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Abstract— Reduction of first side lobe level and nulls in artificial 

fishnet metalenses is accomplished here by applying the reference 

phase concept along with the zoning technique. Higher focusing 

efficiency is achieved for a specific reference phase when 

comparing numerically and experimentally four different designs. 

For such best design, an improvement of the first side lobe level 

(2.4 dB), first null (13 dB) and gain (1.77dB) is achieved 

experimentally compared to the design without reference phase.  

 
Index Terms— Zoned lenses, Fresnel zoning, lens antennas, 

millimeter-waves, fishnet metamaterial. 

I. INTRODUCTION 

REDUCING the first side lobe level (SLL) and 

cross-polarization of lens antennas at millimeter-waves without 

perturbing the rest of radiation parameters is usually 

challenging. Since the origin of the side lobes and 

cross-polarization is frequently due to the large free-space 

impedance mismatch of commonly used materials such as 

high-resistivity silicon [1], one possible solution is to use 

materials with lower dielectric permittivity. However with such 

materials a thicker lens profile is required. Alternatively, 

graded index lenses could be used [2]. Nevertheless, this 

solution remains elusive with dielectrics at millimeter-waves 

because of fabrication challenges and has only been achieved 

so far with metamaterial lenses, i.e., metalenses [3], [4]. 

The fishnet metalens with double in-plane periodicity 

minimizes the impedance mismatch with free-space and 

intrinsically filters the cross-polarization component [5], [6]. 

Unfortunately, the fishnet metalens may be bulky and heavy for 

some applications. A lightweight fishnet metalens can be 

designed by exploiting the concept of Fresnel zoning [7]–[9], 
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whereby material causing redundant 2 phase variation is 

removed from the lens. This time-honored concept [10], [11] 

reduces the profile and the weight of a lens at the expense of 

single frequency operation. Since the fishnet metamaterial is 

intrinsically narrowband, the zoning does not have any impact 

in the bandwidth of operation. The zoned design, however, still 

faces the problem of shadowing effects at the zone boundaries, 

which deteriorates the gain of the lens antenna system. This can 

be minimized by designing the fishnet metalens to operate near 

the zero refractive index regime [7], [8].  

Given the success in translating the zoning technique to the 

fishnet metalens, it can be argued that advanced designs can 

benefit at full from other concepts developed for Fresnel zone 

plate antennas [10]. For instance, the concept of reference 

phase [12], whereby an extra phase advance between 0 and π is 

added to the central ring of the lens antenna (where 0 is the 

value that has been commonly used), could lower the first SLL 

of the fishnet metalens while the rest of radiation characteristics 

remains unchanged.  

We evaluate here the performance of the recently proposed 

zoned fishnet metalens antennas when different reference 

phases are considered in the design. Four different values of 

reference phase (0, 0.7π, 1.4π and 2π) determined by the unit 

cell longitudinal period (fixed by technological constrains) are 

evaluated. The numerical results show that 0.7π is the best case 

among them for focusing efficiency. We then compare 

numerically and experimentally the radiation characteristics of 

two metalens antennas, one with a reference phase of 0.7π and 

another with a value of 0 (i.e., no reference phase). We report a 

drop in the first SLL of ~4 and ~2.5 dB according to the 

simulation and experiment, respectively, without deteriorating 

the rest of radiation characteristics.  

II. LENS DESIGN 

A. Reference phase and zoning technique 

In a zoned design assuming zero reference phase, the profile 

of the lens is reduced each time a thickness limit [t=0/(1-nlens), 

where 0 is the free-space wavelength and nlens the refractive 

index of the lens; notice that this equation is valid for nlens < 1] 

is reached [7]–[9]. When a reference phase is taken into 

account, the lens profile is stepped up to a thickness limit:  
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Fig. 1. (a) Example of the zoned lens profile when no reference phase is used 
(blue line) along with the complete profile (green line), successive steps (gray 

lines) and thickness limit for a reference phase of 0, 0.7π, 1.4π and 2π 

(red-dashed lines) from bottom to top, respectively. (b) Effective refractive 

index of the fishnet along with the unit cell (inset).  
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where t is the extra thickness introduced due to the 

reference phase and q is a factor between 0 and 1 which 

corresponds to an additional phase advance from 0 to 2π. The 

zoned profile of the lens can be obtained by simply using the 

general equation of a conical section [11], [13], as we did in our 

previous works [7]–[9] along with the condition of maximum 

thickness ttotal (see Fig. 1(a) for a sketch of the methodology): 
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where z is the thickness of the lens at the position x, mod is the 

modulus operation, and FL is the focal length.  

B. Zoned fishnet metalenses with reference phase 

The fishnet metamaterial used in this manuscript consists of 

periodically stacked hole arrays with a unit cell with the 

following parameters: hole diameter a = 2.5 mm, metal 

thickness (aluminum) w = 0.5 mm and dx = 3 mm, dy = 5 mm 

and dz = 1.5 mm as the periodicities along x, y and z axis, 

respectively, see Fig. 1(b). Air has been chosen as interspacing 

layer along z in order to design a free-standing fishnet without 

unnecessary dielectric losses. Note that dz comprises the metal 

thickness (w) and the air layer of 1 mm. The effective refractive 

index (nlens= nfishnet) of an infinite stack of such evenly-spaced 

two-dimensional holey layers shows negative values from 53 

GHz to 58 GHz for vertically-polarized waves (polarized 

along y-axis), [7]–[9], [14]. Propagation is forbidden for the 

orthogonal polarization in that frequency range. With the aim to 

reduce ttotal and thus, minimize the shadowing, f = 56.7 GHz (0 

= 5.29 mm) is chosen where nlens = nfishnet = -0.25. A smaller ttotal 

could theoretically be achieved with a smaller (close to zero) 

refractive index, but then the design would operate close to the 

band edge, where losses increase.  

 All the cylindrical fishnet metalenses (with translation 

symmetry along y) are designed with a FL = 4.50 and a focal 

length to lateral size ratio of F/Dxz =0.214 and F/Dyz =0.207 in 

the xz- and yz- planes, respectively, where Dxz and Dyz are the 

lateral size of the lens in the xz- and yz planes, respectively, to 

follow the standard -12 dB value of edge taper criterion [15]. 

For the design frequency (f = 56.7 GHz, nlens = -0.25) the 

thickness limit is t = 0.80. Since t must be multiple of dz = 1.5 

mm  0.35t to be realizable with our fishnet, the four possible 

values of q are evaluated here: q = 0, 0.35, 0.7 and 1, which 

correspond to a reference phase of 0, 0.7π, 1.4π and 2π, 

respectively; i.e., an extra thickness (t) of 0, 0.280, 0.560 

and 0.80, respectively.  

The resulting zoned profile for each lens is calculated using 

(2), see Fig. 2. The design q = 0 comprises 7 zones, whereas the 

rest have 6 zones. All the metalenses are designed with 

perforated metallic layers with 37  23 holes and lateral 

dimensions of 210  21.70 (111mm  115mm) along x and y 

axes, respectively. The thickness of each metalens is shown in 

the caption of Fig. 2 where a total number of layers (the 

elementary three common layers at their center and those due to 

the zones) along z-axis of 6, 9, 9, and 11 is used for the q = 0, 

0.35, 0.7 and 1 designs, respectively.  

C. Simulation result: focusing performance 

The focusing performance of the designs was studied 

numerically using the commercial software CST Microwave 

Studio
TM

 with the procedure described in [7]. The metal used 

was aluminum with finite conductivity Al = 3.56  10
7
 S/m. 

Given the symmetry of the problem, electric and magnetic 

symmetries were used at xz(H)- and yz(E)- planes, respectively. 

A hexahedral mesh with a resolution up to 0.0560  0.0560  

0.0280 along x-, y- and z- axis, respectively, was used.  

The numerical results of the power enhancement (defined as 

the power received with and without the metalens) spectra 

along the metalenses’ optical axis are shown in Fig. 3. The 

maximum (all values normalized to the maximum case, q = 

0.35, are listed in Table I) emerges for all cases slightly above 

(0.25 GHz) f = 56.7 GHz, which represents only a 0.44% 

deviation with the ray tracing design. This could be due to the 

discretization of the profiles along all directions due to the unit 

cell used [14] or to the simplification of the design by using the 

effective refractive index of an infinite stack, instead of that of a 

finite stack [9], [14]. The corresponding focal lengths are 

summarized in Table I. They all show good agreement with the 

theoretical value (FL = 4.50).  

 
Fig. 2.  Top view of the zoned fishnet metalenses under study using different 
reference phase factors: (a) q=0, (b) q=0.35, (c) q=0.7 and (d) q=1 with a total 

thickness of tq=0 = 1.510, tq=0.35 = 2.360, tq=0.7 = 2.360 and tq=1 = 2.930 for 

each design, respectively. 

 
Fig. 3.  Numerical results of the enhancement of the power spectra along z-axis 

(i.e., optical axis) for the designs: (a) q =0, (b) q =0.35, (c) q =0.7 and (d) q =1.    

  
Fig. 4. (a) Numerical results of the normalized power distribution along the 

transversal x-axis at each numerical FL for the zoned fishnet metalenses with q 

= 0 (circle), q = 0.35 (triangles), q = 0.7 (squares) and q = 1 (diamonds). (b) 

Zoom-in of the SLL from (a). 
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The normalized power distribution along the transversal 

x-axis at each FL for f = 56.7 GHz is displayed in Fig. 4 (results 

normalized to the maximum of each case). The full-width at 

half maximum (FWHM) is preserved for all cases with a value 

of 0.430. Furthermore, as Table I shows, the reference phase 

modulates the SLL as well as the first null. For our particular 

fishnet design, q = 0.35 provides the best results among all. 

III.  FABRICATION AND EXPERIMENTS 

In light of the findings from the previous section, we opt to 

fabricate the most representative designs q = 0 and 0.35. The 

former case serves as a reference, whereas q = 0.35 is meant to 

show the advantages of tuning the reference phase. The 

prototypes are made of aluminum using laser-cutting and the 

metal plates are stacked and separated by a 5 mm wide frame 

with screws, see Fig. 5 (a,b). 

Measurements were performed using an AB Millimetre
TM 

quasi-optical vector network analyzer (VNA) with the same 

setup described in [7], [9]: a high gain horn antenna was used a 

transmitter and a standard flange-ended WR-15 waveguide was 

used as a receiver to raster scanning the xz-plane from the zoned 

face of the prototypes.  

The power distribution along the optical z-axis was obtained 

by moving the receiver from 5 to 30 mm with a step of 0.25 

mm. The FL for f = 56.7 GHz were: FLexp_q=0 = 4.10 and 

FLexp_q=0.35 = 4.20 for q = 0 and 0.35, respectively. These 

values represent, respectively, a disagreement of 10.2% and 

7.1% from the numerical ones, which may be due to fabrication 

tolerances.  

The power distribution along the transversal x-axis was 

measured by moving the receiver along the x-axis from -10 mm 

to 10 mm with a step of 0.5 mm, see results in Fig. 5. A 

qualitative good agreement between simulation and 

experimental results is evident by comparing Figs. 4 and 5, with 

a reduction of SLL and a deep first null for q = 0.35 compared 

to q = 0. Note that the foci in the experimental cases are not 

completely symmetric, which may be due to fabrication 

tolerances such as unavoidable bends of the metal plates; also, 

even though the experiment was set up with the best possible 

care, some misalignments between the receiver, lens and 

transmitter may be present. The experimental full-width at 

half-maximum are FWHMexp_q=0 = 0.420 and FWHM exp_q=0.35 

= 0.610 for the designs q = 0 and 0.35, respectively. In 

simulation FWHM = 0.430 was obtained for both designs. The 

experimental SLL is 10 dB and 12.5 dB below the main lobe 

for the designs q = 0 and 0.35; i.e., a reduction of 2.5 dB in the 

SLL is obtained when the reference phase of 0.7π is applied to 

the zoned fishnet metalens, in good agreement with the 

theoretical predictions. 

Because of reciprocity arguments, a zoned fishnet metalens 

antenna configuration should also benefit from the reference 

phase tuning (as it was demonstrated in [12], [16] for circular 

planar Fresnel zone plate antennas). CST Microwave Studio
TM

 

is used again to investigate numerically such hypothesis. The 

realistic flange-ended WR-15 waveguide was used as a 

transmitter. It was fully modeled and placed at the FL obtained 

from simulation results for each design. Hence, the metalenses 

were illuminated from their profiled face. The same minimum 

mesh size as previously was used. 

 

 
Fig. 6.  Numerical (a, c) and experimental (b, d) co-polar radiation pattern as a 
function of frequency for the zoned fishnet metalens designed with factor: q = 0 

(a-b) and q = 0.35 (c-d), respectively. The white dashed lines plotted in panels 

(a-d) are the analytic angular positions of the first order grating lobes (0,-1), 
(-1.0) and (-1,1) [8]. Results of the normalized radiation pattern at f  = 56.7 GHz 

for the simulated (red dashed line) and experimental (red solid line) results of 

the co-polarization along with the measured cross-polarization (blue solid line) 
of the designed zoned fishnet metalenses using reference phase with factor; (e) 

q = 0 and (f) q = 0.35, respectively. 

TABLE I 

SIMULATIONS RESULTS OF THE FOCUSING PERFORMANCE AT 56.7 GHZ 

Metales  

design 

FLa 

(0) 

FL Error 

(%) 

NPb at each FL 

(dB) 

SLLc  

 (dB) 

First 

null 
(dB) 

q = 0 4.57 1.56 -0.3 7.5 16.2 

q = 0.35 4.52 0.44 0 9.7 17 

q = 0.7 4.42 1.78 -0.07 8.6 14.3 
q = 1 4.80 6.67 -0.72 7.5 10.6 

aFL is the Focal length. 
bNP is the normalized power. 
cSLL is the side lobe level. 

 
 

 

 

 

 
Fig. 5.  Fabricated prototypes with q=0 (a) and q=0.35 (b). (c) Experimental 
results of the normalized power distribution along the transversal x-axis at each 

FL for the zoned fishnet metalenses with q = 0 (circles) and q = 0.35 (triangles). 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

4 

For the experimental characterization, the prototypes were 

placed between a standard flange-ended WR-15 waveguide and 

a high gain horn antenna. The former was used as a feeder and 

was located at each experimental FL (FLexp_q=0 = 4.10 and 

FLexp_q=0.35 = 4.20). The latter acted as a receiver and was 

placed 4000 mm apart from the flat face. Both, transmitter and 

metalens, were fixed on a rotatory platform in order to perform 

the angular scan from -90º to +90º with a step of 0.5 deg. 

Measurements were carried out using the AB Millimetre
TM

 

VNA. Notice that the WR-15 waveguide pattern has not been 

de-embedded from the experimental results which may 

strongly influence the performance of the lens antenna (and 

also in the focal plane measurements) 

Simulation and experimental results of the radiation pattern 

of the co-polar component on the xz(H)-planes as a function of 

frequency and angle are shown in Fig. 6 (a-b) for q = 0 and in 

Fig. 6(c-d) for q = 0.35. Again, good agreement between 

simulation and experimental results is obtained. It is important 

to remark that, given the -12 dB edge taper criterion followed in 

this manuscript, spillover side lobes do not appear here, at 

difference from [8]. From simulation results, a gain of 13.23 dB 

and 13.71 dB is obtained at f = 56.7 GHz for the designs q = 0 

and 0.35, respectively. The experimental gain was obtained by 

applying the gain comparison method [17]. The resulting value 

is slightly lower than simulation results with values of 9.53 dB 

and 11.30 dB at the working frequency. However, note that in 

both, simulation and experimental results, the gain obtained for 

q = 0.35 is always higher than that for q = 0. 

To better compare the results obtained from simulation and 

measurements, the co- (y) and cross-polar (x) components of 

the normalized radiation pattern at the operational frequency 

for both designs, q = 0 and 0.35, are shown in Fig. 6 (e) and (f), 

respectively, and a summary of the radiation pattern 

characteristics is shown in Table II. The resulting simulated and 

experimental main lobe half-power beamwidth (-3dB) values 

are similar in both cases. Regarding the first SLL, the 

experimental values for both metalenses are higher than the 

values obtained from numerical simulations. However, a 

reduction of 2.4 dB of the first side lobe is achieved 

experimentally when a reference phase with factor q = 0.35 is 

used (compared with the SLL when no reference phase is used, 

q = 0). These results demonstrate that the reference phase 

concept applied along with the zoning technique improve also 

the level of the first side lobe in a lens-antenna configuration. 

IV. CONCLUSION 

In this paper, the concept of reference phase introduced for 

Fresnel zone plate antennas` has been applied to a zoned fishnet 

metalens. The focusing properties of several designs with 

different reference phase factors q = 0, 0.35, 0.7 and 1 

(corresponding to a reference phase of 0, 0.7π, 1.4π and 2π, 

respectively) has been presented. Simulation results 

demonstrate that the higher power intensity at the focal length 

and lower first side lobe level are achieved for the design with 

factor q = 0.35. Also, q = 0.35 shows better radiation 

characteristics than the rest in a lens antenna configuration. 

Stimulated by these numerical studies, q = 0 and 0.35 have been 

fabricated. The q = 0.35 outperforms q = 0 in focusing and 

radiation properties. The measurements to characterize the 

focal plane show a reduction of 2.5 dB in the first SLL, whereas 

an improvement of 2.4 dB and 1.77 dB in the first SLL and 

gain, respectively, is reported in the radiation pattern 

experiments. The results here proposed may be used in the 

design of advanced zoned lenses made of artificial materials 

aiming at improving the performance of lens antenna systems. 
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