LNC50, LNC150 and 

PVAc60%) also have a lower rigidity, which might, in addition to the low hydrophobicity, 

contribute to their enhancedbiocompatibility profile. Therefore, this parameter requires further 

study. 

 

The macrophage responses (i.e. elevated numbers of finely and coarsely vacuolated 

macrophages) to polymeric nanoparticles did not appear to be linked to HIC index or pro-

inflammatory potential. Our preliminary investigations with the J774 cell line indicate that the 

finely vacuolated phenotype may be associated with apoptosis, since J774 cells with this 

appearance also showed caspase 3/7 activity (Figure 7). The coarsely vacuolated macrophage 

phenotype has been previously reported following exposure to a wide range of materials, 

including high molecular weight polymers such as polyethylene glycols [59], poorly soluble 

pharmaceuticals [60], insoluble nanomaterials such as carbon nanotubes, gold, zinc oxide, 

titanium dioxide, fullerenes, quantum dots and silica  [61, 62], and biomaterial nanoparticles 

such as non-inflammatory solid lipid nanoparticles  [21,  63]. It may be indicative of autophagy, 

a process which has been increasingly associated with nanoparticle exposure  [61, 64]. 

Autophagy can be triggered by nanoparticle-induced dysfunction or dysregulation of endo-

lysosomal pathways, resulting in the formation of large, double-membrane autophagic 

vacuoles containing cellular debris, such as engulfed material and internal organelles. 

Evidence suggests that autophagy may not necessarily be a direct pathway leading to cell 

death, but rather constitutes an adaptive response to stress [65], although the impact of 

autophagy on long term respiratory health remains to be investigated. 

 

5. Conclusions 

 

Five nanoparticle systems representative of inhaled drug delivery nanoparticles (LNC), 
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consumer products (PVAc), and experimental model particles (PVAc and PS) were used to 

explore whether particle surface hydrophobicity could be quantified and correlated with acute 

respiratory toxicity after pulmonary administration. The results demonstrated that HIC analysis 

is a versatile, simple quantitative technique that is suitable for routine profiling of nanoparticle 

surface hydrophobicity. Further, the HIC index provides a scale to facilitate comparison of 

nanoparticles spanning different material classes, making it useful for quantitative-structure-

activity relationships in biocompatibility studies. 

 

It was demonstrated that high hydrophobicity nanomaterials (HIC index >0.8) induced 

significant acute respiratory toxicity following a single-dose administration, while 

nanoparticles with low/intermediate hydrophobicity (HIC index <0.7) elicited little to no 

inflammatory response or tissue damage. Indeed, the most hydrophilic nanomaterial in this 

study, LNC50, demonstrated a high biocompatibility making this a promising nanoformulation 

to take forward into nonclinical safety studies. In conclusion, the HIC index value offers a 

versatile and accessible method for the quantification of nanoparticle surface hydrophobicity, 

which may be useful in the design of safe nanomedicines for inhalation therapy. 
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Table 1. Nanoparticle dose metrics for in vivo studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Physicochemical properties of the five nanoparticles used in this study following 

manufacture. Values listed represent the mean ± standard deviation of n=3 individual 

batches. 

 

 

 

 

 

 

 

 

 

 

 

 

Nanoparticle type 
Surface area dose  

(cm2 per lung) 

Mass dose 

(µg per lung) 

Suspension 
concentration 

(mg mL-1) 

50-nm particles 

(LNC50, PS50) 

22 ~20 ~0.8 

220 ~200 ~8 

150-nm particles 

(LNC150, 
PVAc60%/80%) 

22 ~50 ~2 

220 ~500 ~20 

Nanoparticle type 
Hydrodynamic 

diameter in water 
(nm) 

PDI 

Zeta potential 
in 6.3 mM NaCl 

 (mV) 

Residual stabilizer 
following 

purification  

(mg mL-1) 

LNC50 43 ± 3 0.10 ± 0.03 -7 ± 4 < 0.5 

LNC150 144 ± 3 0.15 ± 0.03 -4 ± 1 < 0.5 

PVAc60% 160 ± 8 0.09 ± 0.03 -3 ± 0 < 0.4 

PVAc80% 172 ± 11 0.15 ± 0.03 -4 ± 1 < 0.4 

PS50 54 ± 3 0.05 ± 0.03 -25 ± 6 Undisclosed 
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Figure captions 

 

Figure 1. HIC index values of the five nanoparticle systems. (a) The retention values (%) 

for each nanoparticle system following elution through butyl-, phenyl- and octyl-modified 

HIC columns are depicted. Values listed represent the mean ± standard deviation of n=3 

individual nanoparticle batches. (b) Calculated HIC index values for three replicate batches 

of each nanoparticle system. (*) p <0.05. 

 

Figure 2. Colloidal stability of the five nanoparticle systems. Representative particle size 

distribution curves of the three low hydrophobicity nanoparticle systems (HIC index <0.7; a-

c) and high hydrophobicity systems (HIC index >0.8; d,e). Particles sizes were measured 

after particle manufacture in water at 25°C (red traces; a-e) and after aerosolization of a 5% 

m/v dextrose suspension into an excess of water at 25°C (green traces; a-e). To model 

nanoparticle stability in physiological fluids, particle sizes were measured after 

aerosolization of a 5% m/v dextrose suspension into an excess of FBS-supplemented HBSS at 

37°C at t= 0 h (blue traces; a-e), t=24h (black traces; a-c) or t=10 min (black traces; d,e). 

All distribution curves are representative of at least n=3 different nanoparticle batches. 

 

Figure 3. Neutrophil influx and hypercellularity in the BAL cellular fraction following 

exposure to nanomaterials with increasing surface hydrophobicity. Neutrophil count (a) 

and total cell count (b) in BAL 24 h post-administration of vehicle control, 22 or 220 

cm
2
surface area dose of nanoparticles to mice. Values represent the mean ± standard 

deviation of n=5-12 animals per group. (*) p <0.05, (**) p < 0.01, (***) p<0.001. 

 

Figure 4. Pro-inflammatory cytokines and total protein content in BAL following exposure 

to nanomaterials with increasing surface hydrophobicity. BAL levels of CXCL1(a), IL-1β 

(b), 

 

IL-6 (c), TNF-α (d) and total protein content (e) in BAL 24 h post-administration of vehicle 

control, 22 or 220 cm
2
surface area dose of nanoparticles to mice. Values represent the 

mean 

± standard deviation of n=5-12 animals per group. (*) p <0.05, (**) p < 0.01, (***) p<0.001. 

 

Figure 5. Histopathology of lung tissue exposed to nanomaterials with increasing surface 

hydrophobicity. Representative images of a naïve lung (a) compared with lung tissue harvested 

from mice 24 h after LNC50 (b), LNC150 (c), PVAc60% (d), PVAc80% (e) or PS50(f) treatment 

at a nanoparticle surface area dose of 220 cm
2
 (20x magnification; scale bars =100 μm). (g) 

Evaluation of the frequency of pulmonary adverse events and severity scores (scale: 0-5) 

based on a blind assessment of lung histopathology by an independent pathologist, n=5 

animals for each nanoparticle type administered. 
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Figure 6. Macrophage responses following exposure to nanomaterials with increasing 

surface hydrophobicity. (a) Representative images (40x magnification) showing 

macrophages from untreated animals (left image), enlarged macrophages with a finely 

vacuolated cytoplasm (center image; taken from an animal in the PVAc80% treatment group) 

and macrophages with a coarsely vacuolated cytoplasm (right image; taken from an animal 

in the PVAc60% treatment group). The prevalence of macrophages with finely vacuolated 

cytoplasm (b) and coarsely vacuolated cytoplasm (c), expressed as a percentage of the total 

macrophage population 24 h post-treatment with vehicle control, 22, and 220 cm
2
 of each 

nanomaterial. Columns represent the mean ± standard deviation from n=5-12 animals per 

group. (*) p <0.05, (**) p < 0.01, (***) p<0.001. 

 

Figure 7. J774 macrophage morphology and frequency of apoptosis in response to PVAc 

60% and PVAc80% nanoparticle exposure. Light transmission and confocal laser scanning 

micrographs of live J774 cells 24 h post-treatment with (a) cell culture medium (negative 

control), (b) 0.4 mg mL
-1

 PVA (PVAc nanoparticle vehicle control) or 0.5-10 mg/mL PVAc60% 

(c-e) and PVAc80% (f-h) nanoparticles. Green fluorescence depicts the presence of caspase 3/7 

activity (apoptosis), while the corresponding light transmission images highlight dose-dependent 

vacuolization in response to PVAc60% exposure (b-d). A semi-quantitative image analysis of the 

frequency of apoptotic cells (caspase 3/7 positive cells, % of total population) was calculated 

from analysis of three independent images per samples (i). (*) p <0.05, (**) p < 0.01, (***) 

p<0.001. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 7 


