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Abstract:  28 

Improvements in our ability to model runoff from glaciers remain an important scientific 29 

goal.  This paper describes a new temperature-radiation-index glacier melt model specifically 30 

enhanced for use in High-Arctic environments, utilising high temporal and spatial resolution 31 

datasets while retaining relatively modest data requirements. The model employs several 32 

physically constrained parameters and was tuned using a lidar-derived surface elevation 33 

model of Midtre Lovénbreen, meteorological data from sites spanning ~70% of the glacier's 34 

area-altitude distribution, and periodic ablation surveys during the 2005 melt season. The 35 

model explained 80% of the variance in observed ablation across the glacier, an improvement 36 

of ~40% on a simplified energy balance model (EBM), yet equivalent to the performance of a 37 

full EBM employed at the same location. Model performance was assessed further by 38 

comparing potential and measured runoff from the catchment, and through application to an 39 

earlier (2004) melt season. The additive model form and consideration of a priori parameters 40 

for the Arctic locality were shown to be beneficial, with a planimetry correction eliminating 41 

systematic errors in potential runoff. Further parameterisations defining modelled incident 42 

radiation failed to yield significant improvements to model output. Our results suggest that 43 

such enhanced melt models may perform well for singular melt seasons, yet are highly 44 

sensitive to the choice of lapse rates and their transferability to different locations and seasons 45 

may be limited. While modelling ablation requires detailed consideration of the transition 46 

between snow- and ice-melt, our study suggests that description of the ratio between radiative 47 

and turbulent heat fluxes may provide a useful step towards dynamic parameterisation of melt 48 

factors in temperature-index models.   49 

 50 

51 
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1 Introduction 52 

Small glaciers and ice caps account for ~ 14% of the terrestrial ice in the Arctic, and 53 

research has highlighted broadly persistent, negative mass balances of these ice masses in 54 

recent decades (Arendt et al., 2002; Dowdeswell et al., 1997; Koerner, 2005; Nuth et al., 55 

2010). This characteristic in high latitude glacier mass balance may be tentatively linked to 56 

apparent warming trends leading to lengthened ablation seasons (Christensen et al., 2007; 57 

Kattsov et al., 2005). Within this context, in glaciological terms, regional estimates of glacier 58 

mass balance sensitivity have been presented with values of between –0.5m a-1 K-1 and –0.63 59 

m a-1 K-1 (Braithwaite and Raper, 2007; de Woul and Hock, 2005) for ablation season ice 60 

losses, suggestive of increasing seasonal meltwater fluxes from high-latitude, glacierised 61 

catchments in response to projected climate forcing. Nonetheless, significant issues remain in 62 

terms the spatial and temporal resolution and transferability of melt models for indicating 63 

both contemporary and future runoff volumes. There is still a need to trial models to discern 64 

which elements, if any, within more sophisticated schemes are beneficial to model output 65 

precision (Hock, 2005). 66 

The amount of surface melting of snow or glacier ice during the ablation season is 67 

controlled by the energy fluxes, which are specific to local climatic and surface conditions. 68 

Thorough reviews of the surface energy balance can be found in Greuell and Genthon (2004) 69 

and Hock (2005) and numerous energy balance models (EBMs) have been thoroughly 70 

investigated for valley glaciers in temperate (e.g. Anslow et al., 2008; Arnold et al., 1996; 71 

Escher-Vetter, 2000; Klok and Oerlemans, 2002) and Arctic or  sub-Arctic settings (e.g. 72 

Arnold et al., 2006; Hock and Holmgren, 2005; Hock and Noetzli, 1997; MacDougall and 73 

Flowers, 2011; Rye et al., 2010). Critically, EBMs all explicitly stress how variations in 74 

glacier surface conditions influence ablation and subsequent runoff patterns. There are 75 

considerable uncertainties involved in using EBMs due to their dependence on spatially and 76 
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temporally variable factors such as cloud cover, albedo, wind speed and surface 77 

characteristics, which change with location, time and climate. The performance and accuracy 78 

of EBMs predictably decreases as the variability of the surface energy-balance increases 79 

through an ablation season (Kane et al., 1997). The result of this uncertainty is that physical 80 

verification of the parameterisations used is not readily achieved, making it impossible to 81 

transfer EBMs from glacier to glacier without re-parameterisation which requires extensive, 82 

high resolution meteorological data and detailed information characterising of conditions at 83 

the melting surface, as highlighted in MacDougall & Flowers (2011). 84 

As a result of the potentially problematic use of EBMs, alternative empirically based 85 

‘index’ methods have been employed because snow and/or ice ablation is moderately well 86 

correlated to air temperature, a relationship long recognised (e.g. Finsterwalder and Schunk, 87 

1887; Martinec, 1960). According to Ohmura (2001), the physical justification behind the 88 

temperature-index approach is that up to 75% of the energy available for ice melt may be 89 

derived from incoming longwave radiation and sensible heat. Consequently, temperature-90 

index melt models (TIMs), with varied degrees of enhancement (e.g.Hock, 1999; Pellicciotti 91 

et al., 2005),  have become a widely used approach in glacial research programs (e.g. 92 

Braithwaite, 1995; de Woul et al., 2006; Ebnet et al., 2005; Hanna et al., 2008; Klok et al., 93 

2001; Marshall and Sharp, 2009; Schneeberger et al., 2003). Although Hock (2003) argued 94 

that TIMs yield lower accuracy over higher temporal resolution, these simplified models may 95 

hold advantages both in terms of parameterisation and potential transferability (e.g. Carenzo 96 

et al., 2009). Therefore, using high resolution data sets, we extend, test and explore the use of 97 

a novel, yet distributed, temperature-index melt model at Midtre Lovénbreen, a valley glacier 98 

in Svalbard, to simulate seasonal glacier ablation and runoff. Specifically, model 99 

enhancements suitable for the study site are applied and their benefits for modelling ice 100 
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ablation are assessed with comparison between models of varied complexity, over differing 101 

spatial resolution and at-a-point energy balance calculations. 102 

2 Field site and data collection 103 

2.1 Field site 104 

Midtre Lovénbreen (hereafter, ML), located in the north-west of Spitsbergen 105 

(78°50’N 12°E; Figure 1), is one of the most studied glaciers in the High-Arctic. Local mean 106 

annual temperatures and precipitation at sea-level reach –6.2°C and ~370 mm respectively 107 

(Hanssen-Bauer et al., 1990). The glacier occupies 49.5% of a 10.8 km2 north-facing 108 

catchment and extends from approximately 50 to 650 m above sea level (masl) with a 109 

maximum thickness of 180 m (Björnsson et al., 1996). The glacier’s accumulation area ratio 110 

is ~ 30% with a long-term average equilibrium line altitude (ELA) of ~ 400 masl (Björnsson 111 

et al., 1996). At lower elevations thin (< 0.2 m) winter superimposed ice forms on the glacier, 112 

but this is rapidly ablated during summer months, although annual accumulation of 113 

superimposed ice is found at elevations > 405 masl (König et al., 2002). Measurements 114 

(Hagen et al., 2003) and modelling (Rye et al., 2010) have shown the glacier has exhibited 115 

predominantly negative mass balance over the last five decades and recent geodetic analyses 116 

have indicated the negative mass balance trend may be accelerating, with contemporary 117 

thinning rates of > 0.5 m water equivalent (w.e.) a-1 (Barrand et al., 2010; Kohler et al., 118 

2007). Characteristically for the area, seasonal snow-cover below the ELA is removed within 119 

~14 days from the onset of melt conditions (Bruland et al., 2001). Further, during summer 120 

months (JJA) cloud cover is pronounced, with as few as one clear sky day per month and ~50 121 

days with cloud below 300 masl (Hanssen-Bauer et al., 1990). Summer meltwater is 122 

discharged from the glacier’s catchment via two principal stream routes (MLW and MLE; 123 

Figure 1) over a hydrological season typically ~70-80 days in length.  124 
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2.2 Data collection 125 

Ablation season field campaigns were conducted in 2004 and 2005, between July 9th 126 

and September 4th (DOY190-247) and June 24th and August 24th (DOY175-237), 127 

respectively.  Hourly meteorological data were collected from automatic weather stations 128 

(AWS) positioned along ML’s centre line (Figure 1, Table 1).  129 

The Norsk Polarintitutt (NP) centre-line stakes (Figure 1) were used to monitor changes 130 

in the ice surface elevation (with precision of ±0.005 m) relative to a reference point (see 131 

Müller and Keeler, 1969). Concurrently, glacier surface albedo at representative locations 132 

close to each mass balance stake was recorded using a Middleton hemispheric pyranometer 133 

approximately 1 m to 1.2 m above the ice surface, and data errors were assumed to be 134 

negligible (see van der Hage, 1992).  135 

Runoff data during the 2004 and 2005 observation periods were collected using 136 

standard hydrological methods, and uncertainties in discharge (Q) data were dominantly 137 

related to the forecasting procedure and were < 19% and < 16% for MLE and MLW, 138 

respectively (for full details, refer to Irvine-Fynn et al., 2011a). Occasional missing data due 139 

to instrumental failure, typically less than 3 hours, were estimated statistically using other 140 

flow records or Q data from the adjacent Bayelva catchment, which is typically highly 141 

correlated (r > 0.85) with discharge from ML (Hodson et al., 2005). 142 

2.3 Glacier surface model 143 

High-resolution digital elevation models of the ML glacier surface in 2003 and 2005 were 144 

derived from airborne laser scanning data (for details see Barrand et al. 2010; 2009). Data 145 

were collected with an Optech ALTM3033 scanning system and post-processed with inertial 146 

navigation system and onboard and ground-based differential GPS positioning data to yield 147 

raw point clouds with mean along- and across-track point spacing of 1.38 and 1.33 m, 148 

respectively, and average point density of 1.15 per m2 (Barrand, 2008). DEMs of the glacier 149 
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surface were constructed using an adapted Delauney triangulation gridding algorithm. 150 

Vertical elevation accuracy was +/-0.14 m based on comparison with ground-based 151 

differential GPS check data over the glacier surface (Barrand et al., 2009). To provide further 152 

model assessment opportunities, the DEM was resampled to horizontal resolutions of 2, 5, 10 153 

and 20 m using bilinear interpolation.  154 

3 Development of an Arctic temperature-index melt model (ArcTIM) 155 

This section sequentially details the basis and parameterisations utilised in development 156 

of the enhanced temperature-index melt model described and assessed here. 157 

3.1 The model’s ‘ABC’ basis 158 

The application of TIMs is advocated on the grounds of their computational simplicity, 159 

data availability and generally satisfactory performance (Hock, 2003). In the simplest form, 160 

for a given time-step a TIM defines melt (M) as a function of temperature (T): 161 

( )critTTfor T >+= baM          [1] 162 

in which parameter a is the degree of proportionality, or the melt factor which differs for 163 

snow or ice surfaces, given as m °C-1 per time interval while the threshold temperature for 164 

melt (Tcrit) is, in most practical situations, taken to be the melting point of snow and ice (0°C) 165 

below which melt is zero. The variable T may be given as near-surface (~ 1.5 to 2.0 m) air 166 

temperature (Ta) or as the difference between Ta and Tcrit (Martinec, 1960). As the value of a 167 

implicitly represents all the variables of the energy-balance, it is necessarily dynamic, and as 168 

Braithwaite (1995) demonstrated, as T increases to > 10°C, values for a converge, indicating 169 

a non-linearity between air temperatures and melt. Different TIM variants have utilised 170 

alternative approaches to parameterising b, with zero (e.g. Martinec, 1960) or non-zero 171 

(Braithwaite, 1995) values accounting for melt occurring when T < Tcrit. Such formulations 172 
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ensure melt rates are somewhat spatially uniform, neglecting the influence of topographic 173 

variations other than elevation.  174 

In addressing these shortcomings, temperature-index models have, incorporated 175 

spatially and/or temporally variable components: parameter b has been given as a function of 176 

shortwave radiation (e.g. Kane et al., 1997; Martinec, 1989; Pellicciotti et al., 2005) or net 177 

all-wave radiation (e.g. Brubaker et al., 1996; Kustas et al., 1994) or, alternatively, a has 178 

been given as a function of incident radiation (e.g. Cazorzi and Dalla Fontana, 1996) with 179 

further model enhancement by using b parameterised as a function of Ta itself (e.g. Hock, 180 

1999). Conversely, Shea et al. (2004) defined T using regression between radiation and 181 

temperature to identify a time-series of distributed residual temperatures (the difference 182 

between observed and modelled temperatures) and used incident radiation to define 183 

parameter b. The improvement in TIM performance using these varied approaches has 184 

differed markedly between locations (cf. references above). 185 

The model presented by Hock (1999), given its applicability shown on Storglaciaren, 186 

has been adopted widely (e.g. de Woul et al., 2006; Ebnet et al., 2005; Flowers and Clarke, 187 

2000; Huss et al., 2008; Schneeberger et al., 2003; Schuler et al., 2007). However, limitations 188 

are apparent, particularly in the multiplication of T and the radiation component, which is 189 

counterintuitive in consideration of the independence of these two variables within the 190 

energy-balance (Greuell and Genthon, 2004; Pellicciotti et al., 2005) and can result in 191 

overestimates of melt particularly during diurnal peak temperatures (Konya et al., 2004). 192 

Instead, Williams and Tarboton (1999) elegantly demonstrated through simplification of 193 

terms in the energy-balance that a TIM can be better represented by: 194 

cbazM ++= I            [2] 195 

in which z is elevation and I is potential incident radiation. In the first instance, z provides a 196 

representation of the spatial distribution of Ta in response to an unknown lapse rate which is 197 
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incorporated into parameters a and c; secondly, parameters a and c also include turbulent 198 

fluxes, again assumed to be linear with respect to Ta; thirdly, b is proportional to (1 – a); and 199 

finally, the parameter c, in addition to the constants arising from a linear lapse rate, relates to 200 

the turbulent fluxes and longwave emissivity. Therefore, here ArcTIM followed the form 201 

suggested by Konya et al., (2004): 202 









≤
>

+−
+−+

=
crit

crit

TT:
TT:

I)1(
I)1(T
cb

cba
M

a
a        [3] 203 

Unlike all previously published TIMs, here, melt ( M ) is assumed to be normal to the ice 204 

surface, since potential incident radiation is defined as being perpendicular to a given surface 205 

slope. The use of constant c in the model allows a degree of correction for hitherto undefined 206 

boundary layer conditions (e.g. turbulent or subsurface energy exchanges etc.). Individual 207 

model parameters were defined using the dataset from 2005, as detailed in the following 208 

sections. 209 

3.2 Temperature (T) 210 

To apply a distributed TIM, it is necessary to extrapolate values for air temperature 211 

throughout the model domain. Numerous researchers have, for simplicity, assumed constant, 212 

linear lapse rates ranging from –0.004 °C m-1 to –0.0076 °C m-1 (cf. Bøggild et al., 1994; 213 

Hock, 1999; Jóhannesson et al., 1995; Konya et al., 2004; Shea et al., 2004). However, 214 

glaciers influence their local climate: boundary-layer processes cause high spatial and 215 

temporal temperature variability and phenomena including temperature inversions (e.g. 216 

Arendt and Sharp, 1999). Consequently, constant lapse rates are inappropriate, typically 217 

overestimating temperature gradients (Marshall et al., 2007). Rather than optimise lapse rates 218 

within the model (e.g. Jóhannesson et al., 1995), ArcTIM used a non-linear lapse rate derived 219 

from field observations, such that air temperature at elevation z (Tz) was given with respect to 220 

the AWS2 record: 221 
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( ) 9.6+1.8lnTT AWS2 zz −=          [4] 222 

as derived from the four AWS sites deployed in 2005 (Figure 2a). The approach used by Shea 223 

et al., (2005) was discounted because, although it was possible to remove the co-linearity 224 

between Ta and incident radiation for a single site, it was found that the relationship between 225 

these variables was not strong (r < 0.33) and varied across the glacier as well as in time.  226 

3.3 Threshold melt temperature (Tcrit) 227 

The typically used assumption that Tcrit = 0°C (e.g. Hock, 1999) is not necessarily 228 

physically tenable in light of the actual energy balance, where energy is required to  raise 229 

snow or ice temperature to melting point or when radiative fluxes lead to a temperature or 230 

energy maximum in the subsurface (e.g. Koh and Jordan, 1995; Liston et al., 1999; 231 

Pellicciotti et al., 2009). To define a value for Tcrit suited for application at ML, the local 232 

threshold temperature of +1.62°C defined as equal probability of snow or rain was explored 233 

as a starting point (Førland and Hanssen-Bauer, 2003). To ascertain whether this choice of 234 

threshold temperature was valid, time-series of air temperatures at each stake in 2005 were 235 

developed using Eq. 4, and the respective cumulative above-threshold air temperatures for 236 

each ablation survey period were calculated for threshold temperatures incremented from 0°C 237 

to 3°C. These series were regressed against the corresponding ablation data (Figure 2b) 238 

illustrating a plateau in the coefficient of determination, and suggesting use of Tcrit = +1.62°C 239 

was appropriate. 240 

3.4 Potential incident radiation (I)  241 

The incident radiation (I) at any point within the catchment was modelled using algorithms 242 

fully detailed by Iqbal (1983) but following Kreith and Kreider (1978): 243 

θτ cosEII 00 b=           [5] 244 
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for which I0 is the solar constant (~ 1368 W m-2), E0 is the orbital eccentricity correction 245 

factor calculated from the local day angle, θ  is the angle of incidence on a tilted surface and 246 

transmissivity (τb) is given as: 247 

( )aa mm
b

0095.065.0 ee56.0 −− +=τ          [6] 248 

for which, using the time varying solar altitude (ϖ) derived from the day angle and local 249 

latitude, the air mass ratio (ma) is given as: 250 

( )( ) ϖϖ sin614sin6141229 2 −+=am        [7] 251 

The use of this variant of better-known algorithms is because clear-sky atmospheric 252 

transmissivity varies over both space and time and a secant exponent estimating air mass ratio 253 

using air pressure in order to adjust for local altitude is strictly only valid when solar zenith 254 

angles (θz) are less than 70° (Kreith and Kreider, 1978). When the zenith angle exceeds 70°, 255 

as is common at high-latitudes and is the case for ~90% of ML’s ablation season, this 256 

atmospheric approximation underestimates solar energy by failing to account for atmospheric 257 

path length, refraction and curvature, yet this appears to be ignored in many high-latitude 258 

studies (e.g. Ebnet et al., 2005; Schuler et al., 2007). In testing the suitability of the derived I, 259 

modelled values for the level AWS sensors were compared with logged radiation during 260 

clear-sky conditions: results showed a systematic bias of < +11%, over thirteen full-day 261 

records r > 0.76 (AWS2: n = 312 and AWS4: n = 168). Using field notes to refine AWS2 262 

data to periods with < 4 oktas of cloud coverage, the bias was reduced, with r = 0.84 (n = 263 

124); and for periods with < 2 oktas, r = 0.92 (n = 41). 264 

Several TIMs adjust I to account for topographic shading (e.g. Hock, 1999). However, 265 

the omission of shading has been shown to increase predicted radiation receipt by only ~6% 266 

(Arnold et al., 2006) and the diurnally-averaged shadowed area of ML remains < 25% for 267 

~65% of the ablation season, with greatest shadowing between 20:00 and 02:00 when 268 

radiative energy is at its lowest. Moreover, as noted in Section 2.1, the climatology of ML 269 
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results in the prevalence of cloud covered conditions (Hanssen-Bauer et al., 1990) and 270 

dominance of diffuse shortwave radiation, evidenced by a mean shortwave radiative energy 271 

flux of 141 Wm-2 at AWS2 during the summer of 2005 compared to a mean potentialreceipt 272 

of 273 Wm-2. Relationships utilised to adjust incident radiation for cloud cover are typically 273 

unsatisfactory (e.g. Arnold et al., 1996; Hock, 1999; Pellicciotti et al., 2005). Furthermore, 274 

the basis of a TIM is that T provides a proxy for the dominant melt energy, and consequently, 275 

topographic shading and cloud cover was omitted from this model. 276 

3.5 Albedo (a) 277 

The TIM variant presented by Pellicciotti et al. (2005) indicated that inclusion of an 278 

albedo term can improve melt calculations. Therefore, keeping to a more physical basis an 279 

empirical albedo parameterisation was employed, the albedo at AWS2 (a0) for the start day 280 

of the model period (t0) was backcast using Ordinary Least Squares (OSL) regression against 281 

time in decimal days. An elevation dependency was then applied, such that albedo (atz) at 282 

decimal time t and for elevation z is given by:  283 

( )00 d)1133.00006.0( ttztz −+−+= ααα        [8] 284 

where 285 

)(0041.03014.1 00 t−=α          [9] 286 

and the term da is the mean linear decay of a over time, as calculated from all the survey 287 

sites (Figure 3a). Linear regressions describing albedo variations at all the survey sites, 288 

illustrated time rather than cumulative temperature best explained the temporal trend 289 

observed (data not presented here).The linear relationship between z and a (Figure 3b) 290 

appeared stronger than that identified at Haut Glacier d’Arolla by Brock et al., (2000) and 291 

was likely a function of supraglacial dust (cryoconite) distribution (cf. Hodson et al., 2007) 292 
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and assumed to be constant over the season. Overall, the albedo parameterisation yielded a 293 

significant correlation (r = 0.48, n = 64) with a mean overestimation of ~0.06. 294 

3.6 Scale sensitivity 295 

A common flaw with melt models is the tendency to assume that pixels or grid cells are 296 

planimetric (see Hopkinson (2010) for a review). This is significant for two reasons: first, 297 

calculations of energy fluxes are given normal to the surface slope. The modelled magnitude 298 

of radiation loading is, therefore, greatly influenced by changes in surface slope at differing 299 

DEM resolutions (Arnold and Rees, 2009; Chasmer and Hopkinson, 2001). Second, a 300 

systematic bias is introduced because melt occurs normal to the surface slope and the 301 

planimetric assumption underestimates the slope-variant surface area subject to melt and thus 302 

melt volumes (Hopkinson et al., 2008). These two biases are more significant for models 303 

based on DEMs of higher resolution (Chasmer and Hopkinson, 2001; Hopkinson et al., 304 

2008). Thus, a scale correction factor was introduced, following Hopkinson et al., (2008), 305 

such that for any given grid cell: 306 

( )
βcos

9.0 2LMM z
z


=          307 

 [12] 308 

where Mz is total melt in m3 water equivalent (w.e.), L is the length dimension of each square 309 

grid cell, and zM  represents the modelled formulation of melt normal to the surface slope (β) 310 

based on the distributed values of temperature and radiation. An ice density of 0.9 g cm-3 for 311 

the near-surface of ML was assumed. 312 
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4 Comparative models  313 

4.1 Melt models 314 

Here, it is perhaps useful to summarise and describe the comparative model runs used 315 

to assess the formulation of ArcTIM described above. Melt simulations using the model form 316 

described in Equation 1 (hereafter, Model Tc), and in Equation 3 but omitting albedo 317 

(hereafter, Model TI) were run; for further comparison, melt was estimated with a modified 318 

version of Hock’s (1999) model where: 319 

cIbTaTM mzzz +−+= )1( a  (for T > Tcrit )      [13] 320 

and in following Martinec (1960) and  Kane et al. (1997): 321 

cIbTTaM mmeltzz +−+−= )1()( a        [14] 322 

In this latter variant, Tmelt was evaluated by manually adjusting its value, and regressing 323 

observed ablation against time-series of temperature (Tz – Tmelt) which when iteratively 324 

adjusting Tmelt gave an optimised value of +0.85°C. In all these model variants, we adhered to 325 

the same formulations and values for Ta, Tcrit and I as described above, and melt below 326 

threshold was defined, as before, only for where b(1-a)I + c > 0. The scale correction factor 327 

(Section 3.6) was used in all instances to determine melt volume and specific melt. 328 

Many published temperature-index melt models distinguish between snow and ice 329 

covered surfaces which accounts for critical spatial differences in meltwater genesis (e.g. 330 

Hock, 1999; Jóhannesson et al., 1995). However, unlike these examples, here, models did not 331 

account for a difference between snow and ice surface on the glacier. The reason for this was 332 

threefold: first, the TIM presented by Schneeberger et al. (2003) evidenced only subtle 333 

difference between melt factors (a) for ice and snow; second, snowline retreat on the shallow 334 

slopes characterising the majority of ML’s ice area is typically rapid; and third, because the 335 

melt model which includes an elevation-defined albedo was to be tuned to ablation 336 

measurements, it was assumed optimisation would account for any differences potentially 337 
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related to the snowline, especially at higher elevations. We recognise that this absence of 338 

differentiation between snow and ice may potentially represent an important source of model 339 

uncertainty. Ice topography was not evolved in time: with an estimated ceiling ablation of 340 

~1.5 m (Hodson et al., 2005), the maximum influence of an evolving surface on temperature 341 

and precipitation would be of the order of  +0.03 °C and –0.3%, respectively, and therefore, 342 

can be considered negligible given the magnitude of uncertainties associated with the source 343 

data.  344 

As an independent comparison, an adjusted EBM based on Brock and Arnold (2000) 345 

was run to model theoretical ablation along the glacier centre line. This model included the 346 

algorithms and parameterisations used within ArcTIM: the non-linear Ta lapse rate (Eq. 3), 347 

high-latitude atmospheric transmissivity (Eq. 6), and temporally evolving glacier albedo (Eq. 348 

8). Received incident radiation and its variation with elevation was interpolated linearly from 349 

records at AWS2 and AWS4.  In the absence of appropriate data, the calculations for 350 

turbulent energy fluxes were necessarily simplified, using a constant aerodynamic roughness 351 

length of 0.00253 (after Hodson et al., 2005) and estimating absolute vapour pressure for 352 

each time-step, assuming that relative humidity recorded at AWS2 was spatially uniform, and 353 

that Ta varied non-linearly with elevation (Eq. 3) and held an empirical relationship with 354 

saturation vapour pressure over ice (after Tetens, 1930). Wind speed was distributed over 355 

elevation using linear gradients derived from the hourly data recorded at AWS2 and AWS4. 356 

4.2 Melt model parameter calibration 357 

Many glacier melt models are tuned to the time series of meltwater discharge, 358 

particularly when the period of interest is annual runoff cycles. In calibrating models to 359 

discharge using arbitrary routing algorithms, model output will consequently mask subtle 360 

water release or storage processes which, particularly for glaciers in Svalbard, may be 361 

significant (e.g. Hodgkins, 2001; Hodson et al., 2005). Here, with the purpose of modelling 362 
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potential runoff volumes without artificially forcing unverifiable flowpath delays, melt model 363 

parameters a, b, and c were calibrated using the time-normalised, observed centre-line stake 364 

ablation records for 2005. Models were based on the 5 m resolution DEM, which is much 365 

higher resolution than appears in most similar modelling studies. Parameter optimisation 366 

demands that the ‘degree of fit’ between measured data and modelled data is maximised (or 367 

minimised) for which there are a number of measures (e.g. Nash and Sutcliffe, 1970; 368 

Willmott, 1981). Experimental investigations into optimising the varied TIM parameter sets 369 

(such that a and b > 0.0) indicated there was indeed a strong interdependence between T and 370 

I, and the use of OLS multivariate regression was found to be the most effective optimisation 371 

process. Cross-validation analyses, repeating the OLS multivariate regression but 372 

withholding various datasets showed no bias in the determination of the parameters: the 373 

absolute variation in multivariate R2 < 2.4% was not significant at p = 0.05.  374 

4.3 Potential runoff and precipitation 375 

Once optimised and executed over the glacier ice area (the model domain), summation 376 

of Mz provided an estimate of the potential runoff volume available at each time-step. 377 

Although precipitation was not considered as a significant process of ablation, liquid summer 378 

precipitation adds to the total water equivalent available as runoff. In the absence of in situ 379 

rain-gauge records, data collected by NP in Ny Ålesund (8 m asl) were used: hourly records 380 

(PNA) were reconstructed using the twice-daily precipitation record and field notes of rainfall 381 

events. The local orography of Brøggerhalvøya creates precipitation lapse rates of 20% per 382 

100 m for elevations < 300 m asl (Førland et al., 1997) above which 10% per 100 m is more 383 

appropriate (Killingtveit et al., 1994). Accordingly precipitation at elevation z (Pz) was 384 

described as: 385 
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Solid precipitation, implicit at Ta < 1.62°C, was assumed to refreeze and was accounted for 387 

by adding the equivalent ice depth to the measured ablation survey data. Liquid precipitation 388 

was assumed to fall on the planimetric grid cells, and therefore, when present, simply 389 

multiplied by the grid cell area and added to the scale corrected meltwater volume to yield a 390 

total available for runoff.  The precipitation occurring on the surrounding mountain slopes 391 

within the glacier basin was excluded from the model because of the characteristic talus, 392 

lateral moraines and scree near the glacier margin for which the associated effects on water 393 

retention, percolation or routing were unknown.  394 

5 Application of models on Midtre Lovénbreen 395 

Here, we detail and discuss the melt model output(s) with reference to the primary data 396 

sets of observed ablation and meltwater runoff. 397 

5.1 Ice ablation 398 

The performance of the model parameterisations for 2005, comparing observed, slope-399 

corrected and modelled ablation are detailed in Table 2. A slight improvement to modelling 400 

ablation was made by enhancing a simple TIM to ArcTIM, with the R2 of ~80% matching 401 

similar model performance reported elsewhere for temperature-radiation index models (e.g. 402 

Brubaker et al., 1996; de Woul et al., 2006; Kane et al., 1997). Furthermore, for 2005, 403 

ArcTIM equalled the performance of a more complex full EBM on ML presented by Arnold 404 

et al., (2006). Interestingly, the inclusion of albedo within ArcTIM subtlety reduced its 405 

efficacy, while both the Hock and Tmelt model variants appeared to show slightly improved 406 

agreement between modelled and observed ablation, with standard errors of ~0.17 mm hr-1. 407 

The TIM models suggested a melt rate of 0.3 mm hr-1 °C-1 at ML which exceeds the 0.05 mm 408 

hr-1 °C-1 reported by Pellicciotti et al., (2005) for a similar TIM formulation applied to an 409 

Alpine glacier. 410 
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To examine the sensitivity of individual parameter values, three numerical efficiency 411 

criteria were explored further: Figure 4 illustrates model sensitivity to changing parameter 412 

values, using the Nash-Sutcliffe (η2: (Nash and Sutcliffe, 1970) and Willmott (d2: (Willmott, 413 

1981) indices of agreement and the root mean squared error (RMSE). Examination of these 414 

plots demonstrates (i) ArcTIM is highly sensitive to the values of both b and c, but less so for 415 

the value of a and (ii) the η2 criteria is a more sensitive measure of model fit. To eliminate 416 

the potential for equifinality within the model, we varied all three parameters at random 417 

(Figure 4d) finding a single optimum combination with a minimum RMSE of ~0.2 mm hr-1.  418 

Crucially, comparison between the TIM variants and the adjusted EBM showed the 419 

latter to perform relatively poorly: the correlation between observed and modelled ablation 420 

was 0.6, with an RMSE of 0.4 mm hr-1. The EBM typically under-predicted melt by 0.16 mm 421 

hr-1, contrasting to the persistent over-prediction of melt using the EBM reported in Arnold et 422 

al. (2006). We ascribed this to the disparity in parameterisation of the EBM when compared 423 

to those presented by Arnold et al. (2006) and Rye et al. (2010), although this was not 424 

investigated further here.  425 

5.2 Comparison of potential and actual runoff 426 

With the parameters for ArcTIM successfully and robustly calibrated for 2005, and, 427 

ignoring the spatial uncertainty inherent in the input data, the model was applied to the ML 428 

catchment. The spatial distribution of ablation shown in Figure 5a is given as the modelled 429 

seasonal total, derived using ArcTIM. The companion map (Figure 5b) demonstrates the 430 

number of melt hours each grid cell was subject to during the 2005 modelled ablation period, 431 

highlighting the role the additive formulation of ArcTIM has on spatial melt distribution. This 432 

was considered important, particularly in the contributing cirques that are steeper sections of 433 

the glacier and are swept clear of snow by wind scour and sloughing (e.g. local slush flows or 434 
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small-scale avalanches); ablation in these upper reaches was evident in observations of water 435 

filled crevasses and meltwater stream sources. 436 

The time-series of potential runoff (W) generated by the various TIMs compared to 437 

total proglacial discharge (Q) for ML in 2005 is presented in Figure 6a. Despite the broadly 438 

comparable model skill in reproducing glacier ablation (Table 2), the visually noticeable 439 

difference between the Hock model and the TIM versions is twofold. Firstly, the Hock model 440 

results in much enhanced peak melt volumes for the entirety of the model run; and secondly, 441 

the Hock model during periods of low air temperature (T < Tcrit) caused a drop to constant 442 

levels, which without the inclusion of c would have resulted in periods of zero melt. The TIM 443 

variant, accounting only for temperature with a constant, suffered similar under-prediction at 444 

low temperatures. Table 3 presents quantification of the degree of fit between the runoff 445 

volume time-series, clearly highlighting the disparity between the modified Hock model 446 

outputs and observed runoff (see η2) when compared to ArcTIM and its variant, Tmelt. 447 

Importantly, Table 3 demonstrates the need to consider model efficiency criteria with care: as 448 

Legates and McCabe(1999) emphasised, good correlation does not equate to time-series 449 

equivalence. Nonetheless, all model outputs emphasise that meltwater flow routing and the 450 

related time lags are not considered in transferring surface melt production to the proglacial 451 

discharge hydrograph simulation.  452 

The uncertainty of the ArcTIM output was estimated as the standard error of the 453 

optimisation regression given as a percentage of the mean observed ablation (e.g. Hodgkins, 454 

2001). This yielded an uncertainty in melt volumes of ±21% compared to the ±22% 455 

uncertainty in Q. A paired t-test showed no significant difference between the means of W 456 

and Q (t = 0.39, p = 0.70). However, visually at the diurnal scale (Figure 6a and b), there is 457 

no consistent over- or under-prediction: W consistently peaks above the actual Q, but 458 

consistently exhibits diurnal minima below those of Q, except following DOY228. The value 459 
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of η2 = 0.18 revealed only a relatively poor match between the modelled W and observed Q, 460 

despite the equivalence in total runoff volume during the time period (Figure 6c). Cross-461 

correlation revealed a seasonal average lag-time of 3 hrs between W and Q, which increased 462 

η2 to 0.29. 463 

5.3 Evaluation of model components  464 

Although the sensitivity of the respective TIMs was reported in Section 5.1, it was 465 

important to assess the suitability of the scale (Section 3.1) and precipitation (Section 4.3) 466 

algorithms by taking the time-series of W to be indicative of departures between model 467 

results.  468 

ArcTIM was run for the three additional DEM grid resolutions (20, 10, and 2 m). 469 

Differences in the spatial distribution of melt were likely to be small, resulting primarily from 470 

the variation in location of the boundary of Tcrit and values determined for melt from 471 

irradiance where the increasing resolution adds topographic texture (variations in z, β and γ ; 472 

see also Arnold et al. 2009). The time-series of W for all four grid resolutions were near-473 

perfectly correlated (r > 0.99), and an ANOVA test (p < 0.001) revealed no significant 474 

difference between the hourly outputs from the four differing resolutions, and although 475 

differences in total melt volumes were observed, there was no clearly systematic pattern 476 

between resolution and output (for DEM resolutions of 2, 5, 10 and 20 m, respective total 477 

melt values were 7.57, 7.57, 7.56, and 7.60 ×106 m3). It is thought these cumulative 478 

differences are likely to be due to small differences in glacier area due to changing resolution 479 

and DEM texture. 480 

To explore whether uncertainty in glacier area was significant, the glacier margin was 481 

buffered at 10 m increments to ±20 m, and the model re-run with the differing glacier area, to 482 

determine the effect on total potential runoff. Averaged over the model domain, a ±1% error 483 

in glacier area resulted in ±1.6% error in W. Using the 5-m resolution control run, analysis of 484 
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the W time-series indicated the larger change/error in glacier area resulted in more significant 485 

deviation in Q at low temperatures, especially below Tcrit. Such errors at low air temperatures 486 

imply that reduction or increase in the glacier area, either below the threshold temperature 487 

elevation or subject to incident radiation driven melt, lead to substantial change in W. Such 488 

errors are, therefore, likely to explain the differences in total W noted between grids of 489 

differing resolutions as a result of the gridded area of a vector ice margin. Consequently, 490 

through the inclusion of the cosecant planimetric correction coefficient, ArcTIM can be 491 

treated as scale independent, although to verify this, further work would be required to test 492 

the model formulation on a more topographically varied glacier catchment. 493 

To determine whether the parameterisation of precipitation caused systematic errors 494 

within the ArcTIM output, hourly errors in W (expressed as a percentage of the observed, 495 

unlagged Q) were plotted with precipitation (Figure 7) from which varied response could be 496 

identified: precipitation events were associated with both large (DOY195 and 207) and small 497 

errors (DOY220, 224 and 232). Times were also apparent when precipitation events appeared 498 

not to impact on the general trend of uncertainty (e.g. DOY203 and 209). Such varied 499 

response suggested the parameterisation was, on average, valid and did not lead to systematic 500 

and/or pervasive errors in estimates of W, and highlighted the event specificity of 501 

precipitation gradients. Note, however, summer precipitation at ML is typically very low. 502 

5.4 Model validation 503 

As a model validation exercise, ArcTIM optimised for 2005 was run using Ta data 504 

from 2004 and the 2003 DEM. This DEM change was justified because the lidar survey date 505 

was towards the close of the 2003 melt season thereby providing an estimate of the glacier 506 

topography for the commencement of the 2004 ablation season. The glacier margin as 507 

defined for 2005 was used to limit the output from ArcTIM. This was not considered a source 508 

of error since maximum glacier terminus recession was < 30 m between lidar surveys 509 
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(Barrand, 2008) which would contribute an increase of 0.5% in glacier area corresponding to 510 

an estimated mean error of < 1% in W. The bivariate values for goodness-of-fit between 511 

surveyed and modelled ablation during 2004 revealed r2 = 0.46 (η2 =0.45), which is 512 

significantly less than for the equivalent comparison in 2005. The standard error in ablation 513 

was 0.5 mm hr-1: a threefold increase from that observed in 2005. The decrease in model 514 

performance was also reflected in the time-series of W (from ArcTIM) and Q for 2004 (Table 515 

3): η2 = –1.05, indicating the poor nature of agreement between the series. Figure 8 clearly 516 

indicated over-prediction of potential runoff early in the melt season (prior to DOY210) 517 

during which time temperatures were persistently > 5 °C. Surprisingly, although visually for 518 

the remainder of the season (DOY211 onwards) W appeared a better fit to the observed Q, 519 

quantitatively this remained poor (η2 = 0.02).  520 

Examination of the parameters optimised for 2004 (Table 2) showed that values for a, 521 

b, and c for the respective models did not overlap, and negative values appeared to 522 

compensate for melt overestimation from Ta alone.  Moreover, the use of a ‘global 523 

optimisation’ using data sets from both 2004 and 2005 yielded a much degraded model skill 524 

for all TIM variants (Table 3), emphasising the contrast between the two melt seasons.  525 

6 Discussion 526 

The results from the model runs, and comparisons, enabled further inferences to be made 527 

on the modelling strengths and weaknesses, more specifically for the two years considered. 528 

6.1 Models for 2005 529 

In considering the application of the ArcTIM for 2005, the model accounts for about 530 

80% of the variance in ablation. The total ablation normalised by glacier area was 1.62 m (σ 531 

= 0.16), which agrees with but is slightly higher than the ranges of specific melt suggested for 532 

the glacier in preceding years (Hodson et al., 2005).  533 
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Clearly, from the only minor improvements made to the Tc model performance with 534 

additional variables, air temperature was the forcing meteorological variable in ablation at 535 

ML, as reported for the adjacent Austre Brøggerbreen (Hodson et al., 1998) but contrasting 536 

with previous energy balance considerations at ML where net shortwave radiation dominated 537 

ablation (Arnold et al., 2006; Hodson et al., 2005). Such a finding illustrates the interrelation 538 

between Ta and radiative fluxes, but also alludes to the potential interannual variability in 539 

energy balance considerations and validity of parameterisations within ArcTIM. Nonetheless, 540 

internal optimisation of a threshold melt value (the Tmelt model variant) may provide a fruitful 541 

manner by which to improve TIM performance.  542 

The small improvement by the inclusion of a radiation component compares well to 543 

similar models, but is considerably lower than those implied in results presented elsewhere 544 

(e.g. Kustas et al., 1994; Pellicciotti et al., 2005). Moreover, contrary to Pellicciotti et al.’s 545 

(2005) assertion, the inclusion of a simplistic albedo parameterisation was not beneficial in 546 

this instance. Data presented in Tables 2 and 3 suggest that a more complex and rigorous 547 

parameterisation of I (and thereby albedo) will likely have limited effect on improving model 548 

performance and partly justifies the exclusion of topographic shadowing here. 549 

The time-series of potential and observed runoff during 2005 illustrated results 550 

analogous to those documented by Konya et al., (2004) in comparing similar melt models: 551 

the additive approach to TIM model formulation appeared more suited to modelling glacier 552 

melt. The difference between the TIM formulations was small, with the modified version 553 

showing reductions in both peak and trough values; however, consistently diurnal amplitude 554 

of modelled melt exceeded that of Q. This was verified by an F-test showing significant 555 

difference between the variance of W and Q (F = 1.7, p < 0.001) despite the similarity in 556 

mean value. The daily under-prediction of melt was typically between 20:00 and 02:00 when 557 

shadowing across the glacier was greatest, which further implies that the influence of shadow 558 
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was small and that there were factors involved in delaying runoff to the proglacial streams. 559 

The hydrological interpretation is that meltwater flowpaths regulate runoff, dampening the 560 

amplitude of the melt signal. This inference is emphasised by the difference in cumulative 561 

discharge series (Figure 6c) which, assuming the validity of the 2005 model run, suggests a 562 

period of storage and release within the glacier catchment, a process which has been 563 

documented previously (Hodson et al., 2005); however, this is not explored further here. 564 

Nonetheless, the apparent lag time between W and Q of ~3hrs agrees with dye tracing 565 

experiments at ML which reveal transit times over and through the glacier of the order of 1 – 566 

3hrs (Irvine-Fynn et al., 2005). 567 

The larger errors indicated in Figure 6a appeared more commonly linked to rain-free 568 

periods (cf. Figure 8), and were indicative of the overestimation and underestimation at the 569 

apexes of the diurnal cycle. Assuming rapid supraglacial runoff, this is suggestive of either 570 

changes in the threshold temperature triggering melt or variability in melt factors (a and b). In 571 

particular, the largest errors (DOY200) are seen following the cool period (DOY193-199) 572 

suggesting a potential link to thermal conditions where energy is required to raise ice 573 

temperatures prior to initiation of melting. Noticeably, the errors between DOY200 and 574 

DOY220 also exhibit a much more marked diurnal signal than at other times. Temporal 575 

variation in melt factors has been reported elsewhere (e.g. Singh and Kumar, 1996) but has 576 

seldom been explored. To examine the potential for such trends at ML, we consider melt 577 

factor a derived from Equation 1 assuming c ≠ 0 for Tcrit = 1.62°C given the similarity in its 578 

value across the TIM variants (refer to Table 2).  579 

For 2005, the elevation-averaged mean value of a was 0.28 mm hr-1 °C-1, which 580 

compares well to the range of values reported from numerous locations (e.g. Hock, 2003; 581 

Zhang et al., 2006). However, using AWS2 as an example, a showed variation across the 582 

observation periods (Figure 9): the increase during the middle of the ablation season then 583 
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decrease thereafter is analogous to the results reported by Zhang et al., (2006). For glacier ice 584 

temporal changes in a may be attributable to changes in the distribution of supraglacial dust 585 

and cryoconite (Singh et al., 2000); in the instance of ML and other Arctic glaciers, 586 

redistribution of cryoconite impacting upon surface albedo is known to occur (Hodson et al., 587 

2007; Irvine-Fynn et al., 2011b).  588 

Surface ice density provides an alternative mechanism enabling variations in a: rapid 589 

refreezing that occurs during the spring and very early melt season results in bubble-rich, low 590 

density ice, which may form atop the dense, bubble-free superimposed ice generated at the 591 

close of the ablation season and in early winter (Wadham et al., 2006). Ice ablation is 592 

therefore likely to be reduced early in the melt season, with refreezing occurring initially, 593 

followed by a period demanding greater energy to melt the denser surface layer of winter-594 

formed superimposed ice. Following the ablation of the dense superimposed ice layer, melt 595 

rates may increase for ice which represents the previous summer surface. The lowered 596 

porosity resulting from the previous year’s melt processes, subsurface melting in response to 597 

direct irradiance, and the formation of a weathering crust layer resulting from impurities 598 

including cryoconite (e.g. Müller and Keeler, 1969) may accelerate ablation. 599 

The presence of near-surface meltwater may also further increase melt rates and 600 

influence surface ice density. Not only does meltwater decrease albedo (e.g. Zuo and 601 

Oerlemans, 1996) but water in the liquid phase also requires less energy to raise its 602 

temperature such that a greater surface water volume may enhance ablation and enlarge void 603 

space between ice crystals. A variable water volume at the ice surface, particularly within the 604 

weathering crust (e.g. Larson, 1978), may also potentially contribute to changes in a 605 

throughout the season. 606 

Critically, all the ice surface processes discussed above are likely to be linked to 607 

meteorological conditions, posing the question: do changes in a reflect variations in the 608 



26 

energy balance? To assess this simply, despite the underestimation of ablation, we used the 609 

output from the adjusted EBM run (Section 4.1) to estimate the ratio between radiative and 610 

turbulent energy fluxes for each centre-line stake for all ablation survey periods. Despite the 611 

scatter, and given the uncertainties associated with both data series, comparison between the 612 

ratio of energies and a showed a significant positive relationship to a (r2 = 0.31, p < 0.05; 613 

Figure 10). This result suggests that temporal (and spatial) variations in a may be described 614 

by changes in meteorology, which in turn controls ice surface characteristics. 615 

6.2 Models for 2004 616 

The relative failure of ArcTIM when applied for the 2004 data sets highlighted the 617 

weaknesses explored above. Table 2 illustrates the difference in optimised model parameters, 618 

and a marked contrast in spatial and temporal trends in a were evident between the two years 619 

(data not shown here). As detailed fully in Irvine-Fynn (2008), the meteorology of the two 620 

summer observation periods contrasted: statistically, at 99% confidence, significant annual 621 

differences existed in the mean and variance of Ta and wind speeds at both AWS2 and 622 

AWS4; during 2004, 63% of the monitoring period was significantly overcast compared to 623 

50% of the 2005 summer; and multivariate analysis suggested low-pressure synoptic weather 624 

patterns were perhaps more important during 2004. Moreover, although directly comparable 625 

data are unavailable to validate the non-linear lapse rate observed in 2005 (Section 3.2), mean 626 

lapse rates between AWS2 and AWS4 were –0.005 °C m-1 and –0.004°C m-1 in 2004 and 627 

2005, respectively, potentially reflecting contrasting meteorology or the changing prevalence 628 

of inversions. This lends credence to the suggestion that TIMs are sensitive to lapse rate 629 

values and demands longer-term analyses of lapse rates with respect to air temperatures 630 

(Gardner and Sharp, 2009; Gardner et al., 2009; Hodgkins et al., 2012). Such interannual 631 

contrasts in synoptic influences will certainly define the relationship between melt and Ta 632 

because clouds and inversions both have marked influence on longwave radiation fluxes 633 
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(Zhang et al., 1997; Zhang et al., 1996). Moreover, varying proportions of radiative energies 634 

can result in variability in ice surface characteristics (e.g. ice temperature, albedo and 635 

roughness) which furthers inability to confidently replicate ice ablation using parameters 636 

defined from a single year’s observations, irrespective of TIM model formulation. 637 

The importance of glacier surface condition is perhaps best emphasised over the first 638 

half of the 2004 season where ArcTIM over-predicted potential runoff prior to DOY210 639 

during which time temperatures were persistently > 5 °C. An explanation of this is offered by 640 

field observations in 2004 which indicated that the early season was characterised by 641 

considerable volumes of slush, as is common on glaciers in Svalbard (e.g. Hodgkins, 2001): 642 

statistically, the mean pre-season (May) snow depths were greater in 2004 than 2005 despite 643 

a similarity in cross-glacier variance (t = 4.06, p < 0.001; F = 1.19, p = 0.01) and sea-level air 644 

temperatures consistently > 0°C commenced 10 days later than in 2005. The ‘melt rate’ of 645 

saturated slush is likely to be considerably different from that of glacier ice or snow, 646 

rendering predefined parameters a and b erroneous, as too is the use of ice density to convert 647 

melt to a water equivalent. Consequently, the model runs presented here emphasise how, for 648 

temporal transferability of melt models, incorporation of distinct firn, slush and snowpack 649 

elements within TIMs are beneficial (e.g. de Woul et al., 2006; Hock, 1999). Indeed, existing 650 

snowpack retention (e.g. Bøggild, 2000; Janssens and Huybrechts, 2000) and refreezing (e.g. 651 

Gardner and Sharp, 2009; Hinzman and Kane, 1991) schemes to reduce or delay water 652 

release early in the melt season from TIM or EBM based models (e.g. Hanna et al., 2005; 653 

Rye et al., 2010) are advantageous for prediction of runoff, but may reciprocally impact on 654 

parameters used within a TIM context.  655 

7 Conclusions 656 

Here, a physically-based, high-resolution, distributed TIM was applied to an Arctic 657 

glacier to examine whether empirical enhancements can prove to be beneficial to model 658 
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performance. The results suggested that a highly parameterised TIM, of an additive form, is 659 

successful in predicting potential melt volumes, which may be of use for predicting runoff in 660 

ungauged glacial catchments where limited ablation data is available. However, with strong 661 

correlation between ablation and Ta, inclusion of albedo to adjust potential incident radiation 662 

was ineffective in significantly enhancing accuracy of modelled ablation. The use of a priori 663 

knowledge of precipitation lapse rates was shown to be useful, but demonstrated the spatial 664 

distinctiveness of individual precipitation events. Moreover, the use of a scaling factor to 665 

correct between planimetric and inclined slope ablation appeared to eliminate systematic 666 

error in potential runoff volumes. While internal optimisation of the threshold temperature 667 

used within TIMs showed promise, the sensitivity of such models to the choice of 668 

temperature lapse rate is clear. The empirical parameterisation of the model did not improve 669 

model performance and certainly reduced model transferability, demonstrating the need to 670 

explore longer-term data sets linking, for example, Ta and lapse rates. These findings indicate 671 

model transferability may be limited, a conclusion contrasting to the assertions made for 672 

similar models by Carenzo et al. (2009). Detailed exploration of periodic measurements of 673 

ice ablation suggested that to improve TIM perfomance, a time-variant melt factor (a) based 674 

on the ratio of radiative to turbulent energy could be useful to explore. Critically, validation 675 

of the highly simplified melt model presented here demonstrated that, if physically-based 676 

strategies are to be considered, there is need for the inclusion of descriptors of surface and 677 

near-surface processes and flowpaths to better forecast melt and runoff. Researchers need to 678 

be vigilant in not simply assuming model or parameter transferability based on published 679 

studies examining temporally and spatially limited data sets, and in choosing appropriate 680 

models for the application in question. 681 
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Figure Captions 966 
 967 
Figure 1:  968 
Map (UTM Projection, Zone 33) detailing locations of all monitoring sites utilised during 969 
field campaigns of 2004 and 2005. The mass balance stakes along the glacier centre line are 970 
numbered and referred to accordingly (e.g. MLB3). Note the change in configuration of 971 
proglacial stream channel MLW; initially active routes during 2004 (MLW04) were 972 
abandoned during the ablation season in preference for the routes reoccupied again in 2005 973 
(MLW05). 974 
 975 
Figure 2: 976 
(a) Plot of mean daily air temperatures over ML from DOY200-235 (grey lines). The 977 
seasonal averages including error bars, the non-linear relationship describing the seasonal 978 
mean temperate lapse rate is shown by the bold black line and points. (b) Plot of coefficient 979 
of determination for regression between observed ablation and sum of air temperatures 980 
greater than Tcrit. Tcrit = +1.62 indicated by black diamond. 981 
 982 
Figure 3: 983 
Graph displaying (a) periodic albedo variations at centre line stakes (MLB3/AWS2 shown in 984 
black) during 2005 and (b) the corresponding seasonal mean albedo at differing elevations. 985 
Linear trends for these data are shown by dashed lines. 986 
 987 
Figure 4: 988 
Respective ArcTIM parameter sensitivity plots to independent variations in the parameter 989 
values a, b and c. Graphs illustrate the responses for Nash-Sutcliff (η2; black), Wilmott (d2; 990 
dashed) and RMSE (grey) criteria with the 2005 OLS regression optimised parameter value 991 
indicated with ‘×’ and the 95% parameter confidence limits shown with error bars at the top 992 
of each chart. Plot d shows the η2 (black) and RMSE (grey) for 200 realisations of the 993 
ArcTIM modelled ablation with random variations of all parameters (a-c). 994 
 995 
Figure 5: 996 
Spatial plots determined using ArcTIM during 2005 for a) total seasonal ablation and b) 997 
number of days experiencing ablation during the observation period.  998 
 999 
Figure 6:  1000 
Time-series of (a) total observed discharge (Q) and modelled potential runoff (W) in 2005 1001 
using four TIM variants ; (b) a plot of corresponding daily total water budget (W-Q) using 1002 
ArcTIM; and (c) the cumulative daily total Q and predicted runoff W derived from ArcTIM. 1003 
Dashed lines in (b) and (c) are uncertainty limits for the respective series (see body text for 1004 
details). 1005 
 1006 
Figure 7:  1007 
Time-series of the error (W – Q) expressed as a percentage of Q at hourly intervals and the 1008 
NP precipitation record from Ny Ålesund in 2005.  1009 
 1010 
Figure 8: 1011 
Time-series for 2004 of hourly total observed discharge (Q) and ArcTIM modelled potential 1012 
runoff (W) using the 2005 parameterisations. 1013 
 1014 
Figure 9: 1015 
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Plot showing the values of a for AWS2 plotted against time. Dashed lines indicate the time-1016 
window over which a is calculated from periodic ablation stake measurements. 1017 
 1018 
Figure 10: 1019 
Scatter plot showing relationship between a and the ratio of radiative to turbulent energy 1020 
fluxes derived using an adjusted EBM. 1021 
 1022 
 1023 
 1024 
 1025 
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