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ABSTRACT: We have applied liquid chromatography high-
field asymmetric waveform ion mobility spectrometry tandem
mass spectrometry (LC−FAIMS−MS/MS) and liquid chro-
matography tandem mass spectrometry (LC−MS/MS) to the
investigation of site-specific phosphorylation in fibroblast
growth factor (FGF) signaling. We have combined a SILAC
approach with chemical inhibition by SU5402 (an FGF
receptor tyrosine kinase inhibitor) and dasatinib (a Src family
kinase inhibitor). The results show that incorporation of
FAIMS within the workflow results in (a) an increase in the
relative proportion of phosphothreonine and phosphotyrosine
sites identified, (b) an increase in phosphopeptide identi-
fications from precursors with charge states ≥ +3 (with an associated increase in peptide length), and (c) an increase in the
identification of multiply phosphorylated peptides. Approximately 20% of the phosphorylation sites identified via the FAIMS
workflow had not been reported previously, and over 80% of those were from multiply phosphorylated peptides. Moreover,
FAIMS provided access to a distinct set of phosphorylation sites regulated in response to SU5402 and dasatinib. The enhanced
identification of multiply phosphorylated peptides was particularly striking in the case of sites regulated by SU5402. In addition
to providing a compelling example of the complementarity of FAIMS in phosphoproteomics, the results provide a valuable
resource of phosphorylation sites for further investigation of FGF signaling and trafficking.

KEYWORDS: FAIMS, differential ion mobility, FGF signaling, phosphoenrichment, phosphopeptides, phosphoproteomics

■ INTRODUCTION

Fibroblast growth factor (FGF) ligands and receptors play
significant roles in cell division, regulation of cell growth and
maturation, angiogenesis, wound healing, and tumor growth.1

Accumulating evidence suggests that deregulation of FGF
signaling is associated with many human diseases, including
cancer.2 Through phosphorylation and dephosphorylation
processes, FGF signaling is propagated through receptor
proteins, scaffolding proteins, and signal mediators, leading to
a number of downstream pathways.3 Of particular interest, the
nonreceptor tyrosine kinase Src has been demonstrated to play a
critical role in downstream FGFR trafficking.4

Considering their broad participation in signal transduction, it
is not surprising that phosphorylation events hold the key to
understanding signaling events downstream of FGFR. Improving
proteome coverage is essential for mapping sites of phosphor-
ylation. Functional interpretation of phosphorylation requires
detailed analysis of specific residues or combinations of residues.
For instance, phosphorylation of the active sites of kinases often
significantly alters the binding capacity for substrates with
consensus phosphorylation motifs.5 The interaction between the
docking motif on the substrate and the kinase regulates the
specificity at the next level. In some cases, the recruitment of

substrate to kinase requires phosphorylation of an adjacent or
distant residue from the active site loop.6

For tryptic peptides, singly modified peptides constitute the
majority of the total phosphopeptides identified by current
technologies.7 Current understanding suggests that it is more
challenging to detect doubly and multiply phosphorylated
peptides than singly phosphorylated peptides due to their low
stoichiometry, ion suppression, and poor binding ability to
chromatographic columns. Nevertheless, deciphering the
mechanisms of FGFR signaling requires knowledge of multiply
phosphorylated peptides, as these adjacent phosphorylation sites
may play important regulatory roles. Therefore, one of the major
challenges in intracellular cell signaling research is to map sites of
modification in multiply phosphorylated peptides.
Liquid chromatography tandem mass spectrometry (LC−

MS/MS) combined with prefractionation and phosphoenrich-
ment is well-established as an effective workflow for large-scale
quantitative phosphoproteomic analysis.8 Although progress in
this area has beenmade, low phosphoproteome coverage, limited
dynamic range, and coelution of peptide isomers still remain
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challenges. Researchers have endeavored to address these
limitations through optimized phosphopeptide enrichment
protocols,9 liquid chromatography,10 combinations of MS/MS
approaches,11 and development of novel data handling
software.12

In recent years, ion mobility spectrometry (IMS) has emerged
as an attractive technique for global proteome profiling. In field
asymmetric waveform ion mobility spectrometry (FAIMS),13

gas-phase ions are separated on the basis of differences in their
mobility in high and low electric fields. In a FAIMS device, ions
are introduced between planar or cylindrical electrodes, where
they are exposed to alternating high and low electric fields. As a
result of their differential ion mobilities, the ions will drift toward
one or the other of the electrodes. By superimposing a dc
compensation voltage (CV) to one of the electrodes, ions of
particular differential ion mobility will be selectively transmitted
through the device. Coupled with LC−MS/MS, FAIMS has been
shown to be advantageous for proteomic analyses by improving
signal-to-noise, extending proteome coverage, and separating
isomeric peptides.14−16 Bridon et al. described a 49% increase in
phosphopeptide identification compared to that with conven-
tional LC−MS/MS analysis.17 They also evaluated the potential
of FAIMS to enhance separation of isobaric phosphopeptides
with 78 phosphopeptide isomers identified via FAIMS. Creese
and co-workers compared workflows comprising prefractiona-
tion by strong cation exchange (SCX) chromatography and
online reversed-phase LC−MS/MS with online reversed-phase
LC−FAIMS−MS/MS for identification of peptides from whole
cell lysates.18 The results showed that inclusion of FAIMS
extended the proteome coverage by 66.7%, highlighting the
complementarity of FAIMS. Xia et al.19 applied FAIMS in
quantitative analysis toward the development of an LC−
FAIMS−SRM method for quantitation of multiple analytes.
They demonstrated that LC−FAIMS−SRM outperforms LC−
SRM in terms of sensitivity and selectivity. Swearingen et al.15

described the modification of the electrospray probe, together
with the use of sheath gas to assist electrospray, which resulted in
a 5-fold increase in the signal and 64% more protein
identifications for LC−FAIMS−MS/MS over LC−MS/MS
without FAIMS.
Here, we have applied LC−FAIMS−MS/MS to the

investigation of site-specific phosphorylation in FGFR signaling.
Previously, we have used quantitative LC−MS/MS to identify
Src family kinase-mediated phosphorylation events in FGFR
signaling.20 To further map the key phosphorylation events
involved in FGF signaling and its downstream Src family kinases
(SFK), we used a stable isotope labeling with amino acids in cell
culture (SILAC)21 approach combined with inhibition of FGFR
and SFK. SU5402,22 a specific FGFR tyrosine kinase inhibitor,
and dasatinib,23 a SFK inhibitor, were used. The combination of
chemical inhibition of the activities of FGFR and SFK enabled us
to systematically investigate the participation of phosphosites in
FGF signaling and allowed us to compare and evaluate the
performance of LC−MS/MS and LC−FAIMS−MS/MS for
phosphoproteomics more broadly.

■ MATERIALS AND METHODS

SUM52 Cell Culture

For SILAC labeling, SUM52 breast cancer carcinoma cells were
cultured in amino acid-deficient RPMI-1640 (Thermo Fisher
Scientific, Rockford, IL) containing either 0.274 mM isotopically
“light” L-lysine and 1.15mM L-arginine (Sigma-Aldrich, St. Louis,

MO), “medium” 4,4,5,5-D4 L-lysine and 13C6 L-arginine, or
“heavy” 13C6 L-lysine and 13C6

15N4 L-arginine (Goss Scientific,
Crewe, UK), supplemented with 10% dialyzed FBS (Thermo
Fisher Scientific), 0.1 mg/mL streptomycin, and 100 IU/mL
penicillin at 37 °C with 5% CO2. The cells were cultured in
medium for more than six population doublings to attain
complete labeling.

Cell Treatment and Cell Lysis

After 4 h of serum starvation, “light” cells were treated with 20
ng/mL FGF1 and 10 mg/mL heparin for 30 min, “medium” cells
were pretreated with 20 μM SU5402 for 30 min followed by
treatment with 20 ng/mL FGF1 and 10 mg/mL heparin for 30
min, and “heavy” cells were pretreated with 1 μMdasatinib for 30
min followed by treatment with 20 ng/mL FGF1 and 10 mg/mL
heparin for 30 min.
Prior to lysis, cells were washed twice in cold PBS and then

lysed at 4 °C for 30 min in 800 μL of lysis buffer (50 mM Tris-
HCl pH 7.4, 1% Triton TX-100, 150 mM NaCl, 1 tablet of
protease inhibitor cocktail (Roche, Indianapolis, IN), and 1
tablet of phosphatase inhibitor cocktail (Roche, Indianapolis,
IN) per 10 mL of buffer). Protein concentration of the resulting
whole cell lysates was determined using the Coomassie
(Bradford) protein assay kit (Thermo Fisher Scientific)
according to the manufacturers’ instructions.

Trypsin Digestion and Fractionation

A total of 30 mg of protein was used in the analysis. Ten
milligrams of “light” (control), “medium” (SU5402 treated), and
“heavy” (dasatinib treated) lysates was pooled prior to trypsin
digestion. Proteins were reduced with 8mMDTT, alkylated with
20 mM iodoacetamide in 50 mM ammonium bicarbonate, and
finally digested with trypsin at a 1:100 enzyme/protein ratio
(Promega, Madison, WI) at 37 °C overnight. The digestion was
stopped by addition of 0.5% TFA. Prior to fractionation, peptides
were desalted using Sep-Pak C18 Cartridge (Waters, Milford,
MA) according to the manufacturer’s instructions.
Desalted and dried peptides were resuspended in 100 μL of

mobile phase A (10 mM KH3PO4, 20% acetonitrile, pH 3) and
loaded onto a 100 × 4.6 mm polysulfethyl A column (5 μm
particle size, 200 nm pore size, PolyLC, Columbia, MD).
Peptides were separated with 0−50% mobile phase B (10 mM
KH3PO4, 20% acetonitrile, 500 mM KCl, pH 3) over a 30 min
gradient, which was increased to 100% B over 5 min. Fifty three
fractions were collected. The fractions were combined into 12
fractions. Fractions were combined as follows: (1) 4 and 5, (2) 6,
(3) 7, (4) 8, (5) 9 and 10, (6) 11, (7) 12 and 13, (8) 14−16, (9)
17−21, (10) 22−28, (11) 29−38, and (12) 39−53. Each of the
12 fractions was desalted using C8 cartridge (Michrom
BioResources, Auburn, CA) according to the manufacturer’s
instructions.
Peptides in each of the 12 desalted fractions were divided in

half. One half was enriched by used of Titansphere Phos-TiO kit
(GL Sciences, Tokyo, Japan) according to the manufacturer’s
instructions. The other half was enriched using Titansphere
Phos-TiO tips but using 1 M citric acid instead of lactic acid
according to Zhao et al.24 (Previous work in our laboratory
showed that citric acid-assisted enrichment results in a 20%
increase in the identification of multiply phosphorylated peptides
(data not shown)). The half-fractions enriched via the two
methods were recombined to give 12 enriched fractions. Each of
the 12 fractions was desalted by use of C18 Ziptip pipette tips
(Millipore, Billerica, MA) according to the manufacturers’
instructions.
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Each of the 12 fractions was subsequently split into two. One
half of each of the fractions was destined for LC−MS/MS
analyses. For the LC−FAIMS−MS/MS analyses, the remaining
12 half-fractions were pooled and divided equally into 12 aliquots
to ensure that all FAIMS analyses were performed on the same
peptide mixture. Each of these 12 aliquots was then analyzed at a
separate compensation voltage (from −22.5 to −50 V in 2.5 V
steps). Each of the 24 samples (12 half-fractions for LC−MS/MS
and 12 aliquots for LC−FAIMS MS/MS) was split into four to
allow two CID MS/MS analyses and, separately, two ETD MS/
MS analyses. A schematic diagram of the sample preparation
procedure is shown in Supporting Information Figure S1.

LC−MS/MS

Experiments were performed on a Thermo Fisher Orbitrap Velos
ETD mass spectrometer (Thermo Fisher Scientific, San Jose,
CA) equipped with a Dionex-Ultimate 3000 Nano LC system
(Thermo Fisher Scientific, Sunnyvale, CA). Samples were loaded
onto a 150 mm Acclaim PepMap100 C18 column (Thermo
Fisher Scientific, Sunnyvale, CA), internal diameter 75 μm, in
mobile phase A (0.1% formic acid) and separated by a 30 min
gradient from 3.2 to 44% mobile phase B (acetonitrile, 0.1%
formic acid), followed by a 10 min wash of 90% mobile phase B
and re-equilibration (15 min) with 3.2% mobile phase B.
Peptides were eluted via a TriVersa Nanomate (Advion, Ithaca,
NY) chip-based electrospray device into the mass spectrometer.
For both CID and ETD analyses, the mass spectrometer
performed a top-seven method comprising a full FT−MS scan
(m/z 380−1600) at a resolution of 30 000 at m/z 400 in the
orbitrap with an automatic gain control (AGC) target of 1 × 106

charges and a maximum fill time of 1 s. The seven most abundant
precursor ions detected were isolated for MS/MS in the ion trap.
For CID, MS/MS of the seven most abundant ions above a
threshold of 1000 with a normalized collision energy of 35% was
performed (AGC target: 5 × 104 charges, maximum fill time 100
ms). For ETD, MS/MS of the seven most abundant ions above a
threshold of 5000 with 100 ms activation time was performed
(AGC target: 5× 104 charges, maximum fill time 100 ms, reagent
AGC target 1 × 105). Width of the precursor isolation window
was 2 m/z, and only multiply charged precursor ions were
subjected to fragmentation. Dynamic exclusion was applied for
60 s.

LC−FAIMS−MS/MS

The FAIMS device with a 2.5 mm electrode gap width (Thermo
Fisher Scientific) was operated under the following conditions:
gas flow rate of 2.9 L/min with a composition of 50:50 He/N2,
the dispersion voltage (DV) was −5000 V, and the inner and
outer electrodes temperatures were 70 and 90 °C, respectively.
Liquid chromatography was as described above. To couple
nanospray, the HESI-II (Thermo Fisher Scientific) source was
modified to accommodate a 360 μm o.d. fused silica capillary,
with the addition of sheath gas (2 arbitrary units) for electrospray
ionization, similar to that described by Swearingen et al.15 Twelve
separate LC−FAIMS−MS/MS analyses were performed at
compensation voltages (CV) of −22.5, −25.0, −27.5, −30.0,
−32.5, −35.0, −37.5, −40.0−42.5, −45.0, −47.5, and −50.0 V.
MS/MS methods were as described above.

Identification and Quantitation of Peptide and Proteins

Mass spectra were processed using the MaxQuant software
(version 1.4.1.3).12 Data were searched against the SwissProt
human database (downloaded in 2013) containing common
contaminants and reverse sequence (175 242 protein entries).

The search parameters were as follows: minimum peptide length,
6; peptide tolerance, 20 ppm; mass tolerance, 0.5 Da; cleavage
enzyme, trypsin/P; and 2 missed cleavages were allowed.
Carbamidomethyl (C) was set as a fixed modification. Oxidation
(M), acetylation (Protein N-term), and phospho (STY) were set
as variable modifications. The appropriate SILAC labels were
selected, and the maximum labeled amino acids was set to 3.
False discovery rate (FDR) for peptide, protein, and site
identification was set to 0.01. Within the Maxquant output,
phosphorylation sites with a Localization Score above 0.75 were
considered to be localized correctly, and the correctly localized
phosphopeptides were selected for further analysis. Annotated
MS/MS spectra for identified phosphopeptides are shown in
Supporting Information Files 1A and 1B.
For quantitation analysis, SILAC ratios were normalized to

avoid unimodal global distribution of peptide abundance.
Normalization is automatically performed within the Maxquant
software such that the median of the log2 peptide ratios is zero.
This is performed for each data file analyzed.12 A difference of a
2-fold change in SILAC ratio (log2 ≤ −1 or log2 ≥ 1) was
considered to indicate a statistically significant change of lower or
higher expression. The fold change cutoff value was applied
based on data from a previous experiment performed in our
laboratory (data not shown). In that experiment, samples labeled
with light, medium, and heavy isotope labels were mixed in equal
portions, (i.e., ratio = 1) and subjected to LC−MS/MS analysis.
The mean SILAC ratio and standard deviation (SD) were
calculated. For a probability cutoff of p = 0.05, the mean ratio
±2SD was between 0.58 and 1.73. For a more stringent cutoff (p
= 0.0027), the mean ratio ±3SD was between 0.44 and 2.23. We
therefore define the |log2(FC)| = 1 as the boundary of
differentially regulated peptides to give greater than 95%
confidence.

■ RESULTS AND DISCUSSION

Phosphopeptide Identification by LC−MS/MS and
LC−FAIMS−MS/MS

When compared to conventional LC−MS/MS, LC−FAIMS−
MS/MS has the advantage of enhancing signal-to-noise, thereby
facilitating the identification of low-abundance ions.17 In
addition, FAIMS can separate peptide isomers and positional
variants of post-translational modifications that may coelute in
the absence of FAIMS.16 These properties make FAIMS a
valuable addition to phosphoproteomic studies, enhancing the
coverage of the phosphoproteome and increasing the confidence
of site localization. It has previously been shown that LC−MS/
MS and LC−FAIMS−MS/MS are complementary in their
coverage of the proteome,18 and it is this complementarity that
we wished to exploit in order to extend the phosphoproteomic
coverage of components of the FGF signaling pathway.
We used a SILAC-based phosphoproteomic approach to

compare phosphorylation events downstream of FGFR and Src
family kinases in SUM52 cells. SILAC-labeled SUM52 cells
(light, medium, and heavy) were treated with either SU5402
(FGFR inhibitor) or dasatinib (SFK inhibitor) before FGF1
stimulation. Following cell lysis, equal amounts of SILAC cells
were pooled and digested with trypsin. Next, peptides were
fractionated using SCX and enriched for phosphopeptides, and
each of the resulting 12 fractions was then divided into two for
separate LC−MS/MS and LC−FAIMS−MS/MS analyses. Prior
to LC−FAIMS−MS/MS analysis, the 12 fractions were pooled
before dividing them into 12 equal fractions to ensure
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homogeneity while allowing a direct comparison to be made to
the SCX-fractionated LC−MS/MS samples in terms of sample
preparation. Each LC−FAIMS−MS/MS analysis was performed
at a separate and constant compensation voltage (−22.5, −25.0,
−27.5, ..., −50.0 V, in 2.5 V steps). The CV range was chosen
based on previous experiments in our laboratory using the range
−20 to −55 V, which showed that 94.3% of the total number of
identified phosphopeptides came from the CV range −22.5 to
−50 V. In selecting a CV range, it is important to consider the
balance between the number of CV steps (i.e., individual
analyses) required and the number of fractions into which the
sample can be split. All samples were analyzed in duplicate. This
approach allowed us to directly compare the performance of
LC−MS/MS and LC−FAIMS−MS/MS and examine their
potential for characterization of phosphopeptides.
In total, 2538 well-localized phosphorylation sites were

identified (1% false discovery rate) using MaxQuant.12 In LC−
MS/MS analyses, a total of 3197 nonredundant peptides were
identified, of which 2741 were phosphopeptides (85.7%). Within
these phosphopeptides, there are a total of 2642 phosphosites, of
which 1853 (70.1%) phosphosites were accurately localized
(Supporting Information Table S1A). The distribution of
phosphorylated residues is 1542 serine (83.2%), 207 threonine
(11.1%), and 104 tyrosine (5.6%). Around 40% of the unique
identifications in the FAIMS data set derived from peptides
containing sites of missed tryptic cleavages, compared to 27% in
the non-FAIMS data set. In the LC−FAIMS−MS/MS analyses, a
total of 1774 nonredundant peptides were identified, of which
1529 were phosphopeptides (86.2%). From these phosphopep-
tides, 1930 phosphosites were identified and 1261 phosphosites
were well-localized (65.2%) (Supporting Information Table
S1B). Within the well-localized phosphosites, 897 (71.1%)
serine, 264 (20.9%) threonine, and 100 (7.9%) tyrosine residues
were identified. Notably, an increase in the relative proportion of
identified pThr and pTyr phosphorylation sites was observed in
the LC−FAIMS−MS/MS data set. It has been estimated that the
distribution of pSer, pThr, and pTyr sites is expected to be
around 86.4, 11.8, and 1.8%, respectively, in eukaryotic cells.25

The successful identification of tyrosine phosphorylation is
particularly challenging, as it is a substoichiometric modification
often occurring on low-abundance proteins.26 Moreover,
knowledge of tyrosine phosphorylation is considered to be a
key in deciphering the mechanisms of signal transduction
processes and regulation of enzymatic activity. Therefore, the
observation that pTyr sites are enriched in the FAIMS data set is
particularly promising for phosphoproteomics in general.
In total, fewer phosphosites were identified from the LC−

FAIMS−MS/MS data set than the LC−MS/MS data set. This
observation is likely due to low transmission efficiency of FAIMS
(∼10−20%). Nevertheless, the two approaches showed good
complementarity, and the overlapping population comprised
44.0% of the identifications by LC−FAIMS−MS/MS (Figure
1A). In addition, samples analyzed by FAIMS were homoge-
neous, whereas samples analyzed by the non-FAIMS approach
were fractioned by SCX chromatography (see Supporting
Information Figure S1). This difference will contribute to
variations in electrospray ionization efficiency, reversed-phase
LC separation, and, consequently, MS/MS identification.
The scale of this experiment is not designed to reveal the whole

map of FGF signaling and its downstream networks but to
generate a complementary set of phosphosites that provides
novel insights into the field of phosphoproteomic research. The
stochastic nature of LC−MS/MS sampling can result in

complementary peptide identifications in technical repeats;
however, the application of FAIMS resulted in a distinct subset
of phosphosites, which is evidenced by a 37.0% increase in
phosphoproteome coverage. Note that a similar increase in
phosphoproteome coverage was observed following multiple
replicates (n = 2) of LC−MS/MS analyses (∼25% for CID and
∼40% for ETD; see Supporting Information Figure S2);
however, the properties of the phosphopeptides identified by
FAIMS are intrinsically different from those identified by LC−
MS/MS, as described below. In order to investigate the
properties of phosphopeptides identified in the LC−FAIMS−
MS/MS workflow, we examined the CV distribution, charge
state, length, and phosphorylation status of these phosphopep-
tides.
LC−FAIMS−MS/MS Identification of Phosphopeptides Is
Not Biased toward CV

The number of nonredundant peptides identified per SCX
fraction is shown in Figure 1B. In the LC−MS/MS analysis with
SCX prefractionation, the majority of the peptides identified
were from the first four SCX fractions (64.7%). In contrast, in the
LC−FAIMS−MS/MS analyses (Figure 1C), phosphopeptide
identification did not show any bias toward particular (range of)
CV values. In the LC−FAIMS−MS/MS analysis, samples from
all SCX fractions were pooled to ensure homogeneity while
allowing a direct comparison to be made in terms of sample
preparation. Therefore, the distribution of phosphopeptides is
based solely on the transmission at preset CV values. In an acidic
solution (e.g., pH 3), most tryptic peptides carry ≥2+ charges;
however, many tryptic phosphopeptides carry 1+ or even

Figure 1. (A) Well-localized phosphorylation sites identified via LC−
MS/MS and LC−FAIMS−MS/MS. (B) Distribution of phosphopep-
tides in LC−MS/MS analyses. (C) Distribution of phosphopeptides in
LC−FAIMS−MS/MS analyses.
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negative charges due to the addition of phosphate groups.27 In
SCX chromatography, peptides are eluted according to their net
charge states: multiply phosphorylated peptides are eluted first as
the result of their negative charge, followed by singly
phosphorylated peptides, missed cleavage phosphopeptides,
and, finally, nonphosphopeptides. An enrichment of phospho-
peptides was, therefore, observed in the first few fractions. This
uneven distribution of phosphopeptides across the 12 LC−MS/
MS fractions potentially lowers the efficiency of peptide
identification, as evidenced by the under-representation of
phosphopeptides in the latter eight SCX fractions (35.3% of the
total identifications). The extent of proteome coverage is
proportional to the degree of peptide fractionation and the
resolving power of the mass spectrometer.

Triply Protonated Ions Are Enriched in LC−FAIMS−MS/MS

The distribution of identified phosphopeptides in terms of
charge state is shown in Figure 2A. Doubly charged
phosphopeptide ions (57.7%) constituted the majority of
identifications from the LC−MS/MS data set, with triply
charged ions contributing to 36.6% of the identifications. Further
examination of these phosphopeptides revealed that the majority
of the doubly charged peptides were identified from the first four
fractions (see Supporting Information Figure S3A). The triply
charged peptides show a bimodal distribution. These distribu-
tions agree with the pH-dependent elution from SCX cartridges,
where phosphopeptides are eluted first due to their negative
charge, followed by nonphosphopeptides and then acidic
peptides. For the LC−FAIMS−MS/MS data set, 26.9% of the
total identifications arose from 2+ precursor ions, compared with
63.8% from 3+ ions. Further examination of the LC−FAIMS−
MS/MS data set revealed that the 2+, 3+, and 4+ charged
peptides were identified at distinctly different CV ranges (Figure
2B), which has been previously observed.28 Doubly charged

phosphopeptide ions were observed mainly in the CV range
−22.5 to −30.0 V (72.8%); however, 3+ and 4+ (data not
shown) phosphopeptide ions were identified throughout all CVs.
One of the difficulties in phosphopeptide detection is low

protonation efficiency in the presence of acidic phosphate
groups. Doubly charged species are normally the predominant
ions observed following electrospray of tryptic peptides. By
coupling FAIMS to LC−MS/MS, an enrichment of 3+ and 4+
phosphopeptide ions was observed within the CV range−22.5 to
−30.0 V. The results suggest that the charge-based selection
afforded by the FAIMS device influences the phosphopeptides
identified.

Phosphopeptide Length

The length of the phosphopeptides identified in the FAIMS data
set ranged from 7 to 40 amino acids, 98.6% of which were
between 7 and 33 amino acids. The phosphopeptide distribution
according to CV and peptide length (7−33 amino acids) is
shown in Figure 2C (the number in each cell represents the
number of phosphopeptides identified). The heat map identified
two areas with high incidence of phosphopeptide identification.
One was in the CV range −22.5 to −27.5 V and length 12−18
amino acids. The other area was in the CV range −32.5 to −47.5
V and length 15−21 amino acids. These two regions overlap with
the charge state distribution discussed above. For peptides
identified from LC−MS/MS analyses, 64.7% peptides were
identified from the first four fractions and the majority of the
peptides were between 11 and 23 amino acid residues in length
(see Supporting Information Figure S3).

Enhanced Identification of Multiply Phosphorylated
Peptides

The distribution of singly, doubly, and multiply phosphorylated
peptides is shown in Figure 3A,B. The majority of the
phosphopeptide assignments were singly phosphorylated in

Figure 2. (A) Summary of phosphopeptides identifications according to charge state. (B) Distribution of identified phosphopeptides across CV values
according to charge state. (C) Distribution of identified phosphopeptides according to CV and length (number of amino acid residues). Numbers in
each cell represent the number of phosphopeptides identified under a given condition.
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both methods (70.5% in LC−FAIMS−MS/MS analyses and
80.7% in LC−MS/MS analyses). A total of 29.5% of the
phosphopeptides identified by the LC−FAIMS−MS/MS work-
flow were doubly or multiply phosphorylated peptides,
compared with 19.3% by the LC−MS/MS workflow.
The enhanced detection of multiply phosphorylated peptides

is significant in view of their low abundance relative to that of
singly and nonphosphorylated peptides. Generally, it is more
challenging to detect multiply phosphorylated peptides due to
their low ionization efficiency in the electrospray process and
their poor binding ability to chromatographic columns. This
observation may be the result of the improved signal-to-noise

afforded by FAIMS or charge state differentiation via FAIMS as
discussed above. The identification of singly and multiply
phosphorylated peptides did not show any correlation with the
distribution of CV. The distribution of charge states for the
multiply phosphorylated peptides identified is shown in
Supporting Information Figure S4. The multiply phosphorylated
peptides are associated with 3+ and higher charge states in the
FAIMS data set compared to non-FAIMS. The enhanced
identification of multiply phosphorylated peptides is likely due to
the separation of charge states by FAIMS.
Successful identification of multiply phosphorylated peptides

and localization of the phosphorylation sites therein also has a

Figure 3. (A) Distribution of singly, doubly, multiply phosphorylated peptides. (B) Bar chart comparison of singly, doubly, multiply phosphorylated
peptides in FAIMS and non-FAIMS analyses.

Figure 4. (A) Results fromMotif-X analysis of the novel phosphorylation sites identified via LC−FAIMS−MS/MS showingmotif SxxxT. (B) CIDmass
spectrum of [M + 3H]3+ ions of MAPAFLLLLLLWPQGCVSGPpSADpSVpYpTK at a CV of −27.5 V, a multiply phosphorylated peptide containing
previously unobserved sites of phosphorylation.
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profound impact on data interpretation, enabling one to evaluate
the coordination between two or more adjacent phosphorylation
sites or to investigate the dynamics between singly and multiply
phosphorylated peptide forms. In Supporting Information
Figure S5, we show that the overlap in doubly phosphorylated
peptide identifications from the two techniques was 21.2%. For
multiply phosphorylated peptides (>2 phosphosites), only 7 of
the 188 phosphopeptides were identified by both methods, less
than 4% of the total multiply phosphorylated peptide
identifications, emphasizing the complementarity of the two
methods for identification of phosphopeptides, particularly
multiply phosphorylated peptides.

Novel Phosphorylation Sites

To further probe the two data sets, PhosphoSitePlus (http://
www.phosphosite.org)29 was used to distinguish novel phos-
phorylation sites from known sites. In the LC−MS/MS
workflow, 75 (4.3%) identified phosphosites were novel
phosphorylation sites consisting of 33 pSer, 9 pThr, and 33
pTyr sites (Supporting Information Table 1A, shown in green).
Only three of these sites were also identified in the LC−FAIMS−
MS/MS data set. In contrast, a substantial number of
phosphosites (19.9%) identified by LC−FAIMS−MS/MS
workflow have not been previously reported (Supporting
Information Table S1B, shown in green). A total of 227 novel
phosphorylation sites were identified, consisting of 168 pSer, 42
pThr, and 17 pTyr. In total, 127 proteins were successfully
assigned from these novel sites. Remarkably, 187 of the novel
phosphorylation sites were identified within multiply phosphory-

lated peptides. Again, this observation highlights the advantages
of FAIMS in identification of multiply phosphorylated peptides.
These results show that coupling FAIMS to an LC−MS/MS
platform in phosphoproteomic analyses not only extends the
proteome coverage but also generates a large set of
uncharacterized phosphorylation sites, suggesting that FAIMS
has specifically accessed a group of phosphosites not readily
accessible by LC−MS/MS.
In order to explore the sequence features of the novel sites,

Motif-X30 was used to identify motifs within the novel
phosphorylation sites in the LC−FAIMS−MS/MS data set.
From 227 phosphorylation sites, 3 potential motifs were
identified (P < 0.0003): SxxT, SxxxT, and TxxxxS. The motif
SxxxT is highly conserved and recognized by the MAPKK
supergene family in animals (Figure 4A).31 As promotion and
attenuation of FGF signaling requires the involvement of the
MAPKK cascade, this observation indicates that these substrates
of MAPKK with uncharacterized phosphorylation sites may
possess interesting properties for further investigation. No
consensus motif was found following a similar analysis of the
novel phosphorylation sites identified from the LC−MS/MS
data set.
To determine if the enhancement in novel phosphorylation

site identification was associated with charge state, we profiled
the charge state distribution of the novel phosphorylation sites.
In the LC−FAIMS−MS/MS analyses, phosphopeptides with
charge states≥3+ represented 91.2% of the novel sites identified,
compared to 55.3% in LC−MS/MS analyses. Again, the
overrepresentation of 3+ charged ions in LC−FAIMS−MS/

Figure 5. (A) Log2 plot of the peptide abundance ratio for SU5402/FGF1 treatments for each phosphopeptide identified. (B) Log2 plot of the ratio of
the peptide abundance ratio for dasatinib/FGF1 treatments for each phosphopeptide identified. Peptides identified by FAIMS only are shown in green,
and those identified by LC−MS/MS only are shown in red. Peptides identified by both are shown in blue. Dashed lines indicate the cutoff (log2 = ±1).
(C) Log2−log2 plots to visualize SU5402- and dasatinib-sensitive phosphopeptides. The peptide abundance ratio for SU5402/FGF1 treatments is
plotted against the peptide abundance ratio for dasatinib/FGF1 treatments. Peptides identified by LC−MS/MS only are shown in red; singly
phosphorylated and multiply phosphorylated peptides identified by FAIMS only are shown in blue and green, respectively. Those identified by both
methods are shown in gray. Dashed lines indicate the cutoff (log2 = ±1).
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MS data set may be responsible for the increase in the number of
novel sites.
Further analysis by DAVID functional classification32 revealed

that a cluster of G protein-coupled receptors (GPCRs) was
enriched in the novel proteins identified in the LC−FAIMS−
MS/MS workflow. An example of this is Trem-like transcript 2
(TLT-2) protein, a cell surface receptor protein that may play a
role in immune response.33 A quadruply phosphorylated peptide
MAPAFLLLLLLWPQGCVSGPpSADpSVpYpTK of TLT-2
including the signal peptide region (1−18) was identified at a
CV of −27.5 V (Figure 4B). The signal peptide region is not
phosphorylated, but the N-terminus of Ig-like V-set domain
(19−268) is highly phosphorylated, and this is the first time that
phosphorylation sites have been reported within this region. This
peptide was found to be downregulated in response to SU5402
treatment but not sensitive to dasatinib. Whether these
phosphorylation sites on the N-terminus are involved in cleavage
of signal peptides or signal recognition is yet unknown. An in-
depth analysis is required to establish the cross-talk between
these phosphorylation events and perturbation of FGF signaling.

Identification of FGFR and Src-Mediated Phosphorylation
Events

The LC−FAIMS−MS/MS workflow enabled a distinct
phosphopeptide data set to be identified. In order to map the
novel phosphopeptides regulated in response to SU5402 and
dasatinib, a wide-scale quantitative analysis was performed. A
comparative analysis of phosphosites sensitive to SU5402
identified by LC−MS/MS only, by LC−FAIMS−MS/MS
only, and by both is shown in Figure 5A. The consistency of
the two approaches is shown in Supporting Information Figure
S6. A high occurrence of global downregulation in phosphor-
ylation levels involved in the FGF pathway and downstream
processes was observed. A total of 256 phosphosites sensitive to
SU5402 (log2 ≤ −1 or log2 ≥ 1) were detected by both methods
(Figure 5A, shown in blue). LC−MS/MS and LC−FAIMS−
MS/MS resulted in identification of 175 phosphosites (shown in
red) and 153 phosphosites (shown in green) sensitive to SU5402
treatment (Supporting Information Table S1A,B). A total of 186
phosphosites were downregulated as a result of SU5402
treatment, of which 70 were uniquely identified via the FAIMS
workflow. Seventy four phosphosites were found to be
upregulated in response to SU5402, with 29 of them being
unique to the FAIMS workflow. Two clusters of proteins were
enriched from the regulated peptides in response to SU5402.
One is a group of kinases involved in cell cycle regulation and
translation. For example, Ribosomal protein S6 kinase beta-2
(RPS6KB2, also known as S6K2) with decreased phosphor-
ylation upon SU5402 and dasatinib inhibition was identified in
FAIMS analysis. S6K2 has been previously identified as a
downstream effector of FGF signaling.34 The other cluster
contains a group of cell membrane receptors that participate in
signal transduction and transportation, including LILRB1 and
MRG.
A total of 87 phosphosites sensitive to dasatinib treatment

were detected by both methods (Figure 5B). LC−MS/MS and
LC−FAIMS−MS/MS resulted in identification of 24 and 60
phosphosites sensitive to dasatinib treatment, respectively. A
total of 40 phosphosites were downregulated as a result of
dasatinib treatment, of which 27 were uniquely identified via the
FAIMS workflow. Forty seven phosphosites were found to be
upregulated in response to dasatinib, with 32 of them being
unique to the FAIMS workflow.

The LC−MS/MS and LC−FAIMS−MS/MS data sets were
further investigated to interrogate the coordination between
SU5402 and dasatinib. A log−log plot was used to visualize the
underlying interaction (Figure 5C). A total of 53 phosphosites
sensitive to both SU5402 and dasatinib treatment were
identified. LC−FAIMS−MS/MS alone revealed 38 phosphosites
sensitive to both treatments, and 2 phosphopeptides were found
by both approaches.
As described above, an enrichment of multiply phosphorylated

peptides was observed in the peptides identified by LC−
FAIMS−MS/MS: a total of 67 (55.8%) of the phosphosites
sensitive to SU5402 were from multiply phosphorylated
peptides, compared with 6 identified from the LC−MS/MS
data set. Similarly, 46 out of 70 phosphosites sensitive to
dasatinib originated from multiply phosphorylated peptides.
Furthermore, among the 67 phosphosites identified as sensitive
to SU5402, 31 were novel. The results, therefore, provide a useful
starting point for follow-up functional investigations. A list of
novel phosphorylation sites identified from multiply phosphory-
lated peptides sensitive to SU5402 or dasatinib treatment is
presented in Supporting Information Table S2.
Overall, the results show that chemical inhibition induced

significant changes in ∼17% of the measured phosphosites.
Although some of the identified proteins were already known to
be associated with FGF signaling, many of the individual proteins
or phosphosites identified are novel to this pathway. As an
example, breast cancer anti-estrogen resistance protein 3
(BCAR3) acts as an adapter protein for tyrosine kinase-based
signaling in breast cancer cells.35 The FAIMS results revealed a
previously unidentified phosphorylation site within this protein:
threonine 368 (T368). BCAR3 has been shown to enhance cell
mobility through interaction with Src and p130cas. It has been
suggested that this binding capacity would be greatly reduced
when Src activity is affected.36 The phosphorylation level of T368
site was upregulated upon SU5402 and dasatinib treatment.
Whether the upregulation of T368 is associated with the activity
of BCAR3 is unknown: this result may provide a meaningful
entry point to decipher mechanisms of estrogen regulation.
Our findings demonstrate that FAIMS offers superior

performance to LC−MS/MS in the identification and character-
ization of peptides with multiply phosphorylated residues. It has
been demonstrated, on both theoretical and experimental
grounds, that multisite phosphorylation can generate a switch-
like temporal profile of the response to a graded input37 and,
when executed in a specific sequence, that it can dictate the
timing of output responses.38,39 However, judged by existing
phosphosite databases, the extent and identity of multisite
phosphorylation events are poorly defined compared to that for
single-site events. Current bioinformatic software focuses mainly
on interpretation of single phosphosites rather than interaction
of multiphosphorylation sites, e.g., iGPS analysis of the data sets
predicts which kinases are phosphorylating the peptides
(Supporting Information Figure S7A).40 It is clear that more of
the peptides are predicted to be phosphorylated by known
kinases in the non-FAIMS data set. Kinases with a variety of
biological functions were identified, but, generally, FAIMS
provides a small and complementary fraction. This is likely
because in the FAIMS data set 29.5% of identified phosphor-
ylation sites and 55.8% of phosphorylation sites sensitive to
inhibitors were identified from multiply phosphorylation sites.
The ability to efficiently define multisite phosphorylation events
is of particular biological significance, as they represent a
significant regulatory mechanism in a variety of settings. Analysis

Journal of Proteome Research Article

DOI: 10.1021/acs.jproteome.5b00713
J. Proteome Res. 2015, 14, 5077−5087

5084

http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.5b00713/suppl_file/pr5b00713_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.5b00713/suppl_file/pr5b00713_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.5b00713/suppl_file/pr5b00713_si_003.xlsx
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.5b00713/suppl_file/pr5b00713_si_003.xlsx
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.5b00713/suppl_file/pr5b00713_si_001.pdf
http://dx.doi.org/10.1021/acs.jproteome.5b00713


of amino acid frequency in the phosphopeptide sequences
(Supporting Information Figure S7B) was performed using
Weblogo (http://weblogo.berkeley.edu/logo.cgi). We observed
a higher frequency of serine residues in proximity to the site of
phosphorylation in the FAIMS data set compared to that in the
non-FAIMS data set because of the multiply phosphorylated
peptides.
In particular, phosphorylation of tyrosine residues is a well-

defined mechanism of eliciting protein/protein interaction via
sequence-specific recognition by phosphotyrosine binding
motifs such as SH2 domains.40 Recognition of phosphotyrosine
motifs can be modified by concurrent phosphorylation of
adjacent Ser/Thr residues that occlude the SH2 binding
pocket.41 This results in a gated output where the formation/
dissolution of protein complexes is controlled by the combined
action of Tyr and Ser/Thr directed kinases. It is notable that
inspection of the multiply phosphorylated phosphopeptides
identified in the FAIMS data set (Supporting Information Table
S1B, column H) reveals a significant fraction (58.4%) in which a
phosphorylated tyrosine residue is located within ±4 residues of
a phospho-Ser/Thr. This indicates that this class of multisite
phosphorylation is a prevalent regulatory event that can be
preferentially addressed by the application of FAIMS. Moreover,
this points to the work that can be potentially carried out in the
next step, which will focus on the dynamics of key
phosphorylation sites within FGF signaling. The site-specific
analysis of key phosphorylation sites, especially the interdepend-
ence among multiphosphorylation sites, will be of great interest
to determine the downstream network of FGF perturbation.

■ CONCLUSIONS

Our LC−MS/MS and LC−FAIMS−MS/MS analyses combined
SILAC labeling with SCX prefractionation and phosphoenrich-
ment. This approach allowed us to investigate the regulated
phosphorylation events involved in FGF signaling. The two
techniques showed good complementarity. The application of
FAIMS extends the phosphoproteome coverage by 37.0% over
that identified with the conventional LC−MS/MS workflow.
Although the number of phosphosites identifications by LC−
FAIMS−MS/MS is lower in general, the improvement in the
detection of pThr and pTyr sites provides a valuable pool for
further analysis. An enhancement in the identification of multiply
phosphorylated peptides and a preference for peptides with high
charge states (3+ and above) were observed in the LC−FAIMS−
MS/MS data set. We propose that this enhancement is closely
associated with the charge-based selection of FAIMS. Although
the scale of this experiment was not designed to reveal the whole
map of FGF signaling, our results provide a unique resource of
phosphosites for further study and a compelling example of the
utility of FAIMS in phosphoproteomics research. This claim is
evidenced by the observation that 20% of the phosphosites
identified via by FAIMS have not been reported previously.
Moreover, 82.3% of these novel sites are identified frommultiply
phosphorylated peptides. The LC−FAIMS−MS/MS workflow
also revealed a substantial number of phosphopeptides regulated
upon drug treatment, especially multiply phosphorylated
peptides. Hence, we propose that the LC−FAIMS−MS/MS
workflow is a suitable complementary approach in phosphopro-
teomic analysis. Together, these observations open new
possibilities for in-depth characterization of interesting candi-
dates for their roles in FGF signaling and trafficking.
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