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Abstract: Prestressed concrete sleepers (or railroad ties) are designed in order to carry and transfer the 58 

wheel loads from the rails to the track foundation. Over a period of time, a railway track could experience 59 

various types of static and dynamic loading conditions, which are attributable to commercial train 60 

operations. Previous studies have established two main limit states for the design consideration of concrete 61 

sleepers: ultimate limit states under extreme impact and fatigue limit states under repeated probabilistic 62 

impact loads. Prestressed concrete has played a significant role as to maintain the high endurance of the 63 

sleepers under low to moderate repeated impact loads. In spite of the most common use of the prestressed 64 

concrete sleepers in railway tracks, their remaining lives are not deeply appreciated nor taken into account 65 

for track maintenance and renewal. This experimental investigation was aimed at determining the residual 66 

prestressing force of railway concrete sleepers after revenue services using the dynamic relaxation 67 

technique. Fifteen sleepers were extracted from a heavy haul rail network for testing using experimental 68 

facilities at the University of Wollongong Australia. Structural evaluation program included quasi-static 69 

bending tests, dynamic impact tests, and tests to establish the current level of prestress in the steel wires 70 

using the dynamic relaxation technique. Two of the sleepers were evaluated for the level of prestressing 71 

forces in accordance with Australian Standards. It is found that the level of prestress determined using the 72 

dynamic relaxation technique turned out to be significantly lower than that expected from the theoretical 73 

analysis of time-dependent prestressing losses for the concrete sleepers.  74 

 75 

Keywords: Prestressed concrete sleeper; Remaining prestressing force; Accumulative damage; Dynamic 76 

relaxation technique; Ballasted railway track. 77 
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Introduction 78 

In Australia, railway prestressed concrete sleepers have been used in a rail network for nearly 35 79 

years in comparison with those experiencing about 50 years in European and Japanese rail 80 

networks. The railway sleepers (or called ‘railroad tie’ in the US) are a main part of railway track 81 

structures. Its main duty is to distribute loads from the rail foot to the underlying ballast bed. Based 82 

on the current design approach, the design life span of the concrete sleepers is also considered 83 

around 50 years (Standards Australia, 2003). Typical ballasted railway tracks and their components 84 

are shown in Figure 1. During their life cycles, railway track structures experience static, dynamic 85 

and often impact loading conditions due to wheel/rail interactions associated with the abnormalities 86 

in either a wheel or a rail (Remennikov and Kaewunruen, 2008). It was found that the magnitude of 87 

the dynamic impact loads per railseat is varying from 200 kN and sometimes can be more than 600 88 

kN, whilst the design static wheel load per railseat for a 40-tone axle load could be only as much as 89 

110 kN. In principle, wheel load is an important factor in design and analysis of railway track and 90 

its components. The design load (F*) for the limit states design concept takes into account both the 91 

static (Fs) and dynamic (Fi) wheel loads. There are three main steps in designing the concrete 92 

sleepers. First, the design actions or loads are to be determined based on the importance level of the 93 

track (e.g. F* = 1.2 Fs + 1.5 Fi). Then, the design moment can be achieved by converting the design 94 

load to sleeper bending moment envelopes using advanced railtrack dynamic analysis or the design 95 

formulation (Kewunruen and Remennikov, 2008; 2009). Last, the strength and serviceability of the 96 

prestressed concrete sleepers can be optimized in accordance with AS3600 Concrete structures 97 

(Standards Australia, 2001). 98 

Recent studies showed that it is very likely that a railway sleeper could be subjected to 99 

severe impact loads, resulting in a rapid deterioration of its structural integrity and durability 100 

(Esveld, 2001; Kaewunruen, 2007; Leong, 2007; Kaewunruen et al., 2014). A major research effort 101 

at the University of Wollongong (UOW) has revealed that the failure of a railway sleeper is more 102 

likely due to the cumulative damage rather than due to only a once-off extreme event, which might 103 
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occur due to the derailment or the terrorist attack. However, it was found that, for prestressed 104 

concrete sleepers, the low magnitude but high cycle impact fatigue tend to be insignificant in 105 

comparison with the high magnitude but low cycle impact fatigue (Ye et al., 1994; Wang, 1996; 106 

Wakui et al., 1999; Gustavson 2002; Stevens and Dux, 2004; and Kaewunruen, 2007). According to 107 

the literature review, it appears that there exists no research investigation into residual condition or 108 

remaining life prediction of concrete sleepers. These have caused either incorrect or inefficient asset 109 

management under constantly changing operations in the real world. This practical issue has 110 

resulted in an initiative to investigate the existing condition of railway concrete sleepers and to 111 

develop a standard guidance for predicting the remaining life of such component. The strength and 112 

capacity of concrete sleepers depend largely on the prestressing force and bonds between steel 113 

strands and concrete (Warner et al., 1998). Loss of prestress can generally be classified into two 114 

stages: initial loss and time-dependent loss. Initial loss of prestress in concrete sleepers (due to 115 

elastic shortening, bond and friction, and anchorage set) at the release of prestress was measured to 116 

be between 20 and 27 percent - depending on the type of strands, bond characteristics, concrete 117 

materials and the workmanship during the processes of prestress release (Kaewunruen, 2007). Over 118 

the time, the concrete sleepers experience various traffic loads and may incur any damages and 119 

cracks, resulting in a further time-dependent loss in prestress level (due to shrinkage and creep of 120 

concrete, and relaxation of steel). The phenomena also incur even without external loading.  This 121 

paper addresses a part of the main initiative with respect to the determination of remaining 122 

prestressing force in concrete sleepers after a period of service life using dynamic relaxation 123 

method.  124 

This investigation arose from planned expansion of the traffic on the heavy haul coal line in 125 

New South Wales (NSW), Australia. The company planned to double the traffic on that coal line 126 

and was concerned about the ability of its railway concrete sleepers (SRA types 1 and 2 concrete 127 

sleepers on the coal line) to carry the increased traffic loads. The sleepers on that coal line were 128 

manufactured and installed in 1982-84. A cluster of fifteen in-service concrete sleepers that were 129 
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installed in a heavy haul rail network were pulled out from the rail track and shipped to the 130 

structures laboratory at UoW, Australia. Visual inspections and laboratory material testings were 131 

conducted at the initial stage of the project. Two of the sleepers were evaluated for the level of 132 

prestressing forces based on the design method in accordance with Australian Standards. This paper 133 

presents the experimental study into the remaining prestressing force of existing aged prestressed 134 

concrete sleepers. Also demonstrated are the engineering characteristics of materials used for 135 

manufacturing concrete sleepers. 136 

 137 

Experimental Overview 138 

Test specimens 139 

Fifteen sleepers were retrieved from the heavy-haul coal line and delivered to UOW in July 140 

2011 for testings in accordance with Australian Standards AS1085.14 (2003). The railway operator 141 

and maintainer confirmed that the sleepers were typical heavy-duty sleepers manufactured around 142 

1982. Design parameters detailing concrete strength, level of prestress, design moment capacities 143 

were not available and therefore could not be used in this project for the direct comparison of the 144 

current design parameters to the original design parameters at the time of sleeper manufacture. 145 

However, it was reported from industry practices that the permissible stresses and design 146 

restrictions of the concrete sleepers back in 1980s are very similar to those in existing standards 147 

(Standards Australia, 2003). There was not much change in the standard design methodology and 148 

inputs over the past decades. The design characteristics as tabulated in Table 2 were thus adopted 149 

from AS1085.14 and AS3600, respectively  (Standards Australia, 2003; 2001) 150 

In this investigation, two test specimens are typical full-scale prestressed concrete sleepers 151 

commonly used in Australia, as shown in Figure 2. Two test specimens were selected to 152 

demonstrate the variation and importance of detecting prestressing loss in currently used aged 153 

concrete sleepers. The prestressed concrete sleepers are often the main part of the standard-gauge, 154 

heavy-haul rail tracks. The measured dimensions of the prestressed concrete sleeper are given in 155 
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Table 1.  The cross-sections of the prestressed concrete sleeper were optimized for specific load 156 

carrying capacities at different functional performances for rail seat and mid span. The prestressing 157 

tendons are the chevron-patterned indented wires of about 5mm diameter (Standards Australia, 158 

2003). The high strength concrete material was used to cast the prestressed concrete sleepers, with 159 

design compressive strength at 28 days of 50-55 MPa, and the prestressing steels used were the high 160 

strength with rupture strength of 1700 MPa (or 0.2% proof stress of 1530 MPa). The cored samples, 161 

drilled from the sleepers, were taken for a confirmation test, as per the Australian Standard 162 

AS1012.14 (Standards Australia, 1991), as shown in Figure 3. Although the common concrete 163 

strength adopted for design is 50 MPa, it was found that condition of the concrete at the test age of 164 

about 30 years (since 1982) was deteriorated. From visual inspection, it could be observed that the 165 

high strength prestressing wires were of high quality and the strength would not rapidly change 166 

during time.  167 

 168 

Material testing 169 

Core samples were taken from the two sleepers. The cored samples, drilled from the 170 

sleepers, were taken to confirm the material properties of the tested concrete sleepers, in accordance 171 

with the Australian Standard AS 1012.14 (1991). The standard recommends avoiding the top layer 172 

of a concrete member, as it may be of lower strength than the bulk of the concrete. There can be a 173 

strength gradient within the concrete, increasing with depth below the surface resulting from curing 174 

and consolidating effects. In their manufacture, the sleepers are cast upside down, therefore coring 175 

from the bottom was avoided. 176 

The ends of the two sleeper specimens were cut clean from the rest of the sleeper at the 177 

location of the rail seat, as shown in Figure 4. The sleeper ends were then placed upright and the 178 

cores extracted from the freshly cut interior face. Cores were extracted from between the two rows 179 

of prestressing wires from each of the two specimens. 180 
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Once the cylindrical cores were extracted from the sleeper ends, they were checked for 181 

overall smoothness, steps, ridges and grooves. The ends of the samples were trimmed and finished 182 

to a smooth flat surface with the length-to-diameter ratio maintained at 2:1. 183 

 184 

Dynamic relaxation technique  185 

Experimental verification of prestressing force in the prestressing wires was conducted using 186 

a dynamic relaxation technique. Dynamic relaxation is a process whereby 100 percent relaxation of 187 

the steel wire is induced in an instant, relieving all remaining prestress (Otter et al., 1966; Saiidi et 188 

al., 1994; Nawy, 1996; Lundqvist, 2012). Using the technique of dynamic relaxation, the 189 

prestressing force in the prestressed wires was determined. With the knowledge of the final state of 190 

strain in the wires after relaxation and Hooke’s law for the prestressing steel, the prestressing force 191 

was calculated for the individually tested wires. To perform the test, three specimens were prepared. 192 

Two sleepers extracted from the coal line under investigation were prepared in accordance with 193 

Australian Standards (1991, 2001, 2003) while an additional concrete sleeper (similar type) 194 

removed from another mixed-traffics railway track in NSW was used for comparison and validation 195 

of the results. 196 

The top 30 mm of concrete cover was removed from the specimens to expose the top row of 197 

the reinforcing wires near the centre of the sleepers. The mid-span position was chosen to ensure 198 

adequate anchorage zone of prestressing tendons surrounding the test zone. A small area of concrete 199 

was removed from underneath the wires to eliminate the steel-concrete bond and ensure complete 200 

freedom of the wires for longitudinal displacement during the test as shown in Figure 5. In total, less 201 

than 5 percent of concrete was removed axially along the sleepers in order to ascertain that the 202 

concrete cover removal did not critically affect the prestress level and eccentricity according to 203 

AS3600 (Standards Australia, 2001). The wires were polished and cleaned and had strain gauges 204 

with a 2 mm gauge length attached by using dynamic strain gauge epoxy resin as shown Figure 6. 205 

The strain gauges were attached to symmetrical wires on each specimen. The strain gauges were 206 
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connected to the high-speed data acquisition system. The data logger was calibrated to process and 207 

capture changes in axial strains at the rate of 10,000 data points per second, anticipating a very 208 

sudden relaxation of the wires. 209 

After attaching the strain gauges to the wires, the strain gauged wires were cut one at a time 210 

using bolt cutters, as seen in Figure 7. The cutting process was swift and very minimal disturbance 211 

on the dynamic strains can be observed in Figure 8. Cutting the wires released the tensile stress that 212 

the wires were subjected to during prestressing. Rapid removal of this stress provoked axial 213 

vibration of the steel wire that was recorded as a time history of strains by the high-speed data 214 

logger. Note that the residual effect of strain relaxation on the condition of strain gauges is 215 

negligible as shown in the final state of strains in Figure 8. It was observed that the dynamic strains 216 

could be acquired reliably using dynamic strain gauges and there was no slip nor delamination of 217 

strain gauges after the tests.  218 

 219 

Material Properties 220 

Five compressive tests were conducted using compression testing apparatus in the High Bay 221 

laboratory at the University of Wollongong. The tests were performed in accordance with concrete 222 

compressive testing procedures outlined in AS 1012.9-1999 (Standards Australia, 1999). Table 3 223 

presents the results of concrete compressive tests. The average compressive strength of the tested 224 

core samples was found to be 44.2 MPa. 225 

The typical characteristic concrete compressive strength (after 28 days) in prestressed 226 

concrete sleepers is 50 MPa. It was expected that the 30-year old concrete sleepers would develop 227 

compressive strength around 65-80 MPa (Kaewunruen and Remennikov, 2010; 2014), thus the 228 

experimentally determined concrete strength of 44.2 MPa (+ 4 MPa) was much lower than that 229 

expected. There was no known reason for such significant degradation of the concrete compression 230 

strength over the service life period, unless the sleepers were originally manufactured with very low 231 

strength of concrete of around 25-30 MPa. 232 
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Experimental results and discussion of dynamic relaxation tests 233 

Figures 8 (a) and (b) present the time histories of axial strain from the dynamic relaxation of 234 

the wires for the two sleepers tested. The graphs demonstrate how the strain relaxed over a very 235 

short period of time before settling on a final constant value representing the actual prestressing 236 

force. Upon cutting, the sudden release of prestressing force causes the exposed portion of wire to 237 

undergo a rapid shortening along its length, expressed as a sudden drop in strain on the graphs. Due 238 

to the inertial effects, the wire segment vibrates with rapidly decreasing amplitudes due to damping 239 

and friction effects generated by the steel-concrete interface. The calculated differential strain from 240 

the initial prestressed state to the final relaxed state is approximately 2000 microstrain for both 241 

sleepers tested, as seen in Figures 8 (a) and (b). 242 

Adopting a modulus of elasticity of 200 GPa for the steel tendons and using the 243 

experimentally determined axial strain of 2000 microstrain, the steel wire stress can be calculated as 244 

s s,1 = Es ×es,1 = 200´103( ) MPa( ) 0.002( )= 400MPa            (1) 245 

With the 0.2% proof stress of 1530 MPa, the theoretical design value of prestressing stress 246 

should be about 0.85 x 1530 = 1300 MPa. Allowing for 20% initial loss of prestress at the sleeper 247 

centre, the design stress in the steel wires should have been 1040 MPa in the top row of wires. This 248 

shows that the experimentally determined level of prestress is just about 40 percent of the expected 249 

stresses in the prestressing tendons in the coal-line sleepers tested herein. 250 

The experimentally determined values of the prestressing force were validated by utilising 251 

the same experimental procedure to determine the level of prestress in a heavy-duty sleeper (similar 252 

type) extracted from the mixed-traffic track near Wollongong, NSW. It is estimated that the heavy-253 

duty sleeper has been in service for about 10 years and subjected predominately to suburban train 254 

loads. 255 

 Figure 9 demonstrates the time histories for the axial strains from the dynamic relaxation of 256 

the top row wires at the centre of heavy-duty sleeper. One can notice that the average measured 257 
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strain from relaxation for the two wires was approximately 5200 microstrain. Adopting a modulus 258 

of elasticity of 200 GPa for the steel and using the experimentally determined axial strain of 5200 259 

microstrain, the steel wire stress can be calculated as 260 

s s,2 = Es ×es,2 = 200´103( ) MPa( ) 0.0052( )=1004MPa     (2) 261 

which is reasonably close to the theoretical design stress of 1040 MPa in the top row of wires at the 262 

sleeper centre, or about 23% loss from the initial design prestress, which is justifiable. According to 263 

AS1085.14 (Standards Australia, 2003), the prestress level at transfer only (or without any applied 264 

wheel load) should remain approximately consistent. Note that the overall cross-section relationship 265 

between fibre stresses (), prestressing forces (Ps) and eccentricity (e) can be correlated as: 266 

   = 
g

s

g

s

I

yeP

A

P 
         (3) 267 

where  y is the moment-arm distance from neutral axis, Ag and Ig are the gross area and moment of 268 

inertia of cross section, respectively. 269 

Based on the validating results for the heavy-duty sleeper, it is believed that the 270 

experimentally determined value of prestress is justified, and it indicates significant loss of prestress 271 

in some existing coal-line sleepers tested in this programme. One possible explanation of the above 272 

phenomenon is illustrated in Figure 10, showing one of the tested sleepers with a significantly 273 

damaged end. This type of concrete damage may have resulted in the loss of bond between the steel 274 

wire and the concrete and reduction in the level of prestress in the steel wire. But, the second sleeper 275 

tested did not have significant concrete damage and also showed a very low level of the prestress. It 276 

is therefore recommended that the proposed experimental technique for determining the level of 277 

prestress in the existing concrete sleepers is adopted as part of assessment of remaining life of 278 

sleepers in the existing heavy haul train lines. 279 

 280 

Conclusions 281 

This paper presents a part of the investigation arose from the planned expansion of the 282 
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traffic on the heavy-haul coal lines by a rail operator and maintainer. There was a concern whether 283 

the railway concrete sleepers would be capable of carrying the increased traffic loads. Note that the 284 

concrete sleepers on that coal line were manufactured and installed in 1982-84.  285 

Accordingly, fifteen aged concrete sleepers that were installed in the heavy haul rail network 286 

were extracted from the rail track and shipped to the structures laboratory at the University of 287 

Wollongong (UOW), Australia. Visual inspections and laboratory material testings were conducted. 288 

The sleepers were evaluated for their current positive and negative bending capacities, fatigue 289 

resistance, and resistance to impact loading. Several sleepers were evaluated for the current level of 290 

prestressing forces in accordance with Australian Standards. 291 

The visual inspection of the concrete sleepers revealed that there were potential problems 292 

with durability of the sleepers. Concrete spalling of sleepers due to tamping damage, poor 293 

construction, and loss of concrete section due to abrasions were among the problems that could 294 

cause the rapid deterioration of strength and serviceability. 295 

It is found that the dynamic relaxation technique is a suitable procedure for the 296 

determination of the level of prestress in existing aged concrete sleepers. Using this technique, it 297 

was possible to detect the existing sleepers in which the current level of prestress in the steel wires 298 

was only 40 percent of the design value. The experimental results demonstrated that loss of 299 

prestress could be linked to the integrity of the concrete material, which could be used for initial 300 

screening of the existing concrete sleepers with a view of detecting defective sleepers. This 301 

information is also critical for predicting remaining life of concrete sleepers in existing railway 302 

tracks and their ability to sustain higher wheel loads or higher train speeds when expansion of the 303 

traffic is planned. 304 

It is important to note that loss of prestress affects serviceability (rail gauge widening, cant 305 

dynamics, rotational capacity at rail seats, dynamic geometry and deflection, etc.) and durability (i.e. 306 

fatigue life, crack propagation, etc.) of sleepers.  The future investigations will include the material 307 

strengths, structural capacity, spectrum of impact loads from the wheel impact detectors, and 308 
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responses of the concrete sleepers to impact and fatigue loading conditions, in order to predict their 309 

remaining capacity of concrete sleepers to cater for the current or planned increased traffic loads. 310 
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 383 

Table 1.  Dimensions and masses of the test sleepers  384 

Mass 

(kg) 

Gauge length 

(m) 

Total length 

(m) 

At railseat (m) At centre (m) 

   width depth width depth 

206.0 1.60 2.50 0.20 0.23 0.21 0.18 

 385 

 386 

 387 

 388 

 389 

Table 2.  Design properties of materials  390 

Materials Elastic modulus 

(MPa) 

Compressive strength (MPa) Tensile strength (MPa) 

Concrete 38,000 55 6.30 

Prestressing tendon 200,000 - 1,700 

Steel rails 205,000 - - 

 391 

 392 

 393 

 394 

Table 3.  Tested compressive strength of concrete 395 

Core No Mean diameter 

(mm) 

Ultimate load  

(kN) 

Compressive strength  

(MPa) 

1 54.20 114 49.4 

2 54.39 100 43.1 

3 54.18 90 39.1 

4 54.24 102 44.1 

5 54.26 105 45.4 

Average   44.2 
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 413 

Figure 1. Typical components of railway tracks. 414 
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Figure 2. Condition of concrete sleepers 442 
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 462 

Figure 3. Preparation of concrete samples (left: coring machine; and right: cored concrete samples 463 

prior to compression testing).  464 
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Figure 4. Freshly cut sleeper end ready for coring (SRA1) 468 
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Figure 5. Preparation of specimens for dynamic relaxation tests 482 
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Figure 6. Two-millimetre strain gauges attached to prestressing wire 488 
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Figure 7. Cutting of prestressing wires 499 
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a) Coal-line Sleeper #1 526 

 527 

Figure 8. Dynamic relaxation of prestressing force in prestress tendons for coal-line sleepers 528 
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b) Coal-line Sleeper #2 542 

 543 

Figure 8. Dynamic relaxation of prestressing force in prestress tendons for coal-line sleepers 544 
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Figure 9. Dynamic relaxation of prestressing force in prestress tendons for ROCLA sleepers 557 

(validating test) 558 
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Figure 10. Sleeper end damage possibly resulting in considerable loss of prestress 574 
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