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Abstract  

Background. New therapeutic approaches to improve cardiac contractility without severe 

risk would improve the management of acute heart failure. Increasing systolic sodium influx 

can increase cardiac contractility, but most sodium channel activators have proarrhythmic 

effects that limit their clinical use. Here, we report the cardiac effects of a novel positive 

inotropic peptide isolated from the toxin of the Black Judean scorpion that activates 

“neuronal” TTX-sensitive sodium channels. 

Methods and results. All venoms and peptides were isolated from Black Judean 

Scorpions (Buthotus Hottentotta) caught in the Judean Desert. The full scorpion venom 

increased left ventricular function in sedated mice in vivo, prolonged ventricular 

repolarization, and provoked ventricular arrhythmias. An inotropic peptide (BjIP) isolated 

from the full venom by chromatography increased cardiac contractility, but did neither 

provoke ventricular arrhythmias nor prolong cardiac repolarization. BjIP increased 

intracellular calcium in ventricular cardiomyocytes, and prolonged inactivation of the 

cardiac sodium current. Low concentrations of tetrodotoxin (200nM) abolished the effect of 

BjIP on calcium transients and sodium current. BjIP did not alter the function of Nav1.5, but 

selectively activated the brain-type sodium channels Nav1.6 or Nav1.3 in cellular 

electrophysiological recordings obtained from rodent thalamic slices. Nav1.3 (SCN3A) mRNA 

was detected in human and mouse heart tissue. 

Conclusion. Our pilot experiments suggest that selective activation of TTX-sensitive 

neuronal sodium channels can safely increase cardiac contractility. As such, the peptide 

described here may become a lead compound for a new class of positive inotropic agents.  

Key words. acute heart failure, sodium channel, inotropic agents, arrhythmia, 

pharmacotherapy
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Introduction  

Heart failure kills in equal proportions either by a critical loss of contractile cardiac function 

or by sudden  due to ventricular arrhythmias 1-3. Currently available inotropic agents 

(sympathomimetic agents, calcium sensitizers, or phosphodiesterase inhibitors) improve 

hemodynamic function at the price of potentially fatal proarrhythmic side effects and/or the 

deleterious consequences of chronic β-adrenoreceptor stimulation. Hence, inotropic therapy 

is confined to patients with severe, acutely decompensated heart failure treated on intensive 

care units 1, 2. An inotropic therapy without these side effects would clearly be desirable in 

the management of acute heart failure. 

 

Cardiac contraction is initiated by calcium release from the sarcoplasmic reticulum in 

cardiomyocytes. The trigger for calcium influx into the cell is an influx of sodium into the 

cardiomyocyte initiated through opening of voltage-gated sodium channels. Thereafter, 

opening of voltage-gated calcium channels, exchange of sodium and calcium via the sodium-

calcium exchanger, and calcium-activated calcium release from the sarcoplasmic reticulum 

accentuate this initial stimulus. Voltage-gated sodium channels, an evolutionary well-

preserved group of sarcolemmal transmembrane proteins, regulate voltage-dependent 

sodium influx and electrical excitability in neuronal and cardiac tissue 4. Activators of 

cardiac sodium channels are known to exert positive inotropic effects, but also cause 

arrhythmias 5. Cardiac sodium channels can be divided into TTX resistant (µM range) and 

TTX-sensitive (nM range) channel subtypes 4. The main isoform of the TTX-resistant sodium 

channels Nav1.5 is expressed predominantly in cardiomyocytes 4. Selective increase in the 

opening kinetics of Nav1.5 causes atrial fibrillation and heart failure 6, 7, and genetic variants 

in the Nav1.5 channel are associated with defibrillator shocks in heart failure patients 8. This 

may explain why activators of Nav1.5 are not used in patients with heart failure, despite their 
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positive inotropic effects 9. TTX-sensitive sodium channels, in contrast, are mainly expressed 

in mammalian brain and in skeletal muscle 4, 10, but also in T-tubules of cardiomyocytes close 

to calcium-releasing organelles 10, 11. Selective activation of TTX-sensitive sodium channels 

could hence provide a leverage to improve cardiac contraction without interfering with the 

electrophysiological function of cardiomyocytes. This has, however, never been formally 

tested. Here, we report about a peptide isolated from the venom of the Black Judean 

Scorpion, BjIP, which confers positive inotropy without proarrhythmic effects. This 

beneficial combination of effects appears to be mediated by selective activation of neuronal 

TTX-sensitive sodium channels (most likely Nav1.3 and/or Nav1.6). 

   

Methods 

All methods are explained in detail in the on-line supplement.  

 

Venom harvesting and isolation of the inotropic peptide BjIP. The full venom was 

harvested from Hottentotta judaicus scorpions. All venom and peptide fractions were 

harvested and prepared in Israel, and shipped to Muenster for functional and molecular 

analyses. 

 

Molecular characterization of BjIP. The inotropic peptide was characterized by Matrix-

Assisted Laser-Desorption Ionization-Time-Of-Flight Mass Spectrometry (MALDI-TOF MS). 

The N-terminal amino acid sequence (33 amino acids) was determined using Edman 

degradation. Total RNA isolated from the Black scorpion's venom gland was used for cDNA 

synthesis by the aid of SMART approach (Clontech, Park Tamar, Israel).  
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Real time quantitative PCR (qPCR) of Na+ channels in heart tissue. Total RNA was 

prepared from freshly dissected tissue by extraction with Trizol® reagent (RNeasy Lipid 

Tissue, Qiagen, Düsseldorf, Germany). Further details in supplemental methods. 

 

Dose selection for the full venom and the inotropic peptide. The limited access to 

BjIP required careful dose selection throughout the project. Preliminary experiments 

showed a positive inotropic effect of the full venom at 4µg/ml. Considering the expected 

weight contribution of BjIP to the protein content of the full venom (10%), we chose the 

concentrations given below for the initial functional assessment of the full venom and of BjIP 

(Table). Following the trabecular experiments demonstrating a positive inotropic effect of 

the BjIP at 1/10 of the initial concentration of BjIP, we reduced the concentration of BjIP for 

further cellular mechanistic experiments. 

 

Murine echocardiography. Cardiac function was measured during anesthesia on 

HP5500 and Vevo770 ultrasound microscopy systems (Visualsonics, Canada, 50-70 MHz 

transducers) in adult three months old CD-1 wild type mice 12. In brief, sedated animals were 

studied while spontaneously breathing. After establishing a stable physiological situation, 

left ventricular function was assessed in real-time by M mode echocardiography at baseline 

and after intraperitoneal injection of the full venom (40µg) or the inotropic peptide (BjIP, 

2µg). Cardiac contraction was monitored for 20 minutes after injection.  

 

Electrophysiological measurements in the isolated heart. Hearts of three months 

old wild type mice were isolated and retrogradely perfused (oxygenated modified Krebs-
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Henseleit solution, 37°C temperature, pH 7.4) on a modified Langendorff apparatus. 

Monophasic action potentials were recorded from the right and left ventricles of beating 

hearts 12, 13. The atrioventricular node was ablated to generate ventricular bradycardia. After 

a stabilization period of 10 minutes, spontaneous rhythm was observed, and ventricular 

pacing was performed at fix rates to assess ventricular action potential durations. The 

protocol was repeated after adding BjV or BjIP to the perfusate (Table). 

 

Recording of sodium current (INa) in murine cardiomyocytes. Ventricular 

cardiomyocytes were isolated and prepared for patch clamp experiments as described 14. 

Cells were exposed to BjIP (4 µg/ml) and TTX (200 nM) by a gravity driven fast application 

system (Warner, Holliston, USA). The inactivation time constant τ was derived from single 

exponential fits to the INa decay phase (Fitmaster, HEKA, Lambrecht, Germany). The total 

sodium influx was estimated by INa integration as the area under curve.  

 

Cardiomyocytes shortening and calcium transient measurements. Cell shortening 

was measured in electrically driven (0.5 Hz) mouse ventricular cardiomyocytes. Cells were 

isolated and mounted in tissue chambers, containing a modified Tyrode’s solution, for 

recording of cell shortening 15.  After a preequilibration period of 30 min, BjIP solution (0.4 

µg/ml) was superfused to the cardiomyocytes for 5 min. As a control, 200 nM TTX was 

applied, followed by BjIP. Cell shortening, time to peak tension, and relaxation time (90%) 

were continuously monitored during the measurement. For calcium transient measurements, 

indo1 fluorescence ratio (Ca2+) and cell shortening (Crescent Electronic Video Edge Motion 

Detector) were recorded simultaneously from isolated murine cardiomyocytes at room 

temperature during field stimulation at 0.5 Hz 16.  



BjIP activates TTX-sensitive Na currents CIRCHF/2013/001066 R2 page 7 

 

Single-cell electrophysiology in acute living brain slices. Brains were removed from 

decapitated rats and placed in an ice-cold, oxygenated solution. Acute living brain slices 

(280 µm thickness) containing the dorsal part of the lateral geniculate nucleus of the 

thalamus (dLGN) were cut on a vibratome (Leica VT1200, Wetzlar, Germany) and kept 

submerged in solution, and recording pipettes inserted into neuronal cells. Slices were 

continuously superfused with a bath solution. After establishment of the whole cell 

configuration, cells were superfused with a low Na+-solution. Signals were amplified (EPC-

10, HEKA) and digitally analyzed using Pulse. µ-Conotoxin PIIIA (µCtx, Alomone, 

Jerusalem, Israel), ProTX-II (ProTX, Alomone) which selectively inhibit distinct isoforms of 

voltage-dependent Na+ channels, or TTX (Tocris, Bristol, UK) were added directly into the 

bath. Recordings were obtained at baseline and during BjIP superfusion in identical cells. 

 

All functional experiments were approved by the Bezirksregierung in Münster, Germany, 

and conformed to the local and international regulation for experiments in animals.  

 

Statistical analysis. We compared categorical data using Fishers exact test. Numerical 

data were compared by two sided paired t tests (e.g. measurements before and after 

perfusion of BjIP or BJCV), Wilcoxon signed-rank tests. For multiple measurements data 

were analyzed by repeated measures analysis of variance followed by a multiple comparison 

procedure (Bonferroni t-test) if the overall test was significant. For thalamic recordings a 

one-sided (expected increase for BjIP; expected decrease for commercial blockers) test was 

used. Data were considered significantly different at p values <0.05. When data are 

displayed as boxplots, boxes and box limits indicate the data range mean, and standard 
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error. Whiskers indicate the minimum and maximum of the respective data. Individual 

measurements are shown in the boxplots as points. 

  

Results  

BjIP has inotropic effects without prolonging cardiac repolarization or 

provoking arrhythmias. The complete venom of Hottentotta judaicus (BjV), when 

injected intra-peritoneally into anesthetized albino CD1 mice (0.7-1.0 mg/mouse n=5) did 

neither kill nor affect locomotion. BjV (0.2 mg/mouse i.p.) increased ventricular contractility 

by 20-25% and caused ventricular arrhythmias (Fig1 a,b). When perfused in isolated, beating 

mouse hearts, BjV provoked ventricular arrhythmias and prolonged the ventricular action 

potential (Fig 1c-f). Reversed-phase HPLC chromatography identified an inotropic peptide. 

Intraperitoneal application of 20 µg BjIP increased contraction of the murine heart in vivo to 

a similar extent as the full venom (Fig 1a,b). In contrast to the full venom, BjIP did neither 

provoke ventricular arrhythmias when administered intraperitoneally in vivo (Figure 1a) nor 

during perfusion in the isolated heart (Fig 1c,d). Furthermore, BjIP did not prolong action 

potential duration in the isolated, beating heart (4 µg /ml BjIP, Fig 1e-g).  

 

The primary sequence and predicted tertiary structure of BjIP closely resemble 

scorpion venom long chain neurotoxins affecting the voltage-gated sodium 

channels. BjIP was sequenced and its tertiary structure modeled (Fig 2): The full sequence 

includes 63 amino acids of mature polypeptide, 19 amino acids of the signal peptide (red 

underline), 111 base pairs of untranslated nucleotides, and a polyadenylation site (black 

underline) – followed by 30 base pairs of poly A. Based on the molecular mass of the 

peptide, the last two amino acids of the mature peptide are cleaved (blue underline in Fig 
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2b). The modeled structure of BjIP resembles that of β-type insect toxins (Fig 2c,d), 

consistent with the transient contraction of Sarcophaga falculata blowfly larvae upon 

exposure to 20-50 ng BjIP /100 mg body weight (ED50 for flaccid paralysis 30-40ng/100mg 

body).  

 

The positive inotropic effects of BjIP are TTX-sensitive. BjIP superfusion enhanced 

contractility in right ventricular mouse trabecles (Fig. 3a) and increased contractility and 

intracellular calcium transients in paced mouse ventricular cardiomyocytes (Fig 3b-e). 

Furthermore, BjIP delayed inactivation of the cardiac sodium current without affecting peak 

current amplitude (Fig 3f-i). Nanomolar concentrations of TTX antagonized the effect of 

BjIP on contractility (Fig 3a), calcium transients (Fig 3d,e), and INa (Fig 3f-i).  

 

BjIP activates neuronal sodium channels. Fast inward currents in thalamocortical 

neurons17 indicated a sufficient voltage control and space clamp to assess Na currents (Fig. 

4a). Current amplitudes increased by application of BjIP (0.44 µg/ml; +16.1±8.4 %, n=7; Fig. 

4a,c). The inactivation time constant of INa was best fitted by a single exponential function at 

room temperature (Fig. 4b, e.g. τ = 4.9±0.8 ms  for the step to -30 mV, n=7). No changes in 

current decay were detected in the presence of BjIP τ = 5.0±0.5 ms (n=7; Fig. 4b). µCtx 18 

reduced INa by -19.4±3.9 % (n=4; Fig. 4f). In the presence of µCtx, BjIP increased INa 

amplitudes by 13.2±6.0 % compared to control (n=4; Fig. 4f). ProTx (0.5 µM 19) reduced INa 

amplitudes by -27.5±6.6 % (n=5; Fig. 4d, g). In the presence of ProTx, BjIP had no effect on 

current amplitudes (n=5; Fig. 4d, g). Additional application of TTX (1 µM) nearly completely 

inhibited INa in TC neurons (Fig. 4d). 
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Expression of TTX-sensitive Na channel genes in murine brain and heart and in 

human heart tissue. From the ten known NaV1 channel genes, mRNA of SCN1A (NaV1.1), 

SCN2A (NaV1.2), SCN3A (NaV1.3), SCN8A (NaV1.6), SCN11A (NaV1.9) and SCN7A (NaX) was 

detected in thalamic tissue (Fig. 4h). mRNA of the other Na+ channels were below detection 

limit in thalamus.   qPCR was used for heart tissue. Relevant expression of SCN3A mRNA, 

but not of SCN8A mRNA was detected in human and murine ventricular tissue, and slightly 

higher SCN3A mRNA levels were found in specialized conduction tissue (Purkinje fibers and 

AV node, Fig. 5). These findings together with the subtype specificity of µCtx and ProTx 

make NaV1.3 channels the most likely candidates for positive modulation by BjIP. 
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Discussion  

Main findings. Within the limitations of studying a biological toxin that had to be 

harvested and purified for each experiment, our findings suggest that selective activation of 

“neuronal”, TTX-sensitive sodium channels in the heart (most likely Nav1.3 channels) by a 

peptide isolated from the venom of Buthotus Hottentotta may be a novel therapeutic 

principle to increase cardiac contractility without proarrhythmic side effects. Further 

experiments are needed to validate our encouraging preliminary findings. 

 

Currently available positive inotropic agents modulate unspecific kinases in cardiomyocytes, 

such as protein kinase C, but also calcineurin or calcium-dependent calmodulin kinase II 

(CaMKII) 20, 21. These kinases increase cAMP levels in the myocardium and thereby increase 

calcium release from the sarcoplasmic reticulum, but also alter the function of the main 

cardiac sodium channel Nav1.5 by phosphorylation 21, and thereby increase cardiac 

contractility. Activators of the main cardiac sodium channel Nav1.5 increase contractility 5, 22. 

Activation of Nav1.5, however, also prolongs repolarization 5, 22 and provokes ventricular 

arrhythmias 23.  

 

TTX-sensitive sodium channels contribute to sodium influx and increased contractility in the 

heart: Approximately 25% of mammalian cardiac sodium channels are TTX-sensitive, and 

preferentially localized close to the T tubules 11.  Our own qPCR measurements confirm that 

SCN3A/Nav1.3 mRNA is present in human and mouse ventricular tissue (Figure 5), while 

SCN8a/Nav1.6 mRNA is not found in the heart, consistent with a recent report in rats 

(Figure 6 in 24). Insect toxins can have inotropic effects in large mammals 25, and nanomolar 

concentrations of TTX exert a negative inotropic effect (-20%) in beating guinea-pig hearts 
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10. It is noteworthy that a similar phenomenon, although less noticeable, can be seen in Fig. 

3d,e, where TTX (200 nM) reduces contractility slightly below control values.  

 

Similar to the Nav1.5 activators and to apelin 26, the full venom of the Hottentotta judaicus 

has inotropic effects, but also prolongs the ventricular action potential and provokes 

ventricular arrhythmias (Figure 1). BjIP, in contrast, increased contractility in vivo and in 

cardiomyocytes without proarrhythmic effects (Figure 1). Furthermore, the effect of BjIP was 

reversed by TTX (Figure 3), suggesting an action on TTX-sensitive cardiac sodium channels, 

i.e. Nav1.1, Nav1.2, Nav1.3, Nav1.4 , Nav1.6 or Nav1.7 4, 27, or alternatively spliced Nav1.5 sodium 

channels 28. Although we could not measure full I-V-relations due to limited amounts of 

BjIP, we have sufficient data so show that BjIP delays INa inactivation without altering INa 

amplitude. Our electrophysiological experiments in thalamic slices suggest that BjIP 

activates Nav1.3 and/or Nav1.6 (Fig. 4). Consistent with published reports 4, 11, 27, 29-31, we find 

expression of Nav1.3 channel mRNA in ventricular myocardium. Thus, it seems likely that the 

inotropic effect of BjIP is mediated by activation of Nav1.3, possibly initiating a localized 

increase in sodium close in the T tubules of cardiomyocytes 11 close to the sarcoplasmic 

reticulum, where even a small sodium influx can increase local calcium concentrations and 

facilitate calcium release from the sarcoplasmic reticulum 32. A similar alteration in local 

calcium homeostasis was proposed in multiple sclerosis where axonal injury is caused by 

increased Nav1.6 channels in demyelinated axons and alters sodium-calcium exchange 33. 

Alternatively, sodium influx close to the T tubules may synchronize excitation-contraction 

coupling, and thereby improve inotropy 10, 11. BjIP may also increase diastolic sodium load in 

the cell by providing additional substrate to the sodium-calcium exchanger through 

activation of Nav1.3 channels, as has been shown for the Nav1.5 opener veratridine 34. These 

possibilities deserve further experimental examination. Of note, Nav1.6 , but not Nav1.3 mRNA 
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expression is increased in response to pressure overload, rendering activation of Nav1.6 

channels relevant in hypertrophied and failing hearts 30. Thus, activation of Nav1.3 and/or 

Nav1.6 seems a promising new cardiac inotropic principle.  

 

Limitations. We performed the experiments over a period of several years using different 

preparations of the peptide, limited by the available amount of the purified peptide obtained 

from freely living scorpions collected in the Negev Desert. Our attempts to generate 

recombinant BjIP have so far not allowed us to obtain an adequately folded peptide in 

sufficient amounts 35. Clearly, recombinant BjIP would be desirable to perform experiments 

in large animal models and in failing hearts, and to provide unambiguous evidence that the 

observed effects were mediated by BjIP and not by contaminations. These limitations 

notwithstanding, our data suggest that selective activation of the neuronal, TTX-sensitive 

sodium channels, most likely including Nav1.3, is a promising target for the development of 

novel inotropic substances. 

 

Further research directions. Our observations invite further studies, e.g. examining the 

following issues: 1. Providing dose-response curves for the effect of BjIP on different Na 

channels; 2. Determining whether Nav1.3 is indeed the main molecular target mediating the 

effect of BjIP; 3. Investigating the effect of BjIP in failing hearts, where Na channel 

expression, calcium handling, metabolic state, and Na channel function may be altered; 4. 

Determining the effect of BjIP in ischemia-reperfusion models ; 5. Assessing whether BjIP 

may have a specific antiarrhythmic effect that could explain that cardiac APD and ventricular 

arrhythmias are not affected by BjIP.  
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Figure 1. BjIP increases cardiac contraction without affecting cardiac rhythm.  

a: Representative M mode echocardiographic tracings at baseline, after injection of the full 

venom of Buthotus Hottentotta (BjV, 200µg), and after injection of the inotropic peptide 

(BjIP, 20µg). White lines indicate left ventricular systolic and diastolic dimensions. The 

tracing after BjV injection shows ventricular arrhythmias. 

b: Mean fractional shortening at baseline and after injection of BjV (200µg, grey) and BjIP 

(20µg, black).  

c-f: Effects of BjV (20µg/ml) and BjIP (4µg/ml) on cardiac electrophysiology in the beating 

heart as assessed in contracting, Langendorff-perfused (37°C, modified Tyrode’ s solution) 

mouse hearts with simultaneous recording of right and left ventricular monophasic action 

potentials. Ventricular arrhythmias were assessed after AV nodal block.  

c: Example of a spontaneous polymorphic ventricular tachycardia during BjV perfusion.  

d: Number of hearts with (black bars) and without (white stacked bars) spontaneous 

arrhythmias at baseline, during BjV perfusion, and during BjIP perfusion.  

e: Representative monophasic action potential recordings at baseline (top), during perfusion 

with the full venom BjV (middle), and during perfusion with BjIP (bottom). BJV prolongs 

the ventricular action potential, BjIP does not.  

f: Mean action potential durations at 70% repolarization and 140 ms paced cycle length at 

baseline (left), during perfusion with the full venom BjV (middle, grey), and during perfusion 

with BjIP (right, black). BjV prolongs ventricular action potential duration. 

g: Mean action potential durations at baseline (dotted lines) and during BjIP perfusion 

(solid lines) at different repolarization levels (APD50, APD70, APD90) and different paced 

cycle lengths (80 – 140 ms, x axis) in isolated, beating mouse hearts (n=7 hearts, n=18-21 
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action potentials per mean data point). All values are given as mean and standard deviation.  

 

Figure 2: Isolation, sequence and modeled structure of BjIP. 

a: Fractionation of the BjV (75 mg) by reversed phase HPLC. Preparative column of RP-C18 

(Vydac, USA) equilibrated by DDW + 0.1% TFA and eluted by a linear gradient of 

acetonitrile + 0.1% TFA with a changed steepness (not shown). Fraction 21 contains BjIP. 

b: Amino acid sequence of BjIP (fraction 21) as deduced from the cDNA clone. Total RNA 

isolated from Black scorpion venom gland was analyzed by SMART (Clontech, USA). The full 

sequence contained 61 amino acids of mature polypeptide (predicted weight 6609 Dalton), 

19 amino acids of the signal peptide (red underline), 111 base pairs of untranslated 

nucleotide after the stop codon, and a polyadenylation site (black underline), followed by a 

long segment of 30 base pairs of poly A. Matrix-Assisted Laser-Desorption Ionization–Time-

Of-Flight (MALDI-TOFF) mass spectrometry of BjIP confirmed a 6609 Dalton component 

(duplicate measurement from two independent venom batches). 

c: Superimposition of BjIP and five β toxins of known 3D structure (pdb codes 1B7D, 1I6F, 

1I6G, 1NRA, 1NRB) on the Swiss-Model modeling server, displayed in color RMS PyMOL: 

Dark blue thinner lines represent strong homology, red thick lines diversity. 

d: Structure of BjIP (PyMOL). The reduced length of BjIPs alpha helix is due to the absence 

of two adjacent lysines.  
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Figure 3: BjIP increases cardiomyocyte contractility, increases intracellular calcium 

transient amplitude, and prolongs opening of TTX sensitive sodium channels  

a: BjIP increases force of contraction by 13% in mouse right ventricular muscle strips. 200 

nM TTX abolish the inotropic effect of BjIP. 

b: Representative simultaneous recording of calcium transients and cell shortening at 

baseline and during superfusion with BjIP (0.4 µg/ml). 

 c: Corresponding mean calcium transient amplitude and cell shortening (n=12/3). BjIP 

increases calcium transient and cell shortening amplitudes.  

d: Representative cell shortening at baseline, with BjIP, and with BjIP+ 200 nM TTX. 

e: Mean cell shortening is increased by BjIP. This effect is reversed by 200 nM TTX (n=7).  

f: Representative recordings of INa from the same adult ventricular mouse cardiomyocyte at 

baseline, with 4 µg/ml BjIP and with BjIP and 200 nM TTX.  

g : BjIP does not affect the peak current amplitude of INa 

h: BjIP prolongs inactivation of INa as illustrated by increased inactivation time constant τ.  

i: Increased total Na+ influx estimated as area under the curve (AUC) (f-i: n=2-6; *p<0.05 

vs. base). The BjIP effects on INa are abolished by 200 nM TTX. 
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Figure 4: BjIP effect on INa in thalamic neurons.  

a: Current-voltage relationship of INa under control conditions (open squares) and in the presence of 

BjIP (closed squares) in a thalamocortical neuron. Continuous lines indicate Boltzmann fits corrected 

for driving force to the data points. The cell was held at -60 mV before stepping to -90 mV for 2 s and 

eliciting INa by voltage steps of increasing amplitudes (-60 to -30 mV, 10 mV increment, 30 ms 

duration). 

b: Inactivation kinetics of INa were best fitted by a single exponential function (see inset) and not 

different between control and BjIP. 

c: Original traces of INa recorded from thalamic neurons of acute living rat brain slices under control 

conditions (base, black trace) and in the presence of BjIP (0.44 µg/ml, dark grey trace). 

d: Current traces under control conditions (base, black trace), during application of ProTx-II (ProTx, 

0.5 µM, light grey trace), in combination with BjIP (ProTx + BjIP, dark grey trace) and with 

tetrodotoxin (TTX, 1 µM, dashed black line) added to the extracellular solution. INa was elicited by 

voltage steps from -90 mV (2 s) to -30 mV (30 ms, see inset). 

e-g: Box plots of current amplitudes under different recording conditions (as indicated; * p<0.05, ** 

p<0.01). µCtx is a blocker NaV1.2, NaV1.4 and NaV1.7. The most likely subtypes activated by BjIP are 

underlined. pro-Tx is an inhibitor of NaV1.2, NaV1.3, NaV1.5, NaV1.6, NaV1.7 and NaV1.8. 

h:  mRNA expression of SCN1A (NaV1.1), SCN2A (NaV1.2), SCN3A (NaV1.3), SCN4A (NaV1.4), SCN5A 

(NaV1.5), SCN8A (NaV1.6), SCN9A (NaV1.7), SCN10A (NaV1.8), SCN11A (NaV1.9), SCN7A (Nax) in 

thalamic brain  tissue. DNA marker bands are located in the left margin. “x” indicate channels that are 

inhibited by µCtx or ProTx. 
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Figure 5: Expression of SCN3A, but not SCN8A mRNA in murine and human heart tissue. 

a: PCR showing detection of SCN3A and SCN5A mRNA in human heart and blood and in mouse heart 

tissue. SCN8A mRNA is not detectable in the heart, but is readily detected in human leucocytes. 

b: Mean expression levels of SCN3A (black), SCN5A (grey), and SCN8A (non detectable) mRNA in 

mouse ventricular tissue derived from qPCR. 

c: Mean expression levels derived from qPCR of SCN3A (black), SCN5A (grey, reference, set to 1), and 

SCN8A (not detected) mRNA in human heart tissue taken from different regions, i.e. atria, ventricles, 

sinus node, AV node, and Purkinje fibers.  

ΔCt-means were used to express mRNA expression normalized to SCN5A expression applying 2-

ΔΔCt-method. 
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Table: Concentrations of the full venom (BjV) and of the inotropic peptide (BjIP, 6609 Da 

estimated weight) used for functional assessment. All numbers rounded to 0.1µg/ml, where 

applicable 

 

  
Full venom 

(BjV) 
Ionotropic peptide 

(BjIP) 
 

in vivo 
Toxicity (i.p.) 200 µg 20 µg (3 µmol)  

inotropy, arrhythmias 
(echocardiography, i.p.) 40 µg 2 µg (300 nmol)  

perfused 
preparations 

arrhythmias, AP, perfused heart 20 µg/ml 4 µg/ml (600 nM)  

Na current, superfused cardiomyocytes - 4 µg/ml (600 nM)  

isolated trabecles - 0.4 µg/ml (60 nM)  
Ca transients, superfused 

cardiomyocytes 4 µg/ml 0.4 µg/ml (60 nM)  

thalamic slices - 0.4 µg/ml (60 nM)  

    
 


