UNIVERSITY^{OF} BIRMINGHAM University of Birmingham Research at Birmingham

A pragmatic randomized controlled trial to evaluate the effectiveness of a facilitated exercise intervention as a treatment for postnatal depression: the PAM-PeRS trial

Daley, Amanda; Blamey, R. V.; Jolly, Catherine; Roalfe, A. K.; Turner, K. M.; Coleman, Sarah; Mcguinness, M.; Jones, I.; Sharp, D. J.; Macarthur, C.

DOI: 10.1017/S0033291715000409

License: None: All rights reserved

Document Version Peer reviewed version

Citation for published version (Harvard):

Daley, A, Blamey, RV, Jolly, C, Roalfe, AK, Turner, KM, Coleman, S, Mcguinness, M, Jones, I, Sharp, DJ & Macarthur, C 2015, 'A pragmatic randomized controlled trial to evaluate the effectiveness of a facilitated exercise intervention as a treatment for postnatal depression: the PAM-PeRS trial', *Psychological Medicine*, vol. 45, no. 11, pp. 2413-2425. https://doi.org/10.1017/S0033291715000409

Link to publication on Research at Birmingham portal

Publisher Rights Statement: Copyright © Cambridge University Press 2015

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

•Users may freely distribute the URL that is used to identify this publication.

•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.

•User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

1 A pragmatic randomised controlled trial to evaluate the effectiveness of a facilitated

2 exercise intervention as a treatment for postnatal depression: the PAM-PeRS trial

- 3
- 4 AJ Daley¹, PhD, senior lecturer in health psychology, a.daley@bham.ac.uk
- 5 RV Blamey¹, BMed Sc research fellow, r.v.blamey@bham.ac.uk
- 6 K Jolly², PhD, professor of public health and primary care, c.b.jolly@bham.ac.uk
- 7 AK Roalfe¹, MSc, senior lecturer in medical statistics, a.k.roalfe@bham.ac.uk
- 8 KM Turner³, PhD, senior lecturer in primary care, katrina.turner@bristol.ac.uk
- 9 S Coleman¹, BA Hons, research associate, s.j.coleman.1@bham.ac.uk
- 10 M McGuinness⁴, PhD, consultant clinical psychologist, Mary.McGuinness@bsmhft.nhs.uk
- 11 I Jones⁵, MRCPsych, PhD, professor of perinatal psychiatry, jonesir1@cf.ac.uk
- 12 DJ Sharp³, FRCGP, PhD, professor of primary care, Debbie.Sharp@bristol.ac.uk
- 13 C MacArthur², PhD, professor of maternal and child epidemiology, c.macarthur@bham.ac.uk
- 14
- ¹Primary Care Clinical Sciences, School of Health and Population Sciences, University of
 Birmingham, UK
- ²Public Health, Epidemiology and Biostatics, School of Health and Population Sciences,
- 18 University of Birmingham, UK
- ¹⁹ ³Academic Unit of Primary Health Care, University of Bristol, Bristol, UK
- ⁴Perinatal Mental Health Service, The Barberry, Birmingham and Solihull Mental Health
 Foundation Trust, Birmingham, UK
- ⁵Institute of Psychological Medicine & Clinical Neurology, Cardiff University, Cardiff,
- 23 Wales, UK
- 24

25 Corresponding author

- 26 Professor Kate Jolly
- 27 Public Health, Epidemiology and Biostatics
- 28 School of Health and Population Sciences
- 29 University of Birmingham, UK
- 30 0121 4147552
- 31 c.b.jolly@bham.ac.uk
- 32
- 33
- 34 Word count: 4230
- 35 Number of Tables:4; number of figures 1; supplementary tables 2
- 36
- 37

38 Abstract

39 **Background**: Postnatal depression affects about 10-15% of women in the year after giving 40 birth. Many women and healthcare professionals would like an effective and accessible non 41 pharmacological treatment for postnatal depression.

Methods: Women who fulfilled the ICD-10 criteria for major depression in the first six 42 43 months postnatally were randomised to receive usual care plus a facilitated exercise 44 intervention or usual care only. The intervention involved two face to face consultations and 45 two telephone support calls with a physical activity facilitator over six months to support participants to engage in regular exercise. The primary outcome was symptoms of depression 46 47 using the Edinburgh Postnatal Depression Scale (EPDS) at six month post-randomisation. 48 Secondary outcomes included EPDS score as a binary variable (recovered and improved) at 49

six and 12 month post-randomisation.

Results: 146 women were potentially eligible and 94 were randomised. 34% reported 51 thoughts of self-harming at baseline. After adjusting for baseline EPDS, analyses revealed a -

52 2.04 mean difference in EPDS score, favouring the exercise group (95% CI: -4.11 to 0.03,

53 p=0.05). When also adjusting for pre-specified demographic variables the effect was larger

54 and statistically significant (mean difference=-2.26, 95% CI:-4.36 to -0.16, p=0.03). Based on

55 EPDS score a larger proportion of the intervention group were recovered (46.5% versus

56 23.8%, p=0.03) compared with usual care at six months follow-up.

57 Conclusions: This trial shows an exercise intervention that involved encouragement to 58 exercise and to seek out social support to exercise may be an effective treatment for women 59 with postnatal depression, including those with thoughts of self-harming.

60

50

61 Keywords: exercise, postnatal, postpartum, depression, primary care

62

63 Introduction

64 Postnatal depression affects about 10-15% of women in the year after birth (O'Hara et al., 1996; Gaynes et al., 2005) with symptoms including low mood, fatigue, anxiety, thoughts 65 66 of self harming and poor mother-infant interactions (Beck, 1992, 1995; Murray, 1992; Cooper et al., 1995; American Psychiatric Association, 2000). Current treatments recommended for 67 68 postnatal depression include antidepressants and psychological therapies (National Institute 69 for Health and Care Excellence [NICE], 2007). There are some risks in taking antidepressants 70 and reluctance amongst new mothers to take them (Turner et al., 2008; Turner et al., 2010). 71 Although non pharmacological interventions can be effective (Dennis et al., 2007; Morrell et 72 al., 2009; Sharp et al., 2010) there can be long waiting lists to access treatment and they can 73 be costly. Exercise has the potential to address barriers associated with traditional treatments: 74 it is free, accessible and is without stigma or side effects (Daley et al., 2007; Lewis et al., 75 2014).

76 The American College of Obstetrics and Gynecology, (2002) and NICE (2007) in 77 England have stated that self help strategies such as exercise should be considered as a 78 treatment for postnatal depression, although this guidance from NICE was based on evidence 79 at the time from trials that had recruited general populations and two small trials of women at 80 risk of postnatal depression. A systematic review with meta-analysis by the trial authors 81 found five small trials in women at risk of postnatal depression, but no samples with *clinically* 82 defined depression (Daley et al., 2009). The review showed that exercise significantly 83 reduced postnatal depression scores relative to comparators, but significant heterogeneity was 84 present and the effect size became non-significant when the trial that included exercise with 85 social support was excluded (Armstrong et al., 2003). We recently updated this review 86 (Blamey et al., 2012) and no further trials that had recruited women with clinically diagnosed 87 depression have been published.

88 It remains uncertain therefore whether exercise reduces symptoms of postnatal 89 depression and a high quality trial in women with clinically diagnosed depression was 90 considered essential. Following a pilot trial this RCT evaluated the effectiveness of a 91 facilitated exercise intervention as a treatment for postnatal depression alongside any usual 92 care compared with a group who only received usual care (Daley et al., 2008). The study was 93 purposively designed as a pragmatic trial where women were eligible for inclusion regardless 94 of whether they were receiving or not receiving other specific treatments (i.e. antidepressants 95 or psychological intervention) because it would not have been safe or ethical to interrupt or 96 withdraw usual care and test exercise alone until there is evidence that exercise is likely to 97 provide benefit in this population. We hypothesised that participants receiving the exercise 98 intervention would report lower depressive symptoms scores at follow up than those receiving 99 usual care.

100 **Design and overview**

101 Setting and participants

147 family medicine practices in Birmingham, UK were invited to assist with 102 103 recruitment, 67 agreed. Recruitment commenced in April 2010 and follow up completed in 104 April 2013. Women were eligible if they were within six months of giving birth, aged 18 105 years or more and had an ICD-10 diagnosis of a major depressive episode (WHO, 2011), 106 following initial screening using the Edinburgh Postnatal Depression Scale (EPDS) (Cox et 107 al., 1987) and a clinical diagnostic interview (Lewis et al., 1992). Women with a diagnosis of 108 mixed anxiety and depression were also eligible. Patients were excluded if they were 109 pregnant again, experiencing psychotic symptoms or dependent on illicit drugs or alcohol. 110 Women needed to be currently inactive (not meeting the current guidelines for physical 111 activity) (DOH, 2011).

112 Patient identification and diagnosis of depression

4

113 Women who had recently given birth and who lived within two primary care trusts in 114 Birmingham were identified from the Child Health System (CHS), a centralised computer 115 registration system of all new births in the areas which allowed systematic identification of 116 women in the 67 participating family medicine practices. Every two weeks the CHS 117 completed search lists of new births in participating practices and mailed the trial information 118 letter and EPDS to these women. Women were sent this at 10-14 weeks after birth and there 119 were several reasons for this; many women feel overwhelmed when they have a new baby to 120 care for and may be less inclined to participate in a research study in the first few weeks of 121 giving birth. Having a contact date of 10-14 weeks, rather than shortly after giving birth, 122 gave women the chance to get into a routine with their baby before committing to a long term 123 research study. Symptoms of depression in some cases can resolve naturally after a period of 124 adjustment to the baby and this study was focused on identifying those women who would 125 need assistance with resolving their depression. Women who scored 10+ on this first EPDS 126 (EPDS-1) then completed a second EPDS (EPDS-2) two weeks later by telephone to rule out 127 the possibility of transient depression. Women who scored 13+ on EPDS-2 then completed 128 the Clinical Interview Schedule-Revised (CIS-R) (Lewis, 1994; Jenkins et al., 1997) at a 129 home visit to ensure they met the ICD-10 criteria for experiencing a major depressive 130 episode.

131 Other recruitment methods

Women who presented with depression after six weeks, but within six months of giving birth were also able to participate via referral from their GP or health visitor. Health professionals from two perinatal mental health community services were also able to refer women. Women identified in these ways also had to meet all the study entry criteria as previously described.

137 Outcomes, process measures and allocation of participants to trial groups

138 The primary outcome was difference in mean EPDS score (adjusted for baseline) 139 between the groups at six month follow-up. We used the EPDS as our primary outcome of 140 symptoms of depression so that we could compare the results with other postnatal depression 141 treatment trials as the use of the EPDS is standard practice within postnatal depression 142 research. It can be very difficult to obtain high follow up in women with postnatal depression 143 and using the EPDS, rather than a clinical interview, was considered to provide the best 144 opportunity to achieve high follow up rates.

145 Secondary outcomes were difference in mean EPDS score at 12 month follow up and 146 rates of improved and recovered responses on the EPDS at follow up. Participants completed 147 the SF-12 (Ware et al., 1996), EQ-5D (Brooks, 1996), a body image subscale (Kumar et al., 148 1984) the subjective vitality scale (Bostic et al., 2000) and items relating to perceived social 149 support (Sallis et al., 1987; Singleton et al., 2003) and self-efficacy for exercise (Sallis et al., 150 1988) were also completed. Body weight and height were measured objectively. Physical 151 activity was measured by self report (IPAQ-short) (Craig et al., 2003) and objectively using 152 the Actiheart device.

153 During intervention weeks 4, 8, 12, 16, 20 the intervention group were asked to 154 complete exercise diary logs as previously used in our pilot trial (Daley et al., 2008). Logs 155 were completed with the physical activity facilitator (PAF) in person, over the telephone or 156 sent/returned by post.

157

Randomisation, concealment and blinding

158 An internet randomisation service was used to allocate participants to the trial groups 159 and was concealed from researchers involved in recruiting and randomising participants. The 160 allocation sequence was generated using a computer programme with random permuted 161 blocks of size 10. Participants were randomised into one of two trial groups (50:50 split) and 162 further randomised for wearing the Actiheart or not (60:40 split). The randomisation was

stratified by EPDS score (13-16 and 17+). The person delivering the intervention was not
involved in recruiting participants. Participants, researchers and those delivering the
intervention could not be blinded to group allocation. The primary outcome, EPDS score,
was completed by postal questionnaire (along with other secondary outcomes).

167 **Data collection**

Eligible women were asked to provide written informed consent. At baseline and six and 12 month post randomisation follow up, the questionnaires were mailed to participants and collected at home visits by the research team or returned by post. Those randomised to wear the Actiheart had the device fitted at the home visit. The research team collected the Actiheart from these participants and the IPAQ was then completed. Participants who had worn the Actiheart at baseline were asked to wear it again at follow up. Participants were asked to wear it the Actiheart for three consecutive days and to then complete the IPAQ.

175 Intervention

176 A detailed description of the six month intervention can be found in the published 177 protocol (Daley et al., 2012). The initial goal (weeks 1-12) was for participants to progress 178 towards accumulating 30 minutes of moderate intensity exercise on three days per week. 179 During weeks 13-24 participants were encouraged to work towards accumulating 30 minutes 180 of moderate intensity exercise on 3-5 days per week. Similar to our pilot trial (Daley et al., 181 2008) the intervention involved two face to face personalised exercise consultations (during 182 months 1 and 2) and telephone calls (during months 3 and 4). The face to face consultations 183 were centred on equipping women with the skills, knowledge and confidence needed to 184 participate in regular exercise and were delivered by a PAF in participants homes. 185 Consultations lasted between 40-60 min. Participants were given a pedometer. Four weeks 186 later participants had a second consultation centred on the prevention of relapse back to an 187 inactive lifestyle and/or improving maintenance of an active lifestyle. Telephone support

188 calls (15-20 minutes) were made during months three and four of the intervention.

189 Information leaflets were mailed in months three, four, five and six of the intervention to

190 further encourage exercise participation.

191 Usual care comparator

Usual care could have included women spontaneously consulting their GP and given active treatment or just consultation to discuss symptoms, or informal counselling from their health visitor or referral by their health visitor to the GP, or that they consulted no one and had no treatment. The usual care group were sent the study "*Looking after yourself*" leaflet at baseline and exercise was not further encouraged beyond receipt of this single leaflet.

197 Sample size and statistical analyses

A sample size of 83 patients randomised to each group (n=166) would be sufficient to detect a 1.95 (SD =3.9, Heh et al., 2008) unit difference in EPDS score between the groups at the six month follow-up with 90% power, 5% significance level. This increased to 104 in each arm when allowance was made for a 20% dropout rate at six month follow-up (n=208). When considered as a continuous variable two EPDS points is considered a moderate effect size change (0.5 SD) (Matthey, 2004).

204 All analyses used the intention to treat principle, whereby participants were analysed 205 in the group to which they were randomised. All participants that had complete data for the 206 EPDS at 6 months were included in the primary analysis. The primary analysis compared 207 mean EPDS score at six month post randomisation follow-up between trial groups, adjusting 208 for baseline scores using analysis of covariance. EPDS-2 score was used as the baseline 209 score. Similar analyses were conducted for the secondary outcomes (except physical activity) 210 adjusting for baseline outcome score and baseline EPDS. Secondary analyses adjusted for 211 baseline score, baseline EPDS and covariates (age, baseline weight and ethnicity) again using 212 analysis of covariance. To explore longer term effects, a repeated measures mixed model

analysis of the primary and secondary outcomes was undertaken, comparing groups across the
follow ups. Adjustments were made for covariates as previously described. Bootstrapped
analyses (1000 repetitions) were performed where residuals were non-normally distributed.

216 To assess clinically meaningful change on the EPDS following the principles of 217 Jacobson and Truax (1991), analysis of the proportion of women per group who were 218 'recovered' (i.e. a reduction in EPDS score of four points or more plus scored less than 13 219 points) versus not recovered (Matthey, 2004) was conducted using Chi-squared tests. 220 Categorising data in this way provides a better indication of whether real changes have 221 occurred at the level of the individual participant (refer to Jacobson and Truax 1991 and 222 Matthey 2004 for a more detailed discussion). In addition, in order that we could compare 223 our findings with other previous postnatal depression treatment trials we compared those who 224 improved (i.e. proportions below 13 on the EPDS) versus not improved.

The IPAQ results were negatively skewed and comparison between the groups was undertaken using quantile regression analysis, with baseline physical activity included as a covariate. All statistical analysis was carried out using SAS version 9.2 and Stata version 12.

228 **Results**

229 Study invitations and EPDS-1 were sent by CHS to 9983 women and 1068 were 230 returned (10.7%). An additional 82 women recruited via other methods completed EPDS-1. 231 Of these, 436/1150 (37.9%) scored 10+ on EPDS-1, of whom 146/436 (33.5%) scored 13+ on 232 EPDS-2 two weeks later and were offered a home visit to diagnose depression using the CIS-233 R and to assess other eligibility criteria. Of these 146 women, 100 (68.5%) were fully eligible 234 and 94 were randomised (Figure 1). The characteristics of responders and non-responders to 235 EPDS-1 were similar in terms of age, deprivation (McLennan et al., 2011) and ethnicity. 236 **Randomisation and participants' baseline characteristics**

237 Our sample size calculation indicated that 166 participants needed to be recruited, 238 rising to 208 with 20% loss to follow up. We did not meet this target and 94 participants were 239 randomised to the exercise plus usual care group (n=47) or the usual care only group (n=47). 240 Table 1 describes the baseline characteristics which shows a good balance between groups on 241 these variables, although more usual care participants were receiving 242 counselling/psychological support than the intervention group (21% versus 7%). The 243 majority of participants lived in the two highest deprivation quartiles (74/94, 79%) and 37% 244 (35/94) were of non-white ethnicity. The questionnaire assessments (EPDS and/or CIS-R) 245 showed that a large proportion of participants had thoughts of self-harming (32/94, 34%). 17 246 (18.1%) participants were diagnosed on the CIS-R with a severe depressive episode, 50 247 (53.2%) moderate severe episode, 15 (15.9%) mild episode and 12 (12.8%) were diagnosed 248 with mixed anxiety and depressive disorder. These diagnoses were balanced across groups.

249 Information about follow up

Rates of breastfeeding, risk of self harm, use of antidepressants and counselling (and both treatments) at six and 12 month post randomisation (supplementary Table 1). More usual care participants were also receiving psychological support at follow up than in the exercise group.

At six months post randomisation 85/94 (90.4%) participants completed follow up for the primary outcome and at 12 months post randomisation the follow up rate was 79/94 (84.0%). Participants lost to follow up tended to be marginally younger compared to those who were followed up but were similar in terms of group allocation, baseline mean EPDS score, deprivation quartile score (McLennan et al., 2010) and ethnicity.

259 **Primary outcome**

After adjusting for baseline scores, analyses revealed a -2.04 point mean difference in EPDS score , favouring the exercise intervention group (95% CI: -4.11 to 0.03, p=0.053). When adjusting for baseline EPDS score and pre-specified demographic variables, the mean difference increased and was statistically significant (-2.26, 95% CI, -4.36 to -0.16, p=0.03). Tables 2 and 3.

265 Secondary outcomes

At six months significantly more of the intervention group were considered 'recovered' and no longer a case (46.5% versus 23.8%, p=0.03) compared to usual care. By 12 months, the proportions considered 'recovered' (i.e. a reduction in EPDS score of four points or more plus scored less than 13 points) had increased in both groups (51.2% versus 36.8%) but the difference between the groups was reduced and not statistically significant. Table 4.

272 The exercise group had significantly higher social support scores than usual care at six 273 months in both adjusted models however the effect was not sustained at 12 months. In the 274 fully adjusted analysis there was some evidence of a difference in vitality scores at 6 months, 275 favouring the exercise group (p=0.054), but this effect was not significant at 12 months 276 (p=0.09). The exercise group reported significantly lower social support at 12 months for 277 exercise–family rewards scores (p=0.04) than usual care when adjusting for baseline score, 278 but there was no significant difference between the groups in the fully adjusted model (Tables 279 2 and 3).

There were no significant differences between the groups on any of the physical activity outcomes derived from the IPAQ (supplementary table 2). Only eight participants (8.5%) wore the Actiheart and provided useable data for analyses at both six and 12 months follow up. These data are therefore not reported since they do not provide reliable information on which to base any conclusions (see discussion later) but it is available from the first author on request.

286 Intervention implementation and adherence to the intervention goals

Delivery of the various intervention components was very high; 41/47 (87%)
participants received all four individual contacts (two consultations and two telephone support
calls, 43/47 (91.4%), 44/47 (93.6%) and 46/47 (97.9%) received at least three, two and one
respectively of the individual intervention contacts.

291 A total of 163/235 (69.4%) (i.e. 47 participants x 5 logs) of the exercise logs were 292 completed by the intervention group, with the majority (40/47) completing at least 3/5 logs. 293 Only four participants failed to complete a single log. In the logs participants reported 294 completing an overall average of 146 (SD=142) min of moderate/vigorous exercise. The 295 exercise group reported increased levels of exercise over the course of the intervention; in 296 logs one to five participants reported means per week of 161.1, 217.5, 203.2, 222.5 and 245.0 297 min of moderate/vigorous exercise respectively (range equates to 23-35 min per day). The 298 most common types of exercise reported were brisk walking with pram, brisk walking without 299 pram, exercise DVDs, Wii fit workouts, jogging and swimming.

300 Discussion

301 Women diagnosed with postnatal depression and randomised to a facilitated home 302 based exercise intervention for six months reported lower mean EPDS scores than those 303 randomised to usual care only. Depressed women were twice as likely to report a clinically 304 meaningful change in their EPDS score (i.e. 'recovered') at six months follow up if they had 305 been randomised to the exercise intervention. These results emerged despite the fact that 306 substantially more (between two-three fold higher) usual care participants were receiving psychological support at baseline and six month follow up than the exercise group. The 307 308 benefits of the intervention were seen only at six months follow up but given the longer term 309 adverse effects of postnatal depression for the mother and the development of the baby this is 310 the most critical time to offer treatment.

311 The magnitude of the difference in mean EPDS scores between the groups was of a 312 moderate size (Affonso, 2000; Matthey, 2004). This is smaller than the overall size found in 313 our meta analysis (Daley et al., 2009) of exercise for postnatal depression (-4.00 EPDS points, 314 95 % CI: -7.64 to -0.35), but which largely included small studies with high drop-out and less 315 stringent inclusion criteria than used here. In particular, none of the previous trials had 316 recruited women with a *clinical diagnosis* of depression after giving birth. These findings 317 should however be considered in light of the relatively low response (11%) to the initial 318 invitation letter meaning it is possible that women who were more motivated to be active 319 were recruited to the trial.

320 Our findings are broadly comparable with those reported for other types of treatments 321 for postnatal depression. In the RESPOND trial (n=254) (Sharp et al 2010), which initially 322 randomised women to antidepressants or non-directive counselling but which also allowed 323 women to stop one treatment and start the other or add the other treatment to the first one, 324 reported the proportion of women improving (scoring 13 or less on the EPDS) was 62% for 325 antidepressants and 51% for listening visits 18 weeks after randomisation. These proportions 326 are similar to the proportions considered as improved (56%) and recovered (47%) in our study 327 at six months follow up. The PONDER trial (Morrell et al., 2009) compared the effectiveness 328 of health visitors providing psychological support for one hour per week over eight weeks 329 compared to usual care in women (n=418) considered at risk of postnatal depression (EPDS 330 \geq 12). The difference in EPDS score between the groups in was 2.1 points (95% CI -3.3 to -331 0.9) (adjusted) favouring the intervention group, very similar to our reported mean group 332 difference and confidence intervals.

The exercise intervention group also had higher social support scores at six months indicating that they felt more supported than usual care. Exercise can provide a reason for engaging with others and as part of this intervention participants were encouraged to find 336 social support, to ask friends/family to support them with their exercise. Findings suggest the 337 intervention group were able to achieve this and plausibly benefitted from doing so. This is 338 important because women with postnatal depression can become isolated at a time when they 339 need support the most. Exercise may be a vehicle by which these women (and health 340 professionals responsible for their care) can engage others in their social networks to offer 341 support. Moreover, most forms of exercise typically involve some level of engagement or 342 connection with others, whether that is by attending exercise groups/classes or taking a walk 343 in the local community for example.

344 No significant differences between the groups at follow up were recorded for self-345 reported physical activity; there are several plausible explanations for this. Usual care may 346 have over reported their exercise which is common in the general population. The 347 intervention group however were taught how to accurately assess and report their exercise as 348 a way of self-monitoring their progress so were made more aware of what constitutes 349 different intensities of exercise, potentially resulting in this group reporting their exercise more accurately than usual care. As individuals can increase their exercise without 350 351 professional support, usual care may have increased their exercise following informed 352 consent. It is also possible that the intervention group did not achieve higher exercise levels 353 compared to usual care.

We are not able to corroborate the self-reported exercise data using data from the Actiheart (objective assessment) because so few women were prepared to wear the device at follow up. Many participants found the Actiheart uncomfortable and/or it interfered with breastfeeding so removed it. However, the logs completed by the exercise group throughout the intervention showed that this group reported increasing their exercise levels over time and maintained participation in at least 150 minutes of moderate/vigorous intensity exercise per week. A real increase in exercise may explain the significant improvements in psychological outcomes for the women in the intervention group relative to usual care, but other
mechanisms are also possible. It is possible the improvements in psychological outcomes are
due to non-specific effects associated with the contacts with the PAF, which may have been
perceived as therapeutic by women. It may also have been that the PAF acted as a
mechanism for women to seek out additional social support to help them with their exercise
endeavours, and it is this social support that facilitated improvement in their mental health.

367

385

Strengths and limitations of the study

368 The response rate was relatively low and whilst we did not meet our recruitment target 369 the size of difference seen in EPDS score exceeded the pre-specified effect size in our sample 370 size calculation. Several alternatives strategies were used during the trial to try and improve 371 recruitment but with varied success. To facilitate recruitment future trials will need to involve 372 several centres and/or recruit over several years. A very recent trial of depression (Krusche et 373 al., 2014) found that an intensive advertisement campaign that targeted community settings 374 (e.g. adverts on buses, social media and regular radio adverts) was very cost effective. Our 375 trial had minimal involvement from mass media and in future trials this might be a useful 376 supplement to the recruitment strategies used here. This is the largest exercise RCT of any 377 postnatal women considered to be depressed and the only study to recruit women with a 378 clinical diagnosis of depression. This study was extremely rigorous in determining a 379 diagnosis of depression, using a two stage process that resulted in an ICD-10 diagnosis of a 380 major depressive episode or mixed anxiety and depression, rather than only a high score on a 381 screening questionnaire as used in all previous studies. The effect of the intervention on 382 EPDS score are in line with larger high quality studies that have evaluated other treatments 383 for postnatal depression, providing reassurance about the robustness of our findings. 384 At baseline most women were experiencing a severe/moderate depressive episode and

34% reported thoughts of self-harming demonstrating recruitment of those women clearly in

386 need of intervention. A large proportion of participants were of non-white ethnicity (37%) 387 and/or living in the two highest IMD deprivation quartiles (79%); typically these populations 388 are very difficult to recruit to mental health treatment trials. Loss to follow up was very low 389 (6% at 6 months, 16% at 12 months). We are not able to be certain of the exact mechanism of 390 effect by which the intervention improved outcomes but we do know the intervention group 391 achieved the behavioural goals asked of them during the exercise intervention. Nevertheless, 392 this trial provides the first steps of evidence and the foundation for further studies on this 393 question in women with clinically defined postnatal depression. Studies that focus on 394 investigating potential mechanisms of effect in this population are needed. 395 Conclusions

This trial contributes new evidence to indicate that a facilitated exercise intervention that involved encouragement to exercise and to seek out social support to exercise may be an effective treatment for women experiencing postnatal depression, including those at risk of self-harming.

400 Funding

- 401 This study was funded by the National Institute for Health Research School for Primary Care
- 402 Research. AD is supported by a National Institute for Health Research Senior Research
- 403 Fellowship. CM and KJ are part funded by the NIHR through the Collaborations for
- 404 Leadership in Applied Health Research and Care for West Midlands (CLAHRC-WM)
- 405 programme. The views expressed in this publication are those of the authors and not
- 406 necessarily those of the NHS, the National Institute for Health Research or the Department of
- 407 Health. 408

409 Acknowledgements

- 410 We would like to thank patients and staff who participated in the study and members of the
- 411 trial steering committee, particularly Professor Nanette Mutrie. We would also like to thank
- 412 the Mental Health Research Network for their help with recruiting participants and for
- 413 developing the trial website. We would also like to thanks the Primary Care Clinical
- 414 Research and Trial Unit at the University of Birmingham for their help with developing the
- 415 study database and recruiting participants.

416 **Contributors:**

- 417 AD, KJ, CM, AR, DS, KT, MM and IJ were responsible for the initial proposal, secured
- 418 funding for the study and drafted the original protocol. RB and SC also contributed to
- 419 drafting the published protocol. AD as the principal investigator had overall management
- 420 responsibility for the study. RB as trial coordinator was responsible for the day to day
- 421 conduct of the study. SC delivered the intervention. RB prepared the data from the actihearts
- 422 for analysis. AR conducted the sample size calculations, wrote the analysis plan and
- 423 conducted the statistical analyses. AD wrote the initial draft of the manuscript with assistance
- 424 from CM and KJ. All authors contributed to and approved the final manuscript. Amanda
- 425 Daley is the guarantor.

426 **Ethics approval:**

- 427 Favourable ethical opinion was granted for this study by the Birmingham, East, North and
- 428 Solihull Research Ethics Committee. Reference 09/H1206/94.

429 Data sharing

- 430 Additional data can be obtained from the corresponding author for the purposes of secondary
- 431 research.
- 432 422 **C C**
- 433 **Conflict of interest disclosures**
- 434 None.
- 435
- 436 **ISRCTN trial registration**: CCT-NAPN-13286.
- 437

438	References
439	
440	Affonso DD, De AK, Horowitz JA, Malberry LJ. (2000). An international study exploring
441	levels of postpartum depressive symptomatology. Journal of Psychosomatic Research 49,
442	207–216.
443	
444	American College of Obstetrics and Gynecology (ACOG) (January 2002) Committee
445	Obstetric Practice. ACOG Committee opinion. Number 267, Exercise during pregnancy and
446	the postpartum period. Obstetrics and Gynecology 99, 171-173.
447	
448	American Psychiatric Association. (2000). Diagnostic and Statistical Manual of Mental
449	Disorders. American Psychiatric Association: Washington DC.
450	
451	Armstrong K, Edwards H. (2003). The effects of exercise and social support on mothers
452	reporting depressive symptoms: A pilot randomized controlled trial. International Journal of
453	Mental Health Nursing 12, 130-138.
454	
455	Beck C. (1995). The effects of postpartum depression on maternal-infant interactions: A
456	meta analysis. Nursing Research 44, 298-304.
457	
458	Blamey RV, Daley AJ, Jolly K. (2012). Exercise for postnatal psychological outcomes: a
459	systematic review and meta-analysis. Lancet 38, S25.
460	
461	Bostic TJ, Rubio DM, Hood M. (2000). A validation of the subjective vitality scale using
462	structural equation modeling. Social Indicators Research 52, 313-324.
463	
464	Brooks R. (1996). EuroQol: the current state of play. <i>Health Policy</i> 37, 53-72.
465	
466	Chief Medical Officers of England, Scotland, Wales, and Northern Ireland. (2011). Start
467	Active, Stay Active. A report on physical activity for health from the four home countries'
468	Chief Medical Officers. Department of Health.
469	(http://www.dh.gov.uk/en/Publicationsandstatistics/Publications/PublicationsPolicyAndGuida
470	<u>nce/DH_128209</u>). Accessed 09 June 2014.
471	

472	Cooper PJ, Murray L. (1995). Course and recurrence of postnatal depression. Evidence for
473	the specificity of the diagnostic concept. British Journal of Psychiatry 166, 191-195.
474	
475	Cox J, Holden J, Sagovsky R. (1987). Detection of postnatal depression. Development of
476	the 10-item Edinburgh Postnatal Depression Scale. British Journal of Psychiatry 150, 782-
477	786.
478	
479	Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, Pratt M,
480	Ekelund, U, Yngve, A, Sallis, JF, Oja, P. (2003). International physical activity
481	questionnaire: 12-country reliability and validity. Medicine and Science in Sports and
482	Exercise 35 , 1381-1395.
483	
484	Daley AJ, Jolly K, MacArthur C. (2009) The effectiveness of exercise in the management
485	of postnatal depression: Systematic review and meta-analysis. Family Practice 26,154-162.
486	
487	Daley AJ, Jolly K, Sharp DJ, Turner KM, Blamey RV, Coleman SJ, McGuinness M,
488	Roalfe AK, Jones I, MacArthur C. (2012). The effectiveness of exercise as a treatment for
489	postnatal depression: Study protocol. Biomed Central Pregnancy and Childbirth 12, 45.
490	
491	Daley AJ, MacArthur, C, Winter H. (2007). The role of exercise as a treatment for
492	postnatal depression: A review. Journal of Midwifery and Women's Health 52, 56-62.
493	
494	Daley AJ, Winter HR, Grimmett, C, McGuinness M, McManus R, MacArthur C.
495	(2008). The feasibility of an exercise intervention in depressed postnatal women: A pilot
496	randomised controlled trial. British Journal of General Practice 58, 178-183.
497	
498	Dennis C-L, Hodnett E. (2007). Psychosocial and psychological interventions for treating
499	postpartum depression. Cochrane Database of Systematic Reviews 4, Art.No: CD006116.
500	
501	Gaynes BN, Gavin N, Melzer-Brody S, Lohr KN, Swinson T, Gartlehner G, Brody, S.
502	(February 2005). Perinatal depression: prevalence, screening accuracy and screening
503	outcomes. Summary, Evidence Report/Technology Assessment no.119. Prepared by RTI-
504	University of North Carolina Evidence based Practice Center under contract No.290-02-

505	0016.). AHRQ Publication No.05-E006-1. Rockville, MD: Agency for Healthcare Research
506	and Quality.
507	
508	Heh S, Huang L, Ho S, Fu Y, Wang L (2008). Effectiveness of an exercise support
509	program in reducing the severity of postnatal depression in Taiwanese women. Birth 35: 60-
510	65.
511	
512	International Classification of Disease and Health Related Problems version 10. World
513	Health Organisation, (2011).
514	(http://www.who.int/classifications/icd/ICD10Volume2_en_2010.pdf.) Accessed 09 June
515	2009.
516	
517	Jacobson NS, Traux P (1991). Clinical significance: a statistical approach to defining
518	meaningful change in psychotherapy research. Journal of Consulting Clinical Psychology 59,
519	12-19.
520	
521	Jenkins R, Lewis G, Bebbington P, Brugha T, Farrell M, Gill B, Meltzer, H. (1997). The
522	National Psychiatric Morbidity Surveys of Great Britain – initial findings from the Household
523	Survey. Psychological Medicine 27, 775–89.
524	
525	Kumar R, Robson KM, Smith AM. (1984). Development of a self-administered
526	questionnaire to measure maternal adjustment and maternal attitudes during pregnancy and
527	after delivery. Journal of Psychosomatic Research 28, 43-51.
528	
529	Krusche A, Rudolf von Rohr I, Muse K, Duggan D, Crane C, Williams JM. An evaluation of
530	the effectiveness of recruitment methods: the staying well after depression randomized controlled
531	trial. Clin Trials 2014; 11: 141-9.
532	
533	Lewis G. (1994). Assessing psychiatric disorder with a human interviewer or a computer.
534	Journal of Epidemiology and Community Health 48, 207–10.
535	

536	Lewis BA, Gjerdingen DK, Avery MD, Sirard JR, Guo H, Schuver, K., Marcus, B.H.
537	(2014) Randomized trial examining a physical activity intervention for the prevention of
538	postpartum depression: The healthy mom trial. Mental Health and Physical Activity 7, 42-49.
539	
540	Lewis G, Pelosi A, Araya R, Dunn G. (1992). Measuring psychiatric disorder in the
541	community: a standardised assessment for use by lay interviewers. Psychological Medicine
542	22 , 465-488.
543	
544	Matthey S. (2004). Calculating clinically significant change in postnatal depression studies
545	using the Edinburgh Postnatal Depression Scale. Journal of Affective Disorders 78, 269–72.
546	
547	McLennan D, Barnes H, Noble M, Davies J, Garratt E. (March 2011). The English
548	Indices of Deprivation 2010. Department for Communities and Local Government. London.
549	(https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/6320/1870718
550	<u>.pdf</u>). Accessed 09 June 2010.
551	
552	Morrell CJ, Slade P, Warner R, Paley G, Dixon S, Walters SJ, Brugha, T, Barkham, M,
553	Parry, GJ, Nicholl, J. (2009) Clinical effectiveness of health visitor training in
554	psychologically informed approaches for depression in postnatal women: pragmatic cluster
555	randomised trial in primary care. British Medical Journal 338:a3045.
556	
557	Murray L. (1992). The impact of postnatal depression on infant development. Journal of
558	Child Psychology and Psychiatry 33, 543-561.
559	
560	National Institute for Health and Clinical Excellence. (2007). CG45 Antenatal and
561	postnatal mental health. Clinical Management and Service Guidance. London: NHS
562	
563	O'Hara M, Swain A. (1996). Rates and risk of postpartum depression-a meta analysis.
564	International Review of Psychiatry 8, 37-54.
565	
566	Sallis JF, Grossman RM, Pinski RB, Patterson TL, Nader PR. (1987). The development
567	of scales to measure social support for diet and exercise behaviours. Preventive Medicine 16,
568	825-836.
569	

570	Sallis JF, Pinski RB, Grossman RM. (1988). The development of self-efficacy scales for
571	health-related diet and exercise behaviours. Health Education Research 3, 283-292.
572	
573	Sharp DJ, Chew-Graham C, Tylee A, Lewis G, Howard L, Anderson I, Abel K, Turner
574	KM, Hollinghurst SP, Tallon D, McCarthy A, Peters TJ. (2010). A pragmatic randomised
575	controlled trial to compare antidepressants with a community-based psychosocial intervention
576	for the treatment of women with postnatal depression: the RESPOND trial. Health
577	Technology Assessment 14 (43).
578	
579	Singleton N, Lewis G. (2003). Better or worse: A longitudinal study of the mental health of
580	adults living in private households in Great Britain. Office for National Statistics, Her
581	Majesty's Stationery Office, London.
582	
583	Turner K, Chew-Graham C, Folkes L, Sharp D. (2010). Women's experiences of health
584	visitor delivered listening visits as a treatment for postnatal depression: a qualitative study.
585	Patient Education and Counseling 78, 234-9.
586	
587	Turner K, Sharp D, Folkes L, Chew-Graham C. (2008). Women's views and experiences
588	of antidepressants as a treatment for postnatal depression: a qualitative study. Family Practice
589	25 , 450-5.
590	
591	Ware JE, Kosinski M, Keller SD. (1996). A 12-Item Short-Form Health Survey:
592	Construction of scales and preliminary tests of reliability and validity. Medical Care 34, 220-
593	233.

	Exercise	Usual care
	(N=47)	(N=47)
	n (%)	n (%)
Age (years) mean (sd)	31.7 (5.3)	29.3 (5.7)
EPDS [0-30] mean (sd)	17.3 (3.0)	17.5 (3.7)
EPDS score* 13-16	20 (43)	20 (43)
17+	27 (57)	27 (57)
Thoughts of self-harming	14 (30%)	18 (38%)
IMD quartile 1 (least deprived)	3 (6)	4 (9)
2	7 (15)	6 (13)
3	13 (28)	9 (19)
4 (most deprived)	24 (51)	28 (60)
Ethnic origin		
White	27 (57)	32 (68)
Mixed	3 (6)	2 (4)
Indian	3 (6)	3 (6)
Pakistani	7 (15)	5 (11)
Bangladeshi	1 (2)	0 (0)
Black-African	2 (4)	1 (2)
Black-Caribbean	0 (0)	1 (2)
Chinese	1 (2)	0 (0)
Other	3 (6)	3 (6)
Number of children mean (sd)	2.2 (1.2)	2.2 (1.4)
Number with children aged 2-5 years	25 (53)	22 (47)
Number with children aged over 5 yrs	14 (30)	12 (26)
Other occupants - Husband	40/45 (89)	41/47 (87)
Relative	7/30 (23)	6/26 (23)
Step-children	1/25 (4)	2/23 (9)
Age of baby at randomisation (days) mean (sd)	117.3 (26.5)	121.8 (27.9
Height (m) mean (sd)	1.63 (0.06)	1.64 (0.06)
Weight (kg) mean (sd)	76.2 (13.4)	76.8 (17.0)
BMI mean (sd)	28.8 (5.0)	28.5 (5.8)
Smoker	9/46 (20)	9/47 (19)
Experiencing long term illness	7/47 (15)	7/47 (15)
Prescribed antidepressants before	18/39 (46)	12/37 (32)
or during pregnancy	10/39 (10)	12/37 (32)
Currently taking antidepressants	10/46 (22)	10/47 (21)
Currently having counselling/psychological support	3/46 (7)	10/47 (21)
Currently taking antidepressants plus having	1(2)	6(13)
counselling/psychological support	- (/	-(10)
Employment status:		1
Paid	17/46 (37)	25/47 (53)
Self employed	0/46 (0)	2/47 (4)
Unemployed	7/46 (15)	5/47 (11)
Student	1/46 (2)	2/47 (4)
Looking after home/family	20/46 (43)	13/47 (28)

Table 1: Baseline characteristics of randomised participants

0/46 (0) 1/46 (2)	0/47 (0)
1/46 (2)	
(=)	0/47 (0)
5 (2 to 10.5)	4 (2 to 10)
35/47 (74)	36/46 (78)
22/47 (47)	27/44 (61)
39/47 (83)	35/46 (76)
5.4 (3.3)	5.7 (2.7)
16/47 (34)	20/46 (44)
27/47 (57)	31/46 (67)
6/47 (13)	6/46 (13)
7/47 (15)	5/46 (11)
7/47 (15)	4/46 (9)
0 (0 to 5)	0 (0 to 4)
	35/47 (74) 22/47 (47) 39/47 (83) 5.4 (3.3) 16/47 (34) 27/47 (57) 6/47 (13) 7/47 (15) 7/47 (15)

*Stratification variable. Higher score on EPDS indicates high levels of probable depression

Outcomes	Intervention		Usual care	
	Mean (sd)	Ν	Mean (sd)	Ν
Questionnaires				
Vitality scale [1-7]	2.8 (0.7)	46	2.8 (0.6)	47
PCS-12 [0-100] mean (sd)	52.7 (7.9)	47	51.0 (9.4)	47
MCS-12 [0-100] mean (sd)	30.8 (7.9)	47	31.2 (7.9)	47
EQ-5D [-0.59-1.0] mean (sd)	0.68 (0.19)	47	0.68 (0.22)	46
median (IQR)	0.73 (0.62 to 0.81)		0.69 [0.69 to 0.85]	
MAMA (body image) [10-40]	22.5 (4.4)	44	22.0 (3.9)	41
Social support [8-24]	20.1 (4.0)	47	19.5 (4.4)	47
Social support and exercise				
Family participation [10-50] mean (sd)	15.1 (6.5)	44	14.9 (5.4)	44
median (IQR)	12 [10 to 20]		12.5 [10 to 20.5]	
Family rewards [3-15] mean(sd)	3.4 (1.2)	45	3.2 (0.8)	45
median (IQR)	3 [3 to 3]		3 [3 to 3]	
Friends participation [10-50] mean (sd)	13.0 (5.6)	44	12.8(4.3)	44
median (IQR)	10.5 [10 to 14]		10 [10 to 14]	
Exercise confidence				
Sticking to it score [8-40] mean(sd)	20.9 (5.9)	37	19.7 (4.8)	40
Making time for it score [4-20] mean(sd)	13.0 (3.4)	35	11.8 (2.8)	36
IPAQ	15.0 (5.1)	55	11.0 (2.0)	50
Vigorous (MET-mins/wk) mean(sd)	264.7 (762.9)	47	163.6 (546.7)	44
median (IQR)	0 [0 to 0]	- 7 /	0 [0 to 0]	
	0 [0 10 0]		0 [0 10 0]	
Moderate (MET-mins/wk) mean(sd)	453.9 (927.9)	46	59.1 (167.1)	46
median (IQR)	0 [0 to 360]	40	0 [0 to 0]	-10
incutaii (IQK)	0 [0 10 300]		0 [0 10 0]	
Walking (MET-mins/wk) mean(sd)	050 5 (1000 C)	43	905.1(1106.6)	44
median (IQR)	950.5 (1089.6)	43	895.1 (1106.6)	44
ineutaii (IQK)	495 [198 to 1386]		585.8 [99 to 1254]	
Total (MET-mins/wk) mean(sd)	1725.4 (1864.7)	12	1122.1 (1242.9)	43
	918 (396 to 3108)	43	594 (99 to 1254)	43
median (IQR)	910 (390 10 3108)		J74 (77 l0 1234)	
Sitting (hrs/day) mean(sd)	5 (4.1)	32	5.3 (4.9)	28
median (IQR)	4 [2.5 to 6]	52	4 [3 to 5]	20
incutaii (IQK)	+ [2.3 to 0]		+ [3 to 3]	

 Table 2: Baselines questionnaires and measurements

601 602

		Ran		tion Group					
	Follow-up	Exercise		Usual care					
	(months) post randomisation	mean (sd)	n	mean (sd)	n	Difference in adjusted* means (95% CI)	p value	Difference in adjusted** means (95% CI)	p value
Primary outcome:									
EPDS [0-30]	6	12.51 (5.46)	43	14.67 (4.86)	42	-2.04 (-4.11 to 0.03)	0.053	-2.26 (-4.36 to -0.16)	0.035
	12	12.02 (5.29)	41	12.55 (5.17)	38	-0.95 (-3.16 to 1.25)	0.40	-1.39 (-3.69 to 0.92)	0.24
Weight (kg)	6	75.06 (13.20)	42	77.36 (17.36)	42	0.38 (-1.82 to 2.58)	0.74	0.79 (-1.41 to 3.00)	0.48
	12	75.40 (16.05)	41	77.11 (18.39)	38	1.39 (-2.12 to 4.91)	0.44	1.36 (-2.36 to 5.09)	0.47
BMI (kg/m ²)	6	28.61 (5.38)	42	28.61 (5.98)	41	0.17 (-0.67 to 1.01)	0.69	0.22 (-0.61 to 1.06)	0.45
	12	28.75 (6.99)	41	28.77 (6.29)	37	0.53 (-0.90 to 1.96)	0.47	0.37 (-1.15 to 1.88)	0.63
PCS-12 [0-100]	6	51.34 (9.02)	42	51.59 (8.48)	42	-1.10 (-4.32 to 2.11)	0.50	-0.06 (-2.95 to 2.84)	0.97
	12	52.16 (9.16)	40	51.6 (8.57)	38	-0.49 (-3.76 to 2.78)	0.77	0.10 (-3.17 to 3.37)	0.95
MCS-12 [0-100]	6	41.45 (9.99)	42	37.90 (10.30)	42	3.38 (-0.74 to 7.51)	0.11	3.45 (-0.78 to 7.69)	0.11
	12	41.60 (12.13)	41	41.02 (12.36)	38	1.16 (-3.65 to 5.96)	0.64	1.97 (-3.13 to 7.07)	0.45
EQ-5D # [-0.59- 1.0]	6	0.78 (0.21)	41	0.72 (0.22)	41	0.07 (-0.02 to 0.15)	0.12	0.07 (-0.02 to 0.15)	0.11
	12	0.81 (0.21)	40	0.78 (0.23)	38	0.05 (-0.03 to 0.14)	0.22	0.06 (-0.03 to 0.15)	0.22
MAMA (Body image) [10-40]	6	23.73 (5.20)	40	22.53 (4.10)	40	0.53 (-1.01 to 2.07)	0.50	0.60 (-0.93 to 2.14)	0.44

 Table 3: Six and 12 month post randomisation follow up data for outcomes

	Rando			tion Group					
	Follow-up	Exercise		Usual care					
	(months) post randomisation	mean (sd)	n	mean (sd)	n	Difference in adjusted* means (95% CI)	p value	Difference in adjusted** means (95% CI)	p value
	12	24.43 (5.18)	37	23.94 (4.83)	36	-0.11 (-1.99 to 1.76)	0.91	-0.03 (-2.04 to 1.97)	0.98
Vitality [1-7]	6	3.53 (0.95)	39	3.18 (0.87)	40	0.36 (-0.04 to 0.76)	0.08	0.41 (0.007 to 0.82)	0.054
	12	3.70 (1.11)	41	3.48 (1.14)	38	0.31 (-0.14 to 0.76)	0.18	0.42 (-0.06 to 0.90)	0.09
Social support [8-24]	6	20.80 (3.59)	41	18.93 (4.93)	41	2.10 (0.78 to 3.43)	0.002	2.24 (0.93 to 3.54)	0.001
	12	20.80 (3.68)	40	19.73 (5.14)	37	1.25 (-0.20 to 2.71)	0.09	1.38 (-0.15 to 2.90)	0.08
Social support for exercise Family participation [10- 50]	6	16.87 (7.44)	38	15.48 (6.54)	40	2.23 (-0.94 to 5.40)	0.17	2.00 (-1.49 to 5.48)	0.26
	12	16.88 (7.87)	41	18.67 (9.53)	36	-0.95 (-4.28 to 2.38)	0.58	-0.88 (-4.30 to 2.54)	0.62
Family rewards and punishment [3-15]	6	3.60 (1.68)	40	3.55 (1.30)	40	0.11 (-0.41 to -0.64)	0.68	0.16 (-0.37 to 0.69)	0.55
	12	3.46 (1.47)	41	4.03 (1.65)	38	-0.54 (-1.06 to -0.02)	0.04	-0.42 (-0.96 to 0.11)	0.12
Friend participation [10- 50]	6	16.57 (9.08)	37	14.75 (8.11)	40	1.62 (-2.12 to 5.37)	0.40	2.18 (-1.85 to 6.20)	0.29
	12	14.55 (7.13)	38	16.73 (8.36)	37	-2.83 (-5.65 to -0.005)	0.050	-2.30 (-5.15 to 0.55)	0.11

		Ran	domisa	tion Group					
	Follow-up	Exercise		Usual care					
	(months) post randomisation	mean (sd)	n	mean (sd)	n	Difference in adjusted* means (95% CI)	p value	Difference in adjusted** means (95% CI)	p value
Exercise confidence ECS sticking to	6								
it [8-40]		22.09 (7.93)	33	20.22 (6.89)	32	2.41 (-1.71 to 6.52)	0.25	3.27 (-1.13 to 7.66)	0.15
	12	23.29 (8.54)	31	22.03 (8.24)	30	0.88 (-3.30 to 5.07)	0.68	2.03 (-2.52 to 6.57)	0.38
ECS making time for it [4-20]	6	12.21 (4.26)	34	11.07 (3.38)	30	0.27 (-1.89 to 2.44)	0.81	0.91 (-1.25 to 3.08)	0.41
	12	12.81 (3.79)	31	12.15 (4.35)	26	-0.73 (-1.43 to 2.90)	0.51	1.32 (-1.03 to 3.68)	0.27

* adjusted by baseline value and baseline EPDS

** adjusted by baseline value, baseline EPDS, age, weight and ethnicity

bootstrapped confidence intervals and p values

Higher scores on all questionnaire based outcomes except EPDS and sitting time indicate more positive health/behaviours

	Randomis	ation Group		
Outcome	Exercise Usual care		Difference (95% CI)	p value
Improved at 6 months (EPDS	24/43	16/42	17.7% (-3.2% to 38.6%)	0.10
score less than 13)	(55.8%)	(38.1%)		
Improved at 12 months	23/41	17/38	11.4% (-10.6% to 33.3%)	0.31
(EPDS score less than 13)	(56.1%)	(44.7%)		
Recovered at 6 months	20/43	10/42	22.7% (3% to 42.4%)	0.03
(EPDS dropped by 4 points	(46.5%)	(23.8%)		
and score less than 13)*				
Recovered at 12 months	21/41	14/38	14.4% (-7.3% to 36.0%)	0.20
(EPDS dropped by 4 points	(51.2%)	(36.8%)		
and score less than 13)*				

Table 4: Proportions improved and recovered on the EPDS six and 12 months post randomisation

*Criteria for determining clinically important change (Jacobson and Truax 1991; Matthey 2004).