
 
 

University of Birmingham

High density micro-pyramids with silicon nanowire
array for photovoltaic applications
Rahman, Tasmiat; Navarro-Cia, Miguel; Fobelets, Kristel

DOI:
10.1088/0957-4484/25/48/485202

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Rahman, T, Navarro-Cia, M & Fobelets, K 2014, 'High density micro-pyramids with silicon nanowire array for
photovoltaic applications', Nanotechnology, vol. 25, no. 48, 485202. https://doi.org/10.1088/0957-
4484/25/48/485202

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 17. Apr. 2024

https://doi.org/10.1088/0957-4484/25/48/485202
https://doi.org/10.1088/0957-4484/25/48/485202
https://doi.org/10.1088/0957-4484/25/48/485202
https://birmingham.elsevierpure.com/en/publications/733e772b-3980-4de0-8d1d-b41277049a00


This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 147.188.254.138

This content was downloaded on 16/12/2015 at 14:19

Please note that terms and conditions apply.

High density micro-pyramids with silicon nanowire array for photovoltaic applications

View the table of contents for this issue, or go to the journal homepage for more

2014 Nanotechnology 25 485202

(http://iopscience.iop.org/0957-4484/25/48/485202)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/0957-4484/25/48
http://iopscience.iop.org/0957-4484
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


High density micro-pyramids with silicon
nanowire array for photovoltaic applications

Tasmiat Rahman, Miguel Navarro-Cía and Kristel Fobelets

Optical and Semiconductor Devices Group, Department of Electrical and Electronic Engineering, Imperial
College London, London SW7 2BT, UK

E-mail: tasmiat.rahman07@imperial.ac.uk

Received 9 June 2014, revised 11 September 2014
Accepted for publication 17 September 2014
Published 10 November 2014

Abstract
We use a metal assisted chemical etch process to fabricate silicon nanowire arrays (SiNWAs)
onto a dense periodic array of pyramids that are formed using an alkaline etch masked with an
oxide layer. The hybrid micro-nano structure acts as an anti-reflective coating with experimental
reflectivity below 1% over the visible and near-infrared spectral regions. This represents an
improvement of up to 11 and 14 times compared to the pyramid array and SiNWAs on bulk,
respectively. In addition to the experimental work, we optically simulate the hybrid structure
using a commercial finite difference time domain package. The results of the optical simulations
support our experimental work, illustrating a reduced reflectivity in the hybrid structure. The
nanowire array increases the absorbed carrier density within the pyramid by providing a guided
transition of the refractive index along the light path from air into the silicon. Furthermore,
electrical simulations which take into account surface and Auger recombination show an
efficiency increase for the hybrid structure of 56% over bulk, 11% over pyramid array and 8.5%
over SiNWAs.

Keywords: nanofabrication, optics, SiNWA, FDTD, pyramids, photovoltaic

(Some figures may appear in colour only in the online journal)

1. Introduction

Crystalline silicon bulk solar cells suffer from undesirable
high reflectivity because of silicon high permittivity (i.e.,
refractive index) and therefore exploring light trapping
mechanisms to better exploit the energy harvested from the
solar spectrum has grown considerable interest [1–7]. The
standard solution in the current market is based on anti-
reflective coatings made of silicon nitride (SiNx) [8]. This is
commonly deposited using plasma enhanced chemical vapour
deposition (PECVD). Alongside deposition methods, reflec-
tivity can also be reduced by texturing the silicon surface
which additionally enforces more scattering or light trapping.
This has the added benefit in solar cell applications of
increased p–n junction area. Texturing the surface can be

achieved via physical etching such as deep reactive ion
etching (DRIE), or chemical etching in the form of alkines
such as potassium hydroxide (KOH) or acids such as hydro-
fluoric (HF) acid. Utilizing wet chemical etching to form
textured surfaces is more cost effective for mass production
and thus advantageous over PECVD and DRIE.

At a micro-scale, pyramids have been a well acknowl-
edged light trapping mechanism in silicon solar cells [1–3]. A
random array of pyramids are commonly processed by
exposing mono-crystalline silicon into an alkaline solution.
This leads to anisotropic etching in which the etch rate in the
〈 〉100 direction is far greater than the 〈 〉111 . When this occurs
on a 〈 〉100 orientated wafer, a random array of pyramids of a
large range in size will form. Many different etchants can be
used, including aqueous solutions of tetramethylammonium
hydroxide (TMAH) [2], sodium hydroxide (NaOH) [9] and
KOH [10, 11]. The process is dependent primarily on the
temperature, concentration (conc.) of alkali solution and also
the surface quality of the silicon [10].
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At the sub-micron level, where the wavelength is at the
same scale as the feature size, nanowire arrays have been
utilized. Vertically aligned arrays of silicon nanowires (SiN-
WAs) are a growing technology field in photovoltaic (PV)
cells [5–7]. The current PV industry is dominated by crys-
talline or poly-crystalline Si in a planar p–n junction config-
uration. The use of SiNWAs within this industry has shown
great promise due to its application as an anti-reflective layer.
In fact, with SiNWAs absorption can be increased to above
90% for wavelength range 400–800 nm [12, 13]. Further-
more, the fabrication process of SiNWAs can be of low-cost
using metal assisted chemical etching (MACE) [14]. Other
methods such as vapour liquid solid [15] growth as well as
pattern and reactive ion etching (RIE) [16] also show promise,
forming more ordered arrays than the MACE process but
comes at a higher cost.

Here we use a combination of periodic pyramids and
nanowires to form a hybrid structure that will have the two
fold benefit of increased light absorption and junction area.
Instead of using pyramids randomly organized via alkaline
etching of bulk silicon, we fabricate a denser and periodic
array using oxide masks. In this work, the pyramids peri-
odicity varies from 4 μm to 1.6 μm, using an array of square
oxide masks with widths of 2 μm–800 nm. Vertical NWAs
are then etched onto these pyramids using MACE to reduce
the reflectivity further. The fabrication process of the hybrid
structure is scalable and can be cost effective.

This paper is organized as follows. In section 2 we dis-
cuss the optical computational modelling method and simu-
lation results. In section 3 we present and discuss the
experimental procedures to fabricate these structures and the
optical measured results. In section 4 we provide the electrical
study of our structures taking into account recombination
models. Finally, in section 5 we conclude our findings.

2. Simulation

We first simulate the SiNWA, pyramids and hybrid structures
to identify the optical benefits of each of them in PV appli-
cations. Current approaches to compute nanoscale optics
include finite difference time domain (FDTD) method [17],
finite element method (FEM) [18] and rigorous coupled-wave
analysis (RCWA) [19]. For the simulations performed in this
work, a commercial FDTD package is used [20]. This has the
benefit of efficient broadband 3D modelling over FEM and
RCWA. Modelling of SiNWAs has shown an increase in light
absorption, attributed to optical modes such as guided modes,
Bloch modes and Fabry–Perot resonances [17, 18, 21]. Fur-
thermore, it is shown that NWA optimization is dependent on
geometrical properties.

In this paper we extend the aforementioned work and
apply it to micro-nano surfaces. We provide a comprehensive
analysis on the influence of the diameter, roughness and
disorder to predict our experimental results. Furthermore, we
show how such arrays can be added to pyramid structures to
reduce the overall reflectivity and enhance photo-generation.

2.1. Method

FDTD calculates electromagnetic fields as a function of time
and utilizes Fourier transforms to calculate the spectral
response. We use a fitted model of multi-coefficients to
represent tabulated refractive index (n,k) data of silicon [22],
and a plane-wave to model the solar spectrum with wave-
length range 300–1000 nm. The plane-wave is injected from
the top of the simulation domain. Periodic boundary condi-
tions are applied in the x and y direction to replicate our array
structures, whilst perfectly matched layers have been used in z
direction (propagation direction) to absorb any reflected and
transmitted fields. This effectively implies that our substrate
and free-space are semi-infinite. Symmetric and antisym-
metric boundaries have been used to reduce computation time
when the unit cell allows it. A meshing algorithm is applied
by the solver to form a mesh as a function of the material
refractive index and interface structure. After a convergence
analysis, the maximum and minimum length of our mesh cell
is set to 14 and 2.5 nm, respectively. We also use a termi-
nation criteria of × −1 10 5, to ensure simulations end when
the spectral response obtained by the Fourier transformation
is valid. We measure the reflection (R) data from a monitor
placed at the top of our simulation domain. Since a semi-
infinite lossy Si substrate is modelled, absorption is

= −A R1 . A power absorption (Pabs) monitor is used to
automatically map a spatial absorption profile by recording
the electric field (E) intensity and imaginary part of the per-
mittivity (ε) [20]. This is proportional to the carrier generation
(G) by using the following relations:

ω ε= −P E0.5 imag( ), (1)abs
2

ω
=


G
P

. (2)abs

2.2. Results and discussion

The SiNWAs are modelled by placing cylinders of varying
shapes onto a silicon cuboid block of 200 nm × 200 nm ×
1 μm. Figure 1 illustrates the reflectivity of a 500 nm long
NWA with varying radius from 25 nm to 75 nm.

The features observed in this figure originate from the
material properties of Si and the modes supported by the
structure. The SiNW behaves like a circular dielectric wave-
guide whose eigenmodes are well-known [23]. For very small
radius and large wavelength the effect of the SiNW is mini-
mal and the reflection is similar to that of a bulk Si substrate.
However, for small wavelength, λ, the SiNW is no longer
insignificant and supports at least its fundamental mode.
Hence, the reflectivity drops for λ < 400 nm, because the
excited mode is absorbed at that wavelength in Si. Further-
more, as the small radius SiNW supports only the funda-
mental mode, the structure of the spectrum is relatively
simple. As the radius increases, absorption is triggered for the
whole spectrum. Higher order modes emerge, governed by
the radius of the NW, yielding additional structure in the
spectrum. Their onset is red-shifted [23], as seen in the red-
shift undergone by the dips (figure 1). The arrival of new
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modes also modifies the coupling between the incident plane-
wave and the already existing modes, which are eventually
absorbed. In this analysis we have neglected the interaction
between modes of neighbouring SiNWs to give a simple
physical insight. However, this assumption is arguably not
valid for SiNWs with radius approaching the unit cell size.
Hence, the difficulty to describe quantitatively the complex
spectrum displayed on the top part of figure 1.

In figure 2, the effect of the SiNW surface roughness is
investigated as well as the random variance of the NW radius,
representative for SiNWs from the MACE process. As a
reference, a SiNW of radius 75 nm and length of 500 nm is
used (see inset (a) in figure 2). The roughness is modelled by
a root-mean-squared height σ = 5 and 10 with a correlation
length =L 20c nm in the x, y direction and 170 nm in the z
direction, [20] (see inset (b) and (c) in figure 2). The hypo-
thetical random variance of the radius in the fabricated

samples is modelled by a periodic macro-cell with 9 different
SiNWs of radius 35, 40, 45, 50, 55, 60, 65, 70 and 75 nm (see
inset (d) in figure 2). In the case of the rough and disordered
NWAs, symmetric and antisymmetric boundaries are not
used. From the comparison of smooth (a) and rough SiNW
(b) and (c), it is evident that the addition of nm-scale
roughness to the SiNW surface has a minor effect on the
spectrum. There is an overall marginal red-shift of the spec-
trum as the roughness increases, which accounts for the
effective larger diameter of the SiNWs for a specific trans-
versal direction in x–y plane. This can be correlated to the red-
shift observed in figure 1 as the radius of the perfect circular
cross-section increases. Regarding the reflectivity intensity,
there is generally minimal change because the overall volume
of Si does not change. In the case of the pseudo disorder (d),
which models the disorder observed when producing NWs
using the MACE process, a reduction in the overall reflec-
tivity intensity is noticeable. This is an expected consequence
of the superposition of the different spectra associated to each
radius shown in figure 1.

Figure 3 compares the reflectivity of (a) bulk, (b) rough,
quasi random SiNWAs, (c) periodic pyramid, and (d) hybrid
structure. The pyramids used in these structures have a base
width of 2 μm and a height of 1.6 μm. The reflectivity of the
SiNWA is lower than the pyramid array, in accordance with
literature [24, 25]. The pyramid structure behaves like a
standard broadband absorber [26] as the pyramid geometry
provides a continuous change in effective permittivity, and
thus, tapers the impedance from that of free-space to bulk Si.
In comparison, the impedance of the SiNWAs can be
understood as a single step converter, which provides an
intermediate impedance between that of free-space and bulk
Si. In the hybrid structure an additional drop of the reflectivity
is observed due to the combined impedance matching effect.

In figure 4 the total carrier generation rate at the middle
cross-section plane for bulk, SiNWA, pyramids and hybrid
structures is given. This is an integration of the power
absorption due to an AM1.5 solar spectrum illumination. For

Figure 1. Reflectivity (%), represented by the colourbar, of various
NWA radius as a function of wavelength.

Figure 2. Reflectivity of SiNWs with varying roughness or disorder.
(a): Perfect SiNWA; (b) and (c): rough SiNWAs and (d) is the
pseudo disorder case.

Figure 3. Reflectivity of bulk, pyramids, NWA and pyramids-NWA.
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a bare Si substrate, the absorption profile is uniform along x,
has a maximum at the air–Si interface and decays along z, the
propagation direction. When SiNWAs are introduced, most of
the absorption happens in the SiNWAs because of the
waveguide modes, but still significant absorption occurs in
the Si substrate. For the pyramid case, in addition to the high
carrier generation at the air–Si interface, an absorption hot
spot arises at the centre of the pyramid. This absorption
profile can be explained by the lens effect of the pyramid. The
convex profile of the pyramid emulates a lens, concentrating
the incoming rays into a focal region. Finally, for the hybrid
structure, a superposition of the absorption profiles displayed
by the SiNWAs and pyramids alone is observed. The high
conc. of absorption in the SiNWAs should be seen as bene-
ficial for solar cells, as the carrier generation will be high near
the junction area.

3. Experiment

The fabrication of the hybrid structure consists of first, fab-
ricating an array of pyramid using a combination of photo-
lithography and alkaline etching, followed by a MACE pro-
cess to fabricate a NWA on top.

KOH has been used to fabricate the pyramids because of
its well controlled and reproducible behaviour [27]. The etch
rate is dependent on crystal orientation, temperature and conc.
of the etchant [28]. We have used a high conc. of KOH in
order to obtain smooth surfaces. It has also been proven that
isopropyl alcohol (IPA) improves the surface roughness due
to increased wettability of the solution [29].

MACE is a popular NW preparation method for solar cell
use, because it produces uniform NWs in terms of doping
profile, crystal orientation, density, size, and shape [14].
MACE can be a one or two-step process using Ag or Au as
catalysts [30–32]. We use a one step process because it allows
better control of the etch rate when fabricating NWAs of sub-
micron height [33].

Successful hybrid textured silicon surfaces have been
fabricated using a combination of an alkaline etch to form a
random pyramid array, followed by reaction ion etching to
form the nanowire array [24] as well as MACE etching
[6, 25, 34, 35]. Reflectivity of less than <3% in the wave-
length range of 300–1000 nm have been reported from this
texture.

In this paper we use photo lithography and an oxide mask
for the alkaline etching of a periodic, dense array of pyramids
with a MACE etched NWA on top. We will show that the

Figure 4. Spatial map of carrier generation rate (m−3 s−1), in logarithmic scale, of (a) bulk, (b) NWA, (c) pyramids and (d) pyramids-NWA.
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increase in density of the pyramids aids not only to light
absorption but also increases junction area for PV use.

3.1. Method

The method we use for defining the periodic hybrid structures
is as follows (see figure 5):

(i) Clean the silicon wafer (〈 〉100 , 1–10 Ω cm, phosphorous)
by first ultrasonicating in IPA for 2 min. This is then
followed by a piranha etch (3 : 1, conc. H SO2 4 : 30%
H O2 2 solution) step for 15 min to remove small organic
contamination.

(ii) Oxidation: growth of approx. 150 nm thick SiO2

(1050 °C, 1 h ramp, 4 h dwell time, −l1 h O1
2).

(iii) Lithography: deposit a 500 nm thin film of S1813. Bake
on hotplate for 1 min at 115 °C. Expose for 9 s at
7.2 mJ cm−2. Develop in MF319 for 25 s. Evaporate a
80 nm thick Cr layer onto the sample. Lift off the
photoresist by soaking in acetone and then sonication for
10 min. Plasma etch for 3 min (25 sccm Ar , 25 sccm
CHF3, 30 mTor, 20 °C, 200W) and then buffered oxide
etch (BOE) (6 : 1, 40% NH F4 : 49% HF) for approx. 20 s
to produce the oxide mask. Use Cr etchant (1 : 1: 8,
H N CeO8 8 18, HNO3, H O2 ) to remove chrome mask.

(iv) KOH etching: heat water bath to 80 °C. Mix 200 g KOH
in 200ml high performance liquid chromatography (HPLC)
water, then add 20ml IPA into beaker and place in water
bath. 40% KOH + 10% IPA. Once KOH solution is at
80 °C, dip the sample into BOE for 3 s and then place the
sample in etchant for desired time. Finally, rinse in water.

(v) In order to form short NWAs we use a single step etch
process which uses temperature as a catalyst. This
involves a reaction of 3 M HF : 0.06 M AgNO3 in a
1 : 1 ratio at a temperature of 5 °C. By varying the time
between 2–5 min we can achieve NWA lengths from
sub-micron to approximately 3 μm. The SiNWA is then
placed into concentrated nitric acid. This step is
important as it removes the remaining Ag on the samples.

3.2. Characterization

For optical measurements we use an ocean optics USB2000 +
VIS-NIR-ES spectrometer, which uses a 2048 element CCD
array with a detection range of 350–1000 nm. The light
source is a HL-2000-FHSA. This has a wavelength range of
360–1700 nm and color temperature of 2960 K. For reflection
measurements we make use of the reflection probe which
emits light from an outer shell of six cores, and collects the
reflected light from a larger inner core. The emission and
collection of light is perpendicular to the sample, thereby
collecting specular and diffuse reflections. In order to obtain a
reference spectrum for normalization, we use a high-reflec-
tivity specular reflectance standard. This mirror provides an
85–90% reflectance across a 250–800 nm range, and an
85–98% reflectance across the 800–2500 nm range.

3.3. Results and discussion

3.3.1. Fabrication. Figure 6 shows the SEM of the pyramid
arrays formed from three different oxide masks of varying
density. The parameters which define these pyramids are the

Figure 5. Schematic diagram of the process flow used to fabricate the dense array of pyramids. (A) Oxidation, (B) deposit resist, (C) expose
and develop using mask, (D) deposit Cr, (E) strip resist, (F) etch oxide, (G) remove Cr, (H) KOH etch of Si, (I) BOE of oxide layer.
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width and gap of the array of square oxide masks
( =W Wox gap), the KOH etch time (te), the resulting length
(Lp), base width (Wb) and top-face width (Wt). The parameters
of the different pyramid array are summarized in table 1.

In all cases the oxide mask is under-etched, resulting in
multi-faceted pyramids. The effect of the under-etch is larger
for the denser pyramid array, resulting in sharp tips rather
than flat-faced tops. The quality of the pyramid formation is
dependent on the quality of the surface prior to etching. The
crucial steps included a buffered HF dip prior to etching as
well as the presence of IPA in the alkaline solution.

Figure 7 shows the results of NWA etching both on the
pyramids as well as on the bulk region for an etch time of
3 min. The NWs etch into all faces of the pyramids and
thereby creates a NWA surface whilst pushing the pyramid
geometry deeper into the substrate. This is due to NWs on the
〈 〉100 plane etching perpendicular, whilst on the 〈 〉111 plane
at 45°. The overall size of the hybrid structure is the same as
the pyramid prior to MACE. The NWAs etch with a uniform
skyline and are well aligned. However, the length of the
NWA differs on the hybrid structure and the bulk region
despite having the same etch time. The length of NWA on
bulk is LNWA ≈ 1 μm, whilst on the hybrid structures only
LNWA ≈ 500 nm. Figure 8 shows the top view of the NWA
formation on bulk and the hybrid region. The inset gives the
side view at which two hybrid structures intersect. From this
we observe that the valleys in-between the pyramids are more
porous Si than NWAs. This indicates a different Ag
nucleation dynamics in the presence of surface structuring.
Figure 9 shows the formation of hybrid structures fabricated
via 1 min MACE process, thereby observing the predominant

Figure 6. SEM image of pyramid array of varying densities: (a) μ=W 2 mox , (b) μ=W 1 mox and (c) μ=W 0.8 mox . Inset give the top view
for the same area in each case.

Table 1. Parameters defining the pyramid geometry for a given oxide
mask size and etch time.

Wox(μm) te(min) Wb(μm) Wt(μm) L p(μm)

2 2 3.7 1.1 2.15
1 2 2 0.1 1.6
0.8 1 1.5 0.3 0.9

Figure 7. SEM image of a NWA on pyramids (top left and bottom)
and a NWA on bulk (top right).

Figure 8. SEM images illustrating NWA formation in bulk and
hybrid region (top) and also at the intersect between hybrid
structures (bottom left inset).
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effects of nucleation. We increase the area in-between the
hybrid structures by applying a short KOH etch time to our
least dense pyramid array. Whilst the bulk region contains
dendrites of a large variety of sizes, the valleys in-between the
hybrid structures contain minimal dendrites. The predominant
dendrite formation in the hybrid region occurs on the top face
of the pyramids, and the larger dendrites form by emerging
with other dendrites formed on the top of adjacent pyramids.
The reduced dendrite formation means less nucleation is
occurring in the valleys and thus explains the formation of
porous Si rather than NWA. Furthermore, the reduction in
dendrites is also suggested as the cause for reduced etch rates
in the hybrid structures. It has been reported that a lower
surface area of dendrites results in inefficient capturing of
silver ions for the redox reaction [36].

3.3.2. Optical measurements. Optical measurements were
taken on pyramids of μ≈W 4 mb and μ≈L 2 mp , μ≈W 2 mb

and μ≈L 1.5 mp and μ≈W 1.6 mb and μ≈L 1 mp , and also
their hybrid structures with ≈L 500 nmNWA .

Figure 10 shows the experimental reflection spectrum
for the four cases discussed in section 2, namely (a) bulk Si,
(b) SiNWAs, (c) pyramid array, and (d) hybrid structure. By
comparison against the numerical results shown in figure 3,
the agreement is excellent. As predicted, the lowest
reflectivity is exhibited by the hybrid structure, whose
benefit compared to SiNWAs is conspicuous for larger
wavelengths. The lower reflectivity observed experimentally
for SiNWAs and the hybrid structure stems from the larger
heterogeneity of the fabricated samples in terms of radius
size, which cannot be fully modelled because of computa-
tional limitations.

Finally, figure 11 shows the reflection spectrum for (a)
SiNWAs and (b), (c), (d) hybrid structures with varying
pyramid size, showing that increased density leads to reduced
reflectivity. In accordance with figure 10 and the simulations,

figure 3, all hybrid structures outperform SiNWAs by
repressing reflection in the higher wavelength range. Notice
that the higher density hybrid structures have a shallower
profile. This makes them more attractive for PV as the
junction depth is more optimal. The better performance of the
2 and 1.6 μm periodic hybrid structures with respect to the
4 μm periodicity is a result of the improved tapered
impedance matching. The 4 μm periodic hybrid array fails
to change the impedance smoothly from that of free-space as
a result of its flat rather than pointed top.

4. Electrical response

The PV characteristics of the different designs are modelled
using the technology computer aided design (TCAD) pack-
age, Synopsys Sentaurus [37], which is an industry standard
for device simulations [38–40]. This software package solves

Figure 9. SEM images illustrating dendrite formation: in bulk and
hybrid region (top), close up of bulk region (bottom left) and close
up of hybrid region (bottom right).

Figure 10. Reflectivity of (a) bulk, (b) NWA, (c) pyramids and (d)
pyramid-NWA structures.

Figure 11. Reflectivity of NWA and different density of hybrid
structure.

7

Nanotechnology 25 (2014) 485202 T Rahman et al



the opto-electronic transport equations [41] in which the key
computation in the device simulation is the electrostatic
potential determined by mobile (electrons and holes), and
stationary charges (ionized dopants and traps). The input data
for these simulations is the geometry of the structures, the
dopant profile, carrier generation profile and material
parameters.

The structure is generated by simulating the silicon fab-
rication processes that include isotropic/anisotropic deposi-
tion and etching. The initial substrate is a 〈 〉100 silicon slab,
20 μm thick and boron doping conc. of ×1 1015 cm−3. The
pyramid size formed after the etch has μ=W 1.6 mbase and
different NW radii (50–100 nm) to simulate the random
character of real NWAs. The spin on dopant (SOD) process is
simulated by depositing a layer of Phosphorous (P) dopant
with a conc. of ×5 1021 cm−3. P drive-in is done by annealing
at 900 °C for 1 min. The oxide formed is removed by an
anisotropic etch. The doping profiles of the various structures
are given in figure 12. The junction depth is approximately
40 nm, which leaves the NWs with a core-shell structure. The
carrier generation profile is solved using FDTD solutions
from Lumerical [20], and integrated into Synopsys Sentaurus
[37] to perform the electrical simulation under illumination.
The structure is kept consistent in both softwares and the data
is interpolated using Matlab, such that the Cartesian mesh
from Lumerical is mapped to the Delaunay mesh in Sen-
taurus. The default Si material parameters are used [41], as
well as the mobility and recombination models that have
particular significance in PV simulations. The doping
dependent mobility model takes into account impurity scat-
tering in doped materials [41]. Shockley–Read–Hall (SRH)
and Auger recombination, prevalent in high surface area and
highly doped structures, are also accounted for [41]. The SRH

recombination at the surface is defined as [41]:

=
−

+ + +( ) ( )
R

np n

n n s p p s
, (3)

i

n
surf,net
SRH , eff

2

1 p 1

where: =n n ei1 ,eff

E

kT

trap

, =
−

p p ei1 ,eff

E

kT

trap

, ni,eff is the intrinsic
carrier conc., Etrap is the difference between the defect level
and intrinsic level, k the Boltzmann constant, T the tem-
perature and sp n, is surface recombination velocity (SRV).
Due to the fabrication process, dangling bonds can exists at
the surface, causing interface trap states (IFS) which are
implicitly used in the equation (3).

In this work, we evaluate the influence of recombination
and traps on the electrical performance of the proposed
structures. Passivation of nanotextured silicon, via thermally
grown oxide, PECVD SiNx deposition or atomic layer
deposition of Al O2 3 is well documented [6, 42–46]. Data
obtained from these processing steps provide a lower and
upper bound for SRV and IFS in these simulations. It is
reported that SRV can reach as high as ×1 105 cm s−1 in
unpassivated surfaces whilst values as low as 10 cm s−1 have
been achieved with passivation [6, 42, 44–46]. Furthermore,
for SiNWs, trap states of donor type have been identified [47].
These are positively charged when empty and are neutral
when filled with an electrons, with a cross-sectional area of

× −1 10 14 cm2 [47]. The upper and lower bound for the conc.
of these traps are ×1 1011 cm−2 for passivated and ×1 1013

cm−2 for unpassivated NWs, respectively [43].
The electrical characteristics for the passivated case are

given in figure 13. This shows an increase in Jsc with respect
to bulk for pyramid, NWA and hybrid structures. Further-
more, the hybrid structure has the highest Jsc, whilst the Voc is
similar for all. Table 2 summarizes the PV parameters for
passivated (SRV = 10 cm s−1, IFS = ×1 1011 cm−2) and
unpassivated (SRV = ×1 105 cm s−1, IFS = ×1 1013 cm−2)
structures. Minimal change is observed for pyramid and bulk
structures, however the NWA structures are influenced by the
passivation process. For the passivated case, an efficiency

Figure 12. Net active (cm−3) doping profile of the four different
structures.

Figure 13. Current–voltage characteristics of the various structures
under AM1.5 illumination.
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increase of 56% is observed from bulk to hybrid, whilst 8.5%
increase is observed from NWA to hybrid. There is only a
small increase between the pyramid to NWA case. This
minimal increase is attributed to a trade off between lower
recombination in the pyramid case and higher carrier gen-
eration observed in the NWA case.

Figure 14 shows Jsc for the full range of SRV and IFS
concentrations. This shows the significant influence of passi-
vation on Jsc in the hybrid structures, with Jsc gradually
increasing as both IFS and SRV reduce. There is an acceleration
in Jsc reduction as the SRV increases above ×1 104 cm s−1 and
IFS conc. above ×5 1011 cm−2. Our results show that keeping
recombination and traps below this threshold is required to
benefit from the addition of NWAs to Si PV devices. These
values have been achieved for passivated SiNWAs etched via
the MACE process [6, 42, 45], which validates the feasibility of
hybrid structures for efficiency improvement.

5. Conclusion

In this work we have simulated and measured the optical
properties of hybrid micro-nano structures that consists of a
dense array of Si pyramids with MACE SiNWAs. The NWA

on the pyramids etch perpendicular to the 〈 〉100 plane and at
45° to the 〈 〉111 plane, maintaining a uniform skyline and are
well aligned. A reduced etch rate is observed in the hybrid
region, due to the geometry limiting the Ag nucleation and
thus dendrite formation. The hybrid structures with a pseudo-
disordered NWA are modelled using a FDTD method. The
results show that the combined pyramid-NWA structures
outperform that of NWA and pyramid alone. The disordered
NWA shows the lowest reflectivity by accumulating the
absorption of the different modes present in a NWA with
NWs of varying radius. The hybrid structure also shows an
increase in carrier generation profile. This is due to the
superposition of the lens-effect of the pyramid and the
impedance matching via the NWA between free-space and
bulk Si. Reflectivity is measured for bulk, NWA, pyramids
and the hybrid structures. The results of our simulation agree
well with the experimental data whereby the hybrid structures
outperform both pyramids and NWA alone, reducing reflec-
tivity below 1% for the case of 1.6 μm periodicity. Further-
more, reflectivity reduces with increased density of arrays.
The PV parameters of these structures are modelled using a
commercial TCAD package. The results show a strong
dependency on surface recombination whereby unpassiavated
structures do not translate an increase in carrier generation to
a noticeable increase in efficiency. However, given surface
passivation, the hybrid structure shows a significant improved
efficiency of 56% over bulk, 11% over pyramid array and
8.5% over NWA.
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