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Abstract 

This article reports on the synthesis, crystallographic and magnetic structure of 

barium-doped BiFeO3 compounds with approximate composition Bi1-xBaxFeO3-x/2, as 

well as of the fluorinated compounds Bi1-xBaxFeO3-xFx (both with x = 0.2, 0.3), 

prepared by low-temperature fluorination of the oxide precursors using 

polyvinylidenedifluoride, PVDF. Whereas the oxide compounds were obtained as 

cubic (x = 0.2) resp. slightly tetragonal (x = 0.3, c/a ~ 1.003) distorted perovskite 

compounds, a large tetragonal polar distortion was observed for the oxyfluoride 

compounds (c/a ~ 1.08 for x = 0.2 and ~ 1.05 for x = 0.3), being isostructural to 

tetragonal PbTiO3. Although described differently in previous reports on Ba doped 

BiFeO3, the observed remanent magnetisation is found to agree well with the amount 

of BaFe12O19 only detectable by neutron diffraction and the well-known magnetic 

properties of BaFe12O19. The oxyfluoride compounds show G-type antiferromagnetic 

ordering with magnetic moments lying in the a/b-plane.  

Keywords 

BiFeO3; fluorination; tetragonal distortion; magnetic properties; magnetic structure  



4 
 

1 Introduction 

Piezoelectric, particular ferroelectric materials are important for the use in many 

devices 1, with Pb(Ti,Zr)O3 being the dominant choice in industrial applications such 

as ink jet printers, gas igniters, micro-positioning systems, sonar, medical ultrasonic 

transducers or actuators for fuel injection 2, 3. However, for toxicological reasons there 

is high interest in making lead-free perovskite based ferroelectric piezoceramics 4, 5 

using highly abundant, environmentally friendly, low-cost elements. In this respect 

various solid solutions of bismuth-based compounds, such as Bi0.5Na0.5TiO3, 

Bi0.5K0.5TiO3, or BiFeO3 have been widely studied 6-10.   In the case of BiFeO3, it is of 

significant interest but generally has an intrinsic conductivity that is too high to be 

useful 11. In the last decade, this material gained broader interest for its multiferroic 

properties, which potentially make it attractive in the field of data storage 12-18. Both 

ferroelectric and antiferromagnetic ordering of BiFeO3 are stable with Curie and Néel 

temperatures of 1098 K and 643 K 11.  

The structure of BiFeO3 can be derived from the cubic perovskite structure. Under 

ambient conditions, the compound crystallizes in the trigonal polar space group R3c 

and shows spiral antiferromagnetic ordering 19. It has been reported that the crystal 

structure can be affected by chemical doping as well as by introducing strain when 

preparing the material in thin film form. Usually, attempts to replace Bi3+ by a lower 

valent alkaline earth ion AE2+ (resulting in the formation of vacancies at the same 

time following a composition of Bi1-xAExFeO~3-x/2) 20-25 or by isovalent La3+ (to form 

Bi1-xLaxFeO3) 26, 27, leads to transformation to a (pseudo)cubic perovskite compound 

with increasing amount of the dopant. It should be noted that although the cubic 

space group is centrosymmetric, and thus theoretically prohibitive for the adaptation 

of a ferroelectric polarization, the local symmetry has been shown to be lower for a 
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variety of compounds 28-32). A change from trigonal to tetragonal was reported for the 

preparation of compounds of the system BiFeO3 – PbTiO3, i. e. by co-doping BiFeO3 

on the A and B site with Pb2+ and Ti4+ ions respectively 33, a single phase material 

with a large c/a-ratio of ~ 1.19 was observed. 

For the preparation of thin films, the substrate and the deposition condition has been 

shown to be highly influential in determining the kind of distortion which is induced by 

the perovskite compound. Theoretical calculations predict the formation of a 

tetragonal P4mm type distortion only for conditions which induce a high degree of 

strain for pure BiFeO3 14. By this approach, a large tetragonal splitting with a c/a-ratio 

of ~ 1.25 can be induced for thin films deposited on SrTiO3, which is often described 

as supertetragonal. In addition, it was shown that chemical substitution of Bi3+ for 

Ba2+ can also introduce a tetragonal distortion in thin films at far lower strains 34, and 

also A-site doping using neodymium has been shown to be successful in this respect 

35. Furthermore, Iliev et al. reported that supertetragonal BiFeO3 should be favorable 

in terms of higher ferroelectric polarization values and simpler switching properties 36. 

So far, no tetragonal P4mm type AFeX3 type phase (A = mainly Bi3+, X = mainly 

oxygen) has been reported apart from thin film preparations, and computational 

results indicate that such a phase should be energetically less stable 14. 

Topochemical manipulations are important reaction types especially in the field of 

battery type materials 37-39 and for switchable material properties 40. They are widely 

studied reaction types for directing structure properties of perovskite type materials 

41. Among them, low temperature fluorination reactions 42-44 are viable tools to 

influence the composition of the anion sublattice, to alter material properties (such as 

the introduction of superconductivity 45-47) as well as to study the effect on magnetic 

structures and behaviour 48, 49, but are also interesting from a purely structural point 
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of view in terms of anion ordering, whose understanding “would be critical if we are to 

utilize anion substitutions effectively to tailor the properties of materials” 50. Such 

reactions are usually necessary (instead of simple high temperature reactions, which 

only work for few compounds for low fluoride contents51-55) due to the high stability of 

the alkaline earth fluorides AEF2 and lanthanide oxyfluorides LnOF. A variety of 

fluorination agents have been used for such topochemical reactions, among them F2, 

NH4F, MF2 (M = Cu, Zn), XeF2 (see Ref. 56, 44 for an overview), and it was recently 

shown that topochemical fluorination reactions can even be performed using 

electrochemical methods 57. However, for the preparation of iron containing 

oxyfluoride perovskites polyvinylidenedifluoride, PVDF 56, has proved to be a viable 

fluorination agent, and the compounds SrFeO2F 58, 59, BaFeO2F (so far known in 

three different modifications) 60-63, Sr1-xBaxFeO2F 64 and La1-xSrxFeO3-xFx 65, 66 have 

all been synthesized using this fluorine containing precursor. For all these systems 

(and also Fe-containing Ruddlesden-Popper type phases prepared using PVDF 67), 

the minimum Fe oxidation state was found to be Fe3+ and no compounds with higher 

fluorine contents than the ones needed to obtain single valent Fe3+ only have been 

reported so far (i. e. subsequent further reductive substitution of 1 O2- by 1 F- 44). 

Therefore, if one wants to modify BiFeO3 using PVDF, substitution of the Bi3+ ion by 

lower valent alkaline earth ions will be required to make this reaction type applicable. 

In this article we report on the first synthesis of tetragonal (P4mm type) 

Bi1-xBaxFeO3-xFx (x = 0.2, 0.3) with a structure similar to PbTiO3 as a bulk powder, 

showing a large c/a-ratio of ~1.08 - 1.05. The compounds were synthesized by solid 

state reaction to prepare the precursor oxides and subsequent topochemical 

fluorination of the oxides using PVDF at reduced temperatures. So far, these are the 

first perovskite type ferrite compounds containing only Fe3+ on the B-site, and 
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showing this structural arrangement. In addition, we report on the magnetic structure 

of the as prepared oxide and oxyfluoride compounds, which show G-type order of the 

magnetic moments. Furthermore, the identification of the ferrimagnetic impurity 

phase BaFe12O19 by means of neutron powder diffraction will likely provide an 

important new insight into the remanent magnetisation found for Ba-doped BiFeO3, 

which has been previously described as an intrinsic property of this phase 68, 21. 

2 Experimental 

2.1 Synthesis of compounds 

Approximately 4 g of samples of composition Bi1-xBaxFeO3-x/2 (x = 0.2, 0.3) were 

synthesized by conventional solid state reactions. Stoichiometric amounts of starting 

powders of BaCO3 (Sigma Aldrich, ≥99%), Bi2O3 (Fluka, > 98 %) and Fe2O3 (Fluka, 

≥ 99 %) were ground in a planetary ball mill (Retsch PM 100 CM, 300 rpm, 1 h) using 

iso-propanol as dispergent. The samples were then heated at temperatures of 

850 °C and 880 °C for 15 h, with a regrinding before each further heat treatment. For 

x = 0.3, the sample was heated a third time at 920 °C for another 15 h, since Ba-

richer compounds are known to require higher reaction temperatures 68, 69, 21. All heat 

treatments were performed in covered alumina crucibles without using an excess of 

Bi2O3. 

Fluorination was achieved by grinding the as-synthesized powders with 

stoichiometric amounts of PVDF (Aldrich) in a 20 % excess (i. e. 1 : 0.6 molar ratio of 

x in Bi1-xBaxFeO3-xFx : CH2CF2 monomer unit), followed by slowly heating the mixture 

to a temperature of 370 °C for 15 h again using covered alumina crucibles. 
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2.2 Diffraction experiments 

X-ray powder diffraction (XRD) patterns of the oxide and oxyfluoride compounds 

were recorded on a Bruker D8 diffractometer with Bragg-Brentano geometry and a 

fine focus X-ray tube with Cu anode. No primary beam monochromator was attached. 

A VANTEC detector and a fixed divergence slit (0.1 °) were used. The total scan time 

was 10 hours for the angular range between 5 and 130° 2θ. 

High-temperature X-ray powder diffraction (XRD) patterns of the oxyfluoride 

compounds were recorded on the same setup (except for using a 0.3 ° fixed 

divergence slit) using an Anton Paar HTK 1200N High-Temperature Oven-Chamber 

in a temperature range between 50 and 550 °C with a scan time of 1.5 hours per 

scan. 

Time of flight powder neutron diffraction (NPD) data were recorded on the HRPD 

high resolution diffractometer at the ISIS pulsed spallation source (Rutherford 

Appleton Laboratory, UK). 4 g of powdered samples were loaded into 8 mm diameter 

thin-walled, cylindrical vanadium sample cans and data collected at ambient 

temperature for 40 µAh proton beam current to the ISIS target (corresponding to 

~1 hour beamtime) for the oxide compounds and for 80 µAh proton beam current to 

the ISIS target (corresponding to ~2 hours beamtime) for the oxyfluoride compounds.  

Refinement of the magnetic and nuclear structure of Bi1-xBaxFeO3-xFx and 

Bi1-xBaxFeO3-x/2 (x = 0.2) was performed with the program TOPAS Academic 5 70, 71 

using the NPD data collected in all of the HRPD detector banks 1-3 at room 

temperature as well as the XRD data.  
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2.3 Magnetometric measurements 
Field-dependent DC susceptibility measurements were performed using a Quantum 

Design MPMS-XL 5 SQUID magnetometer at 300 K between 0 and 4.8 T. 

2.4 Mössbauer measurements 
The 57Fe Mössbauer spectrum for Bi0.7Ba0.3FeO2.7F0.3 was recorded in standard 

transmission geometry in constant acceleration mode using a ca. 15 mCi 57Co/Rh 

source at room temperature. The data are computed using the WinNormos software 

by R. A. Brand (WISSEL company) 72. The isomer shift is quoted relative to metallic 

iron at room temperature. 

2.5 Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray 

Spectroscopy (EDX) 

EDX spectra have been recorded for Bi1-xBaxFeO3-xFx (x = 0.2, 0.3) using a Philips 

XL30 FEG scanning electron microscope operating at 30 keV. For EDX analysis the 

EDAX Genesis system was used and an energy resolution of about 140 eV was 

applied. The mapped area was of the order of 100 μm² and the atomic ratios were 

determined from the average of the Bi-M, Ba-L, and Fe-K lines, which were averaged 

over two spots of the sample. The samples were sputtered with approximately 10 nm 

of Au prior to the measurements. 

2.6 Electrical Measurements 

The sample powders were cold-isostatically pressed at 300 MPa (KIP 100 E, Paul-

Otto Weber GmbH, Remshalden, Germany). Electrodes were applied using either Ag 

paint (G3692 Acheson Silver Dag 1415, Plano GmbH, Wetzlar, Germany) or Pt paint 

(Gwent Group Ltd., Pontypool, U.K.) and dried at 100°C for 1 hour. Temperature and 

frequency-dependent permittivity and impedance measurements were performed 

using an impedance analyzer (HP 4192A, Hewlett-Packard Co., Palo Alto, USA). For 
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polarization measurements, the samples were first vacuum infiltrated with a silicone 

oil (AK 35, Wacker Chemie GmbH, München, Germany), which allowed to apply 

electric fields up to 6 kV/mm.  For these polarization hysteresis measurements, a 

commercially available setup (aixPES system, aixACCT Systems GmbH, Aachen, 

Germany) was used. In this commercial system, polarization is measured according 

to the virtual ground method.  

The reliable electrical characterisation proved not to be possible due to the inability to 

sinter the samples without decomposition: the results from the attempted 

measurements are detailed in the Supplementary Material. 

3 Results and Discussion 

3.1 Analysis of the nuclear and magnetic structure of Bi1-xBaxFeO3-x/2 

(x = 0.2, 0.3) at ambient temperature 

When synthesizing BiFeO3 type compounds, it is known that the volatility of 

unreacted Bi2O3 at high temperature can cause the loss of large amounts of this 

component. Therefore we attempted solid state reaction after using high energy ball 

milling to produce a reactive mixing of stoichiometric amounts of the oxide / 

carbonate precursors for the reaction. The ratios of the elements were  confirmed to 

be correct within errors by an EDX analysis (see Table 1) of the fluorinated 

compounds Bi1-xBaxFeO3-xFx (x = 0.2, 0.3) (see section 3.2.1). The cation ratio is 

unaffected by the fluorination due to the very low reaction temperatures (below 

400 °C) and the fact that the fluorination reaction is a topochemical reaction. 

Although we cannot rule out small deviations from the ideal stoichiometry (e. g. 

following an equation Bi1-x-dBax+dFeO3-(x+d)/2 / Bi1-x-dBax+dFeO3-x-dFx+d), the general 

conclusions drawn in this article are independent of such small compositional 
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deviations, and the excess of fluorination agent used is enough to compensate such 

compositional variations. 

Table 1. Results of an EDX analysis of Bi1-xBaxFeO3-xFx (x = 0.2, 0.3). *:= σ was calculated from the 
intensity errors. The real σ is higher, since other sources of error (e. g. fit of background) would have to 

be taken into account. 

Bi1-xBaxFeO3-

xFx 

x = 0.2 x = 0.3 
theoretic

al measured ± σ* Region 
of 

toleran
ce 

derived 
from σ 

theoretic
al measurement ± σ* Region 

of 
toleran

ce 
derived 
from σ 

Fe-K 1 1± 0.02 1 1 ± 0.02 
Ba-L 0.2 0.22 ± 0.05 0.3 0.31 ± 0.05 
Bi-M 0.8 0.79 ± 0.01 0.7 0.65 ± 0.01 

ratio Bi/Ba 4.00 3.52 2.83-
4.64 2.33 2.08 1.77-

2.51 

ratio Fe/Bi 1.25 1.27 1.23-
1.31 1.43 1.55 1.49-

1.61 

ratio Fe/Ba 5.00 4.47 3.56-
5.93 3.33 3.23 2.73-

3.91 
 

The as synthesized oxide products were obtained as a (pseudo)cubic perovskite 

compound for x = 0.2, resp. a slightly tetragonal distorted perovskite compound for 

x = 0.3 (c/a ~ 1.003, only detectable in the high resolution NPD bank 1 data; also see 

comments on the tetragonal distortion found for Bi0.5Ba0.5FeO2.75 73, 74 later in this 

section). In the XRD patterns, a small amount of impurity of either tetragonal ß-Bi2O3 

(x = 0.2, ~ 2 wt-%), which is known to be stabilized by small degrees of doping 75, 

and trigonal ~Bi0.844Ba0.156O1.422 76 (x = 0.3, ~4 wt-%) were found, with no indication of 

further impurities being present. However, although undetectable in the XRD 

patterns, the presence of the ferrimagnetic compound BaFe12O19 at between 2 

(x = 0.2) to 4 (x = 0.3) wt-% was clearly indicated in the neutron diffraction patterns. 

Since this phase shows magnetic ordering up to high temperatures (TC = 450 °C 77), 

its magnetic reflections were also present in the pattern and could be described using 

the magnetic structure reported previously 78, with a magnetic moment of ~ 4 µB per 

Fe3+ ion. The presence of BaFe12O19 is understandably far more difficult to be 
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detected in the XRD data, which is reasonably explained by the fact that it contains 

mainly weaker scatterers compared to the main perovskite phase and also that its 

main reflection overlaps with the tails of the most intense (1 1 0) perovskite reflection. 

In contrast, the weaker neutron scatterers Bi2O3 and Bi0.844Ba0.156O1.422 are very hard 

to detect in the neutron diffraction pattern (compared to phases containing the 

stronger scattering Fe atom) and their strongest neutron reflections additionally 

overlap with the perovskite reflections. 

For the perovskite compound, magnetic reflections were found in the pattern which 

can be indexed using a k-vector of [½  ½ ½]. Refinement of the magnetic structure of 

both compounds (x = 0.2 and 0.3) indicates G-type antiferromagnetic order with 

magnetic moments close to 3.74(2) µB (x = 0.2) and 3.70(2) µB (x = 0.3) per Fe atom. 

This value is similar in magnitude to those reported for other Fe3+ containing 

perovskite compounds at room temperature  55, 62, 66, 63, 79. Since a hypothetical 

canting moment would be very small (< 0.1 µB per Fe atom) and due to the limited 

number of magnetic reflections present, such canting of the magnetic moment would 

be too small to be refined reliably from the NPD data. However, from the absence of 

further magnetic (superstructure) reflections or satellites, we conclude that the spiral 

magnetic order of BiFeO3 is indeed destroyed by A-site doping with Ba2+ 19. 

No further reflections could be detected for x = 0.2 (neither in the XRD nor in the 

NPD data) apart from the ones belonging to the nuclear and magnetic phases 

reported above. For x = 0.3, one additional reflection at d ~ 3.199 Å was detected but 

could not be assigned to one of the mentioned phases. 

From XRD data alone, Khomchenko et al. 68, 69, 21, 23 and Wang et al. 80 have reported 

that Bi1-xBaxFeO3-x/2 crystallizes in the trigonal space group R3c, being isotypic to the 

aristotype BiFeO3. With regards to their diffraction patterns and/or reported trigonal 
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lattice parameters, no superstructure reflections due to the lowering of symmetry 

from Pm-3m to R3c are visible in the patterns shown and also the trigonal lattice 

parameters appear to be close to pseudocubic, approximately following the simple 

relation cR3c ~ aR3c*60.5. The Bi ion also does not shift far from its position for a 

pseudocubic arrangement of (0, 0, ¼) with z ~ 0.254 (compared to z ~ 0.22 reported 

in 81). In contrast, Dachraoui et al. 29 report on the formation of a cubic structure for 

Bi0.81Pb0.19FeO2.905. However, by the use of TEM and from their structural analysis of 

synchrotron XRD data, it was found that the local symmetry is lower, with shifts of Bi 

ions along [1 1 0] or [1 1 1], and that the vacancy order cannot be considered to be 

random. In addition, the cubic space group was also reported for Ca-doped BiFeO3 

by Chen et al. 22. 

A non-polar tetragonal superstructure was reported for compositions close to 

Bi0.5Ba0.5FeO2.75 by Boullay et al. 73, 74 (space group P4/mmm, c = 4*cprimitive, 

(c/a)primitive ~ 1.02), with superstructure reflections being clearly visible both in the 

XRD and NPD and showing additional incommensurate order. When preparing the 

oxides, we often found that a mixture of a tetragonal and a cubic phase was formed, 

for the first heating instances, with the amount of the cubic phase increasing when 

heating to higher temperatures. We assume that this indicates a non-random 

distribution of the A site cations at lower temperatures, with Ba richer regions 

belonging to the tetragonal phase observed by Boullay et al. and Bi richer regions 

belonging to the cubic phase. Furthermore, such tetragonal phases are more likely to 

be found for compounds with increasing Ba content. 

Plots of the Rietveld analyses are shown for Bi0.8Ba0.2FeO2.9 and for Bi0.8Ba0.2FeO2.9 

in Figure 1 and Figure 2; the structural data are listed for Bi0.8Ba0.2FeO2.9 and for 

Bi0.7Ba0.3FeO2.85 in Table 2 and Table 3. 
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For both compounds, we tried to allow for displacement of the Bi and O ion along the 

[0 0 1], [0 1 1], and [1 1 1] directions. For all the directions, the shift away from the 

ideal cubic site was relatively small (far smaller compared to what we found for the 

fluorinated compounds described in section 3.2.1, and also smaller compared to the 

standard deviation of the refined value), with thermal parameters of the A-site cations 

Bi and Ba being very high. This is in agreement with the general disorder on this site 

and could additionally indicate that Bi shifts away from its ideal position due to 

vacancies in its neighborhood (also see discussion of structural changes upon 

fluorination in section 3.2.1). Since those vacancies are likely to be randomly (or 

nearly randomly) distributed (see Mössbauer studies reported in section 3.4), this 

effect can be described by strong thermal motion for the Rietveld refinement. Both 

compounds were finally refined in the tetragonal space group P4mm, although it must 

be stated that especially for x = 0.2 the exact symmetry of this off-centre shift 

remains questionable (the difference in lattice parameters is below the resolution limit 

of the diffraction data for this compound). It is worth mentioning that P4mm is a 

translationengleiche subgroup of P4/mmm, and therefore, also a P4/mmm type 

structural distortion can be refined using this model (with the ions being then located 

on the ideal positions). Indeed, no indicative shifts away from the ideal positions 

could be observed for the Bi, Ba, and O ions, indicating that the assumption of an 

overall polar model of the compound is not correct, although the local symmetry is 

very likely to be reduced. 
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Figure 1. Rietveld analysis of the nuclear and magnetic structure of Bi0.8Ba0.2FeO2.9. HRPD bank 1 (a) and 
XRD (b) data are shown. HRPD bank2 and bank3 data are provided as Figure S1a and Figure S1b in the 

Supplementary Material. 

 

Figure 2. Rietveld analysis of the nuclear and magnetic structure of Bi0.7Ba0.3FeO2.85 (unknown reflection 
at d = 3.199 is marked with *). HRPD bank 1 (a) and XRD (b) data are shown. HRPD bank2 and bank3 data 

are provided as Figure S2a and Figure S2b in the Supplementary Material. 
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Table 2. Structural parameters of the compound with nominal composition Bi0.8Ba0.2FeO2.9, space group 
P4mm, Z = 1. * := the position of the Fe ion was fixed to 0.5. 

Atom Atom 
type Site x y z occ. U1,1 U3,3 

Bi Bi3+ 1a 0 0 -0.03(1) 0.8 
0.086(4) 0.059(3) 

Ba Ba2+ 1a 0 0 0.06(8) 0.2 

Fe Fe+3 1b ½ ½ 0.5 * 1 0.006(1) 0.031(3) 

O O-2 1b ½ ½ -0.01(1) 0.967 0.119(6) 0.050(6) 

O O-2 2c 0 ½ 0.52(1) 0.967 0.006(1) 0.149(7) 

a 3.9853(1) c 3.9865(1) 
Rwp (total) 11.3 RBragg [%] 

(XRD) 1.7 

GOF (total) 7.2 RBragg [%] 
(bank1) 3.2 

 

Table 3. Structural parameters of the compound with nominal composition Bi0.7Ba0.3FeO2.85, space group 
P4mm, Z = 1. * := the position of the Fe ion was fixed to 0.5. 

Atom Atom 
type Site x y z occ. U1,1 U3,3 

Bi Bi3+ 1a 0 0 -0.01(10) 0.7 
0.065(2) 0.12(8) 

Ba Ba2+ 1a 0 0 0.01(10) 0.3 

Fe Fe+3 1b ½ ½ 0.5 * 1 0.011(1) 0.028(3) 

O O-2 1b ½ ½ -0.01(3) 0.95 0.110(5) 0.05(2) 

O O-2 2c 0 ½ 0.52(1) 0.95 0.007(1) 0.086(5) 

a 3.9963(1) c 4.0032(1) 
Rwp (total) 10.7 RBragg [%] 

(XRD) 2.7 

GOF (total) 7.0 RBragg [%] 
(bank1) 2.9 

 

In addition, we found that the reflections of the perovskite phase showed anisotropic 

broadening (e. g. the (1 1 1) reflection and higher orders thereof suffer from the 

lowest broadening, similar to that reported by Dachraoui et al. for Bi0.81Pb0.19FeO2.905 

29), and this was taken into account by using a model for anisotropic strain 

broadening utilizing spherical harmonics. 

The presence of the ferrimagnetic compound BaFe12O19 makes a detailed discussion 

of any findings / changes of magnetic properties very difficult. We have shown here 

that small amounts of BaFe12O19 would be undetectable (or at least extremely difficult 

to detect) using laboratory quality XRD data alone, even for very long measurement 

times, and that NPD can be used to show the presence of this phase even at these 

very small levels. However, since this compound can appear during synthesis, we 



17 
 

believe that our findings offer a potential alternative explanation to the canting of 

spins reported by Khomchenko et al. 68, 69, 21, 23 and Wang et al. 80, who both used 

similar synthetic procedures compared to those we report in this article. In the case of 

the Bi1-xBaxFeO3-x/2 compounds reported here (and also of the Bi1-xBaxFeO3-xFx 

compounds reported in section 3.2), the observed remanent magnetic moments fit 

very well to the amount of BaFe12O19 found on evaluation of the NPD data (and also 

to the magnitude of the magnetic moment reported by Khomchenko et al. 68, 69, 21, 23, 

the magnetisation reported by Wang et al. 80 is higher by a factor of ~4). This is 

shown by a detailed magnetic characterisation and correlation with the diffraction 

experiments reported in section 3.5. Keeping further in mind that the largest 

remanent magnetic moments were reported by Khomchenko et al. for Ba- and 

Pb-doping (compared to Ca- or Sr-doping) and increasing Ba/Pb content, and that for 

both compounds the ferrimagnetic phases AFe12O19 (A = Ba, Pb) are well known, an 

extrinsic nature of the remanent magnetic moment might also plausibly explain the 

observation of remanent magnetic moments for A-site doped BiFeO3. Such a 

presence of small amounts of PbFe12O19 was already assumed (although this 

compound was not detected by diffraction experiments) by Dachraoui et al. for 

Bi0.81Pb0.19FeO2.905 29, observing also a small remanent magnetic moment of ~ 0.001 

µB/f.u., similar to what was reported by Khomchenko et al. 68, 69, 21, 23 (~ 0.005 µB/f.u.). 

3.2 Analysis of the nuclear and magnetic structure of Bi1-xBaxFeO3-xFx 

(x = 0.2, 0.3) at ambient temperature 

3.2.1 Analysis of the nuclear structure of Bi1-xBaxFeO3-xFx (x = 0.2, 0.3) 

The X-ray powder diffraction patterns of the oxides in comparison to the oxyfluorides 

are shown in Figure 3.  It was found that a tetragonal distortion with a large c/a-ratio 



18 
 

is introduced into the material upon fluorination. The c/a-ratio of 1.08 for 

Bi0.8Ba0.2FeO2.8F0.2 is also significantly higher than the value of 1.05 found for 

Bi0.7Ba0.3FeO2.7F0.3, agreeing well with the fact that the tetragonal distortion and its 

magnitude must be related to the ns2 cation Bi3+. The fluorination furthermore causes 

an increase of the cell volume for the oxyfluorides compared to the oxides of 1.4 Å³ 

(x = 0.2) and 1.1 Å³ (x = 0.3). This change in volume is not affected by change of 

oxidation state (as often observed for Fe-containing perovskites 64, 65, but ruled out 

from the Mössbauer measurements reported in section 3.4 which confirm that the 

fluorinated compound Bi0.7Ba0.7FeO2.7F0.3 contains only Fe3+), but is related to an 

increased anion interaction with the lone-pair (which is additionally accompanied by 

the tetragonal distortion).  

 

Figure 3. XRD patterns of the oxide and oxyfluoride compounds Bi1-xBaxFeO3-x/2 and Bi1-xBaxFeO3-xFx. 

Apart from the perovskite compound, a small impurity of BiOF was detected for both 

compositions, which is likely to be formed from the impurity of tetragonal Bi2O3 (or 

Bi0.844Ba0.156O1.422) since the respective amounts compare very well. In the neutron 

diffraction pattern, the small amount of the ferrimagnetic impurity BaFe12O19 also 
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present in the precursor oxide was found to be unaffected by the fluorination 

procedure. 

BaFe12O19 is known for its ferrimagnetic properties. As for the pure oxides, we also 

found additional reflections which could be attributed to the magnetic scattering from 

the impurity phase BaFe12O19 and could be refined using the magnetic structure 

reported previously 78. 

To study the detailed crystallographic (and also magnetic structure, see section 

3.2.2), a combined Rietveld analysis of XRD and NPD was performed. No 

superstructure reflections (apart from the magnetic reflections) or reflections not 

explained by the BiOF or BaFe12O19 impurity phases could be observed for x = 0.2, 

indicating that the nuclear structure can be refined on the basis of the smallest 

primitive perovskite cell with anuc, cnuc ~ 4 Å. For x = 0.3 (but not for x = 0.2), we 

found one additional broad and small reflection (Figure 5b) in the bank 2 NPD data at 

d ~ 3.415-3.420 Å (not present in the precursor oxide), which cannot be indexed on 

the basis of an (20.5 resp. 2) x a, (20.5 resp. 2) x b, (2 resp. 3 resp. 4) x c unit cell, and 

is also not described by the superstructure reported by Boullay et al. for 

Bi0.5Ba0.5FeO2.75 (P4/mmm, c = 4*cprimitive). However, the fact that no further 

reflections, e. g. at d > 4 Å, could be observed, as well as that no further reflections 

were found in the XRD data, makes an assumption of an increased unit cell 

implausible and might indicate the presence of a further small amount of a potential 

decomposition product. For this size of unit cell, two tetragonal translationengleiche 

subgroups of the cubic space group Pm-3m can be found, namely the 

centrosymmetric space group P4/mmm and the non-centrosymmetric space group 

P4mm. Whereas the space group P4/mmm can be found for compounds with cations 

for which distortion of coordination polyhedron is influenced by the Jahn-Teller effect 
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(e. g. RbCuF3 82), the polar space group P4mm is well known for perovskite 

compounds showing ferro- (and therefore also piezo- and pyro-) electric properties 

(e. g. BaTiO3 83, Pb(Zr,Ti)O3 84 and PbTiO3 85). 

Comparing the fits to the neutron and X-ray diffraction patterns for both structural 

models, we found strong indication that the polar space group (compared to a model 

within the P4/mmm space group allowing for shifts away from the ideal positions) 

must be considered to be the valid model. This difference of quality of fit for the two 

different space groups is clearly evident by eye in the XRD pattern and NPD bank 3 

pattern (see Supplementary Material, but also the ΔRwp(total) = 1 % and 

ΔRBragg, individual(XRD, all NPD banks) ~ 1 % are very significant), indicating that the 

strongest scatterer Bi3+ is responsible most for this polar off-center displacement. The 

compound was therefore refined in the polar space group P4mm and the fit to the 

diffraction patterns is shown for Bi0.8Ba0.2FeO2.8F0.2 in Figure 4 and for 

Bi0.7Ba0.3FeO2.7F0.3 in Figure 5. This is also confirmed applying Hamilton’s R-test 86 

on the RBragg values for the different models, which shows that the P4/mmm model 

can be rejected at the 0.005 level (again see Supplementary Material).

 

Figure 4. Rietveld analysis of the nuclear and magnetic structure of Bi0.8Ba0.2FeO2.8F0.2. HRPD bank 1 (a) 
and XRD (b). HRPD bank 1 (a) and XRD (b) data are shown. HRPD bank2 and bank3 data are provided as 

Figure S3a and Figure S3b in the Supplementary Material. 

 



21 
 

 

Figure 5. Rietveld analysis of the nuclear and magnetic structure of Bi0.7Ba0.3FeO2.7F0.3 (unknown 
reflection at d = 3.415-3.420 is marked with *). HRPD bank 1 (a) and XRD (b) data are shown. HRPD bank2 

and bank3 data are provided as Figure S4a and Figure S4b in the Supplementary Material. 

Evaluating the widths of the reflections of the X-ray diffraction patterns and their 

angular dependence, indicate the presence of both microstrain effects and crystallite 

size effects contribute significantly to reflection broadening. In addition, we also found 

that the (0 0 l) reflections are significantly broader than the respective (h 0 0) 

reflections. Therefore, we had to introduce a model which allows for a more flexible 

refinement of reflection broadening for the two different crystallographic axes (again 

by the use of spherical harmonics). Furthermore, we estimated a sort of directional 

microstrain ε0,a and ε0,c by using a fit model with multiple perovskite phases with 

different lattice parameters (which we define as the fraction of the standard deviation 

of the lattice parameter to the mean lattice parameter) and found that ε0,c is nearly 

tripled compared to ε0,a (see Table 4 and Table 5, absolute coordinates with respect 

to the centre of mass are given in the Supplementary Material). 

It must also be mentioned that we had to include a second fraction of the perovskite 

compound to refine the diffraction patterns properly. This is likely due to the 

tetragonal perovskite not only showing broadening due to strain, but that this 

broadening is also asymmetric, with slightly higher intensities for c/a-ratios closer to 1 

compared to c/a-ratios above 1.08 (for x = 0.2) and 1.05 (for x = 0.3). These fractions 

are however found to be at a far lower level than the main tetragonal perovskite 
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phase (i. e. in a ratio of ~1:4 for x = 0.2 and ~1:9 for x = 0.3), and show a significantly 

smaller c/a ratio of ~ 1.02 for both compositions together with a slightly reduced cell 

volume by about ~ 1.4 Å³ (x = 0.2) and ~ 0.7 Å³ (x = 0.3) compared to the main 

fraction. The cell volume of those fractions is more similar to the corresponding oxide 

phases; however, adding more PVDF and repeating the heating procedure did not 

result in “elimination” of this second perovskite type phase. Possibly, this asymmetry 

can be explained by non-ideal statistical distribution of the Ba2+ and Bi3+ ions and 

subsequent varying compositions in the grains. For this second phase, the same 

structural parameters as the main phase were used. Due to the minor influence of 

this phase and high reflection overlap, it is not possible to reliably refine structural 

parameters independently. Furthermore, attempts were made to refine the pattern 

with a R3c symmetry for the minor fraction, however, the obtained fit was significantly 

worse compared to using two tetragonal fractions (ΔRwp,total ~ 1 %). 

The refined structural parameters for Bi1-xBaxFeO3-xFx are listed in Table 4 and Table 

5, and a drawing of the crystal structure is exemplarily shown for x = 0.2 in Figure 6 

(both compounds are structurally very similar). Bi1-xBaxFeO3-xFx (x = 0.2, 0.3) show a 

high similarity to the ferroelectric compound PbTiO3, i. e. the same kind of off-center 

shift for the ions by a similar magnitude was observed. In PbTiO3 the lone pair of the 

ns2 cation (Pb2+) is known to be directed towards where the Ba ion is located in 

Bi1-xBaxFeO3-xFx, and so in Bi1-xBaxFeO3-xFx, a similar directional orientation of the 

lone pair must therefore also be considered to be highly likely (see Figure 6b).  
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Table 4. Structural parameters of the compound with nominal composition Bi0.8Ba0.2FeO2.8F0.2, space 
group P4mm, Z = 1. * := the position of the Fe ion was fixed to 0.5. 

Atom Atom 
type Site x y z occ. U1,1 U3,3 

Bi Bi3+ 1a 0 0 -0.093(1) 0.8 
0.043(1) 0.037(3) 

Ba Ba2+ 1a 0 0 0.010(8) 0.2 

Fe Fe+3 1b ½ ½ 0.5 * 1 0.006(1) 0.016(1) 

O/F1 O-2/F- 1b ½ ½ 0.043(1) 1 0.057(1) 0.003(2) 

O/F2 O-2/F- 2c 0 ½ 0.570(1) 1 0.026(1) 0.024(2) 

a 3.9276(1) c 4.1926(2) Rwp 
(total) 9.7 RBragg [%] 

(XRD) 1.6 

ε0,a [%] 0.3 ε0,c [%] 1.1 GOF 
(total) 7.9 RBragg [%] 

(bank1) 5.0 

 

Table 5. Structural parameters of the compound with nominal composition Bi0.7Ba0.3FeO2.7F0.3, space 
group P4mm, Z = 1. * := the position of the Fe ion was fixed to 0.5. 

Atom Atom 
type Site x y z occ. U1,1 U3,3 

Bi Bi3+ 1a 0 0 -0.090(1) 0.7 
0.056(1) 0.044(4) 

Ba Ba2+ 1a 0 0 0.024(5) 0.3 

Fe Fe+3 1b ½ ½ 0.5* 1 0.009(1) 0.020(1) 

O/F1 O-2/F- 1b ½ ½ 0.037(1) 1 0.047(1) 0.003(2) 

O/F2 O-2/F- 2c 0 ½ 0.555(1) 1 0.022(1) 0.026(1) 

a 3.9624(1) c 4.1428(1) Rwp 
(total) 9.2 RBragg [%] 

(XRD) 2.64 

ε0,a [%] 0.4 ε0,c [%] 1.0 GOF 
(total) 6.9 RBragg [%] 

(bank1) 3.18 

 

(a)    (b)  

Figure 6. Refined crystal structure together with thermal ellipsoids for the different ions of 
Bi0.8Ba0.2FeO2.8F0.2 (a). The location of Bi ion (green) in its anion (red) coordination polyhedron together 
with the mutual position (as found for PbTiO3

 87) of the lone pair indicated by an yellow arrow (b). For a 
detailed analysis of the lone pair position, DFT based calculations would be required. 

The reasons for the introduction of tetragonal distortion on fluorination may relate to 

the displacive stereochemical activity of the lone pair being somehow suppressed in 
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the Ba-doped Bi1-xBaxFeO3-x/2 oxide compounds, but reactivated in the fluorinated 

compounds. It is known in the literature that the lone pair of the Bi3+ ion occupies 

approximately as much space as an oxide or fluoride anion in the crystal 88, 14. 

Therefore, on introduction of vacancies in the anion sublattice, the lone pair is likely 

to point towards such a vacancy for space reasons. This was already well 

investigated in a DFT study by Walsh et al. on the different modifications of Bi2O3 89; 

for the oxygen disordered δ-modification of Bi2O3 it was found that that the ns2 cation 

forms a lone pair, pointing towards the oxygen vacancy i. e. the “region of space” in 

the crystal lattice. For perovskite compounds which show a random (or nearly 

random) distribution of the vacancies in the anion sublattice (as found for 

Bi1-xBaxFeO3-x/2), a pseudocubic arrangement will have to form and a uniform 

displacive ns2 ion induced distortion will be simply suppressed. 

On “refilling” of the anion sublattice with fluoride ions by substituting 1 O2- for 2 F-, the 

unidirectional displacive effect of the Bi3+ ion can be recovered over a large area of 

the crystallite (O2- and F- only differ by about 0.06 Å for their ionic radii 90), since the 

whole anion sublattice is now occupied by anions. This is in agreement with the 

increase of cell volume due to fluorination, since the additional anions will require the 

space which has previously been occupied by the lone pair in the oxide compounds. 

However, such an increase in cell volume does not necessarily accompany 

fluorination of Fe-containing perovskite compounds (where the average Fe oxidation 

state is maintained). For example,  the vacancy ordered monoclinically distorted 

perovskite compound BaFeO2.5 reported by Clemens et al. 79 shows a decrease in 

cell volume on fluorination to BaFeO2F. In contrast, the brownmillerite type SrFeO2.5 

shows an increase in cell volume on fluorination to SrFeO2F. These differences are 

explained by the differences in structural distortions in BaFeO2.5 and SrFeO2.5. 
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Furthermore, if we consider that the volume changes per fluoride ion (-1.02 Å³/F- for 

BaFeO2.5 and 0.65 Å³/F- for SrFeO2.5) are significantly smaller than for the fluorination 

of Bi1-xBaxFeO3-xFx (7 Å³/F- for x = 0.2 and 3.7 Å³/F- for x = 0.3), we can conclude that 

the space of the vacancy is likely to have been occupied by the lone-pair of Bi3+ in 

the oxide compounds, which is well known to act as a pseudo-anion 91. 

Although the ns0 cation Ba2+ does not participate in the off-center displacement and 

shifts towards the “ideal” position 0, 0, 0 in relation to the position of the Fe atom, the 

overall polar distortion remains stable in the fluorinated compounds. It must be 

mentioned at this point that a similar quality of fit was observed when fixing the Ba 

and Bi ion to the same position which is refined to 0, 0, ~ -0.07 then, without 

significant change of the positions of the other ions. However, since the refinement 

proved to be stable and converged properly using a split site for this compound 

(which would chemically make sense), we have given the split parameters in Table 4 

and Table 5.  

The adaption of the tetragonal distortion is in contrast to what was found for La-

doped BiFeO3 compounds (Bi1-xLaxFeO3; isovalent substitution of Bi3+ by La3+) for 

which a transformation towards a pseudocubic structure is obtained for a far lower 

degree of doping (around x = 0.1 deduced from the diffraction patterns shown in 27). 

The difference in ionic radii between La3+ and Ba2+ is large (1.36 vs. 1.61 Å for 

12-fold coordination 90) and it has already been shown that structural distortions 

found in the series La1-xSrxFeO3-xFx (0 ≤ x ≤1, also monovalent Fe3+ for all 

compositions) for increasing La content arise from the fact that the La3+ ion tries to 

lower its effective coordination number 65, 66. In contrast, a high thermal displacement 

parameter of the Fe atom was observed for BaFeO2F, indicating that a local polar 

displacement is likely in this compound, although an overall cubic perovskite 
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structure was observed 60. Therefore, the larger Ba2+ and its compatibility with local 

12-fold coordination might facilitate the formation of the polar tetragonal distortion for 

the compounds Bi1-xBaxFeO3-xFx, whereas local structural distortions for La3+ would 

just be too strong to maintain the stereochemical activity of Bi3+ over larger crystallite 

sizes. 

There also appears to be a clear difference for the Bi1-xBaxFeO3-xFx compounds 

(x = 0.2, 0.3) compared to PbFeO2F, for which the larger F content and associated 

disorder of the O2- and F- ions might be prohibitive for the adoption of a uniform polar 

distortion (i. e. the compound is found in the cubic perovskite structure with strong 

displacement of the A site cations towards the twelve possible [1 1 0] like directions). 

So far, it is not entirely clear why PbFeO2F does not show stereochemical activity of 

the ns2 cation Pb2+. 

From the shape of the thermal displacement ellipsoids shown in Figure 6a, a slight 

local tilting of the octahedra is also indicated for Bi1-xBa1-xFeO3-xFx (x = 0.2, 0.3) by 

the disc like shape of the thermal ellipsoid of the O/F1 ion, and blocks with different 

tilting in the a/b-plane might be present. This would also be in good agreement with a 

tolerance factor of ~ 0.92-0.94 calculated from the average ionic radii reported in 90 

(estimating the radius of Bi3+ to 1.36 Å for 12 fold coordination by interpolation). 

However it is worth mentioning that such a disc like thermal ellipsoid could also arise 

from the disorder on the A site and shifts of the oxygen ion away from the lone pair of 

Bi3+ towards a Ba2+ ion in the same plane. The slightly rod like shape of the thermal 

ellipsoid of the Fe atom can be explained by a partial split position: for octahedra 

surrounded by a higher number of Ba2+ ions, the Fe ion is more likely to shift towards 

the center of the octahedron, whereas for octahedra surrounded by a higher number 
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of Bi3+ ions, a shift away from this center towards one corner of the octahedron would 

be plausible. 

Additionally, the direction dependent broadening of the reflections is also in good 

agreement with the assumption of the lone pair pointing along the c-axis. Since the 

Bi3+ and the Ba2+ ion strongly differ in the shape of their electron shell (i. e. rod like 

vs. sphere like), this would cause a stronger fluctuation of the lattice plane distances 

along the direction in which the lone pair is pointing at, namely the c-axis for 

Bi1-xBaxFeO3-xFx. 

It might be worth mentioning that attempts to synthesize oxyfluorides with a lower 

Ba-content (i. e. lower values of x) did not result in the formation of phase pure 

compounds although the precursor oxides appeared to be single phase perovskite 

compounds. Instead, mixtures of two perovskite type phases (trigonal R3c and 

tetragonal P4mm) were observed. Since no single phase products could be obtained, 

those compositions haven’t been investigated further. 

3.2.2 Analysis of the magnetic structure of Bi1-xBaxFeO3-xFx (x = 0.2, 0.3) 

Analysis of the magnetic reflections showed that they are compatible with a k-vector 

of [½ ½ ½]. Among the maximal magnetic subgroups of P4mm allowing for this 

k-vector (determined using the program MAXMAGN 92 on the Bilbao Crystallographic 

Server 93-95), only the groups 108.238 and 46.246 are compatible with a magnetic 

moment on the Fe atoms. The magnetic space group 108.238 is compatible with a 

G-type alignment of the magnetic moments along the c-axis, whereas 46.246 is 

compatible with G-type alignment of the magnetic moment along one of the 

crystallographic axes a or b. However, since the nuclear cell shows tetragonal 

symmetry only an overall magnetic moment lying in the a/b-plane can be determined 
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from powder diffraction data 96. Both groups were tested and a proper fit of the 

reflections could only be obtained for the space group 46.246 (Icma2), with an overall 

magnetic moment of 3.7(1) µB per Fe atom. This magnetic moment is again in good 

agreement with what has been observed for other G-type ordered Fe3+ containing 

perovskites at room temperature 55, 62, 66, 63, 79. Furthermore, the alignment of the 

magnetic moment within the a/b-plane was also found by Boullay et al. 73 for 

tetragonal Bi0.5Ba0.5FeO2.75 (P4/mmm, c = 4*cprim.). None of the maximal subgroups of 

P4mm with k = [½ ½ ½] allow for the presence of a permanent magnetic moment due 

to canting. We believe that the occurrence of the impurity BaFe12O19 explains the 

magnetic moment quite well (see section 3.5), but if such a permanent magnetic 

moment would exist, it could either lie along the c-axis or even within the a/b-plane. 

However, this is not indicated in fits using the magnetic space group 1.1 and applying 

proper constraints to the directions of the magnetic moments between different 

crystallographic sites (the canting moment would just be too small to be refined 

reliably), although such a very small canting moment cannot be ruled out entirely by 

the analysis of the NPD data. 

3.3 High temperature X-ray diffraction experiments 

High temperature X-ray diffraction experiments were performed to determine the 

decomposition and phase transition behavior of the as prepared oxyfluorides. We 

found that on heating the compounds to a temperature of approximately 400 °C, the 

tetragonal polar distortion remains stable and the c/a-ratio also stays nearly constant. 

On cooling down the compounds to room temperature when not heated above 

400 °C, we found that the lattice parameters match very well to what was found 

during the heating procedure (see Figure 7). 
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Figure 7. Temperature dependence of the tetragonal lattice parameters a and c as well as the cube root of 
the cell volume V1/3 for heating Bi1-xBaxFeO3-xFx to 400 °C. 

When heating the compound to temperatures above 400 °C, a change from 

tetragonal towards cubic was found. This structural change is accompanied by the 

formation of BaF2, which is a well-known decomposition product for BaFeO2F type 

compounds 64, 62, 63 (also see end of this paragraph). On cooling down from 

temperatures ≥ 450°C, the tetragonal distortion was not found to be reappearing, 

highlighting that the use of topochemical reactions is inalienable for the preparation 

of oxyfluorides for compounds of the system Bi1-xBaxFeO3-xFx (see Supplementary 

Material for the pattern of Bi0.7Ba0.3FeO2.7F0.3 heated at 550 °C in comparison to 

undecomposed Bi0.7Ba0.3FeO2.7F0.3). The as formed cubic perovskite (respectively 

slightly distorted perovskite) furthermore shows a similar lattice parameter compared 

to the precursor oxides Bi1-xBaxFeO3-x/2. 

We conclude that the polar tetragonal distortion is therefore very stable for the 

oxyfluorides Bi1-xBaxFeO3-xFx, with a Curie temperature > 770 K. Structurally similar 

compounds (e. g. PbTiO3, Tc = 760 K) show a clear decrease of the c/a-ratio when 

approaching their Curie temperature (see e. g. 97), and the fact that this is not 
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observed for Bi1-xBaxFeO3-xFx might indicate that the tetragonal distortion is even 

further stabilized for those compositions. 

The decomposition of the compounds at elevated temperatures and the subsequent 

analysis of the decomposition products can be used to prove that incorporation of F 

into the perovskite lattice was indeed successful (as was already shown in previous 

articles 64, 65, 62, 63). The amount of BaF2 agrees within errors with the amount of F- 

assumed in Bi1-xBaxFeO3-xFx (e. g. ~ 7 wt-% for Bi0.8Ba0.2FeO2.8F0.2). This, together 

with a completely filled anion sublattice indicated from the neutron data and the 

presence of single valent Fe3+ from the Mössbauer spectroscopic characterization 

(see section 3.4) provides strong evidence for a composition close to 

Bi1-xBaxFeO3-xFx is correct for the as prepared oxyfluoride compounds. On 

decomposition at 700 °C for 5 min, we also found the formation of a rhombohedral 

(R3c) together with a cubic (Pm-3m) perovskite phase (in the ratio of ~ 5:4). This 

indicates that the extraction of Ba due to the formation of BaF2 also causes 

readoption of the parent rhombohedral phase for Bi-richer regions. The ratio of the 

cations was confirmed by EDX spectroscopy (within the errors of the method) for 

both compounds Bi1-xBaxFeO3-xFx (x = 0.2, 0.3), see Table 1. 

3.4 Mössbauer spectroscopy experiments of Bi0.7Ba0.3FeO2.7F0.3 

57Fe Mössbauer spectroscopy was measured on the compound with highest fluorine 

content Bi0.7Ba0.3FeO2.7F0.3. A single sextet (see Figure 8) with an isomer shift 

characteristic for iron in trivalent oxidation state was found (see Table 6), and the 

finding of a sextet agrees well with the magnetic structure determined via neutron 

powder diffraction. However, to obtain a proper fit of the spectrum, a Gaussian type 

distribution of magnetic fields as well as quadrupole interaction parameters had to be 

assumed. Such an assumption is reasonable, since due to the disorder of ions in the 



31 
 

compound (e. g. Bi/Ba and O/F) local variations in the exact kind of ion environments 

will have to occur, and the fact that the quadrupole interaction parameter shows a 

broader distribution (compared to the distribution of the magnetic hyperfine field 

parameter) agrees well with this observation. 

 

Figure 8. 57Fe Mössbauer spectrum recorded from Bi0.7Ba0.3FeO2.7F0.3 at room temperature. 

Table 6. Fitted Mössbauer parameters for the compound Bi0.7Ba0.3FeO2.7F0.3. Bhf := magnetic hyperfine 
field, ε := effective quadrupole interaction parameter, δis := isomer shift versus α-Fe, Γ := line width. ΔBhf 
and Δε are Gaussian distributions of the Bhf and ε parameters respectively. * := Γ was fixed for the fit of 
the pattern. 

 Bhf (T) ΔBhf (T) ε (mm/s) Δε (mm/s) δis (mm/s) Γ (mm/s) 

Fe3+ (O) 49.5(1) 2.1 -0.13(1) 0.4 0.285(1) 0.3* 

 

The magnetic hyperfine field parameter of 49.5 T is comparable to what was found 

for other magnetically ordered iron containing perovskite compounds with Fe3+ being 

in corner sharing octahedral coordination (e. g. SrFeO2F59, 3C-BaFeO2F61, 

6H-BaFeO2F63, 15R-BaFeO2F62). Furthermore, the structural characterisation 

reported in the previous sections can also be validated by comparing the spectrum of 

Bi0.7Ba0.3FeO2.7F0.3 to data of similar compounds reported in literature. Batuk et al. 31 
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recorded Mössbauer data for Sr-doped PbFeO2.5. Such lead containing perovskite 

ferrites show crystallographic shearing in supposedly lead richer regions 30-32, which 

results in the formation of edge sharing between neighbouring Fe-polyhedra. This 

edge sharing is known to lower the magnetic hyperfine field interaction (e. g. to about 

32 T 31 due to increased covalent interactions between the Fe and the anions, or due 

to possibly increased covalent Fe-Fe interactions between face sharing octahedra as 

found in 6H- and 15R-BaFeO2F62, 63). Crystallographic shearing can therefore be 

practically ruled out for the fluorinated compounds with tetragonal distortion, since no 

such lowered magnetic hyperfine field parameters have been found here. This holds 

also for the oxides due to the topochemical nature of the fluorination reaction). In 

addition, we could not find any doublet contributions in the Mössbauer spectrum, as 

was found for Bi0.81Pb0.19FeO2.905
 29, or a second sextet as was found for 

Bi0.8Pb0.2FeO2.9, which both had been assigned to Fe with lower coordination 

numbers. Again, this all agrees well with a fully occupied anion lattice for the 

fluorinated compounds.    

3.5 Magnetic characterisation of Bi1-xBaxFeO3-x/2 and Bi1-xBaxFeO3-xFx 

Field dependent measurements of the magnetisation are shown and discussed for 

Bi0.8Ba0.2FeO2.9 and Bi0.8Ba0.2FeO2.8F0.2 (see inlay of Figure 9) and show a small 

remanent magnetisation. Both compounds were shown by neutron diffraction to 

contain small amounts of the impurity phase BaFe12O19 of 2.0 wt-% for the oxide and 

1.7-wt-% for the oxyfluoride. BaFe12O19 is reported to possess a remanent magnetic 

moment of ~ 20 µB / f.u. (at 0 K) 98, with a high Curie temperature of 740 K. This 

magnetic moment could also be confirmed by the magnetic reflections of this phase 

present in the NPD data. We tried to correlate the observed remanent magnetisation 

with the amount of BaFe12O19 and its known magnetic properties (see Figure 9), and 
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found that they agree very well within errors (which mainly arise from the 

quantification of this phase). This explains why the curves of the oxide and 

oxyfluoride are more similar for the inlay (the ideal molar masses of the oxide and 

oxyfluoride differ to approximately 1 %) compared to the main figure, for which the 

magnetisation had to be divided by the weight fractions of 2.0 respectively 1.7 wt-% 

determined for BaFe12O19. No canting of the magnetic moment of the perovskite 

compound needs to be assumed to explain the observed magnetic moments, and 

this is also in agreement with the analysis of the magnetic structures of the oxide as 

well as the oxyfluoride compounds reported in sections 3.1 and 3.2. 

 

Figure 9. Field dependent measurements of the magnetisation of Bi0.8Ba0.2FeO2.9 and Bi0.8Ba0.2FeO2.8F0.2 
(inlay), measured magnetisation correlated with the amount of BaFe12O19 determined by quantitative 

phase analysis of the NPD data. 

We also found an increase for the magnetisation for increasing Ba content. This is in 

agreement that for such increase of Ba-content, an increase of the amount of 

BaFe12O19 was found (~ 4 wt-%), and can be explained by the fact that the samples 

had to be heated to higher temperatures for obtaining a cubic perovskite phase with 

nearly random distribution of Bi/Ba ions. 



34 
 

4 Summary 

In this article we have shown that tetragonal PbTiO3-type BiFeO3 can be stabilized by 

Ba-doping of the Bi-site and subsequent topochemical fluorination using PVDF. The 

as prepared oxyfluoride compounds Bi1-xBaxFeO3-xFx contain single valent Fe3+ and 

show a large tetragonal distortion with a c/a-ratio of 1.08-1.05 (for x = 0.2/0.3) and 

crystallize in the polar space group P4mm. The compounds are isostructural to 

Pb(Ti,Zr)O3 compounds, with similar magnitudes for the off-centre displacement of 

the Fe ions in the octahedra as well as of the ns2 cation Bi3+.  This is the first time 

that chemical doping was found to induce a polar tetragonal distortion in 

non-stressed BiFeO3 compounds, which has been assumed to potentially improve 

switching kinetics of the compound 36. The fluorinated compounds show G-type 

alignment of the magnetic moments in the a/b-plane. The remanent magnetisation 

found is in agreement with the amount of impurity of BaFe12O19, which could only be 

detected and quantified using neutron powder diffraction. Therefore, the intrinsic 

nature of the magnetic moment due to A-site doping by Ba2+ assumed in previous 

publications 80, 99, 68, 21, 25 might be questionable. 

Currently techniques are being investigated to fluorinate thin films of Ba-doped 

BiFeO3, which might then be more suitable for electrical characterization for these 

thermodynamically unstable compounds. The fluorination of thin epitaxially grown 

films of SrFeO3- was recently reported by Moon et al. 100 and Katayama et al. 101 by 

the use of PVDF and we think that this method might be, in principle, applicable to a 

broad range of A-site doped Bi1-xAxFeO3-y compounds. For such dense films, the 

evaluation of electric properties might then become feasible. 
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5 Supporting Information 

Supporting information is provided for the comparison of fit models using the space 

groups P4mm and P4/mmm, details for Hamilton’s R-test comparing the structural 

models of Bi0.7Ba0.3FeO2.7F0.3 with space groups P4mm and P4/mmm, and the 

decomposition of Bi0.7Ba0.3FeO2.7F0.3 at 550 °C. Attempts to determine the electric 

properties of Bi1-xBaxFeO3-x/2 and Bi1-xBaxFeO3-xFx are also included there. Structural 

data for the compounds Bi1-xBaxFeO3-x/2 and Bi1-xBaxFeO3-xFx (x = 0.2, 0.3) are 

provided as cif-files. This material is available free of charge via the Internet at 

http://pubs.acs.org 

6 Acknowledgements 

Neutron diffraction beamtime at ISIS was provided by the Science and Technology 

Facilities Council (STFC). H. Hahn appreciates the support of the State of Hesse by 

an equipment grant.   

  



36 
 

7 References 

(1) Jaffe, B.; Cook, W. R.; Jaffe, H., Piezoelectric Ceramics. Academic Press: 
London, New York, 1971. 
(2) Kao, K. C., Dielectric Phenomena in Solids. Elsevier: Amsterdam, 2004. 
(3) Newnham, R. E., Properties of Materials: Anisotropy, Symmetry, Structure. 
Oxford University Press: Oxford, 2005. 
(4) Acosta, M.; Jo, W.; Rödel, J., J. Am. Ceram. Soc. 2014, 97, 1937-1943. 
(5) Yao, F.-Z.; Patterson, E. A.; Wang, K.; Jo, W.; Rödel, J.; Li, J.-F., Appl. Phys. 
Lett. 2014, 104, 242912. 
(6) Hiruma, Y.; Aoyagi, R.; Nagata, H.; Takenaka, T., Jpn. J. Appl. Phys. 2005, 
44, 5040. 
(7) Isupov, V. A., Ferroelectrics 2005, 315, 123-147. 
(8) Shrout, T.; Zhang, S., J. Electroceram. 2007, 19, 113-126. 
(9) Seifert, K. T. P.; Jo, W.; Rödel, J., J. Am. Ceram. Soc. 2010, 93, 1392-1396. 
(10) Patterson, E. A.; Cann, D. P., J. Am. Ceram. Soc. 2012, 95, 3509-3513. 
(11) Catalan, G.; Scott, J. F., Adv. Mater. 2009, 21, 2463-2485. 
(12) Wang, J.; Neaton, J. B.; Zheng, H.; Nagarajan, V.; Ogale, S. B.; Liu, B.; 
Viehland, D.; Vaithyanathan, V.; Schlom, D. G.; Waghmare, U. V.; Spaldin, N. A.; 
Rabe, K. M.; Wuttig, M.; Ramesh, R., Science 2003, 299, 1719-1722. 
(13) Neaton, J. B.; Ederer, C.; Waghmare, U. V.; Spaldin, N. A.; Rabe, K. M., Phys. 
Rev. B 2005, 71, 014113. 
(14) Ravindran, P.; Vidya, R.; Kjekshus, A.; Fjellvåg, H.; Eriksson, O., Phys. Rev. B 
2006, 74, 224412. 
(15) Valant, M.; Axelsson, A.-K.; Alford, N., Chem. Mater. 2007, 19, 5431-5436. 
(16) Selbach, S. M.; Einarsrud, M.-A.; Grande, T., Chem. Mater. 2008, 21, 169-
173. 
(17) Reitz, C.; Suchomski, C.; Weidmann, C.; Brezesinski, T., Nano Res. 2011, 4, 
414-424. 
(18) Liu, H.; Yang, P.; Yao, K.; Ong, K. P.; Wu, P.; Wang, J., Adv. Funct. Mater. 
2012, 22, 937-942. 
(19) Sosnowska, I.; Peterlin-Neumaier, T.; Steichele, E., J. Phys. C: Solid State 
Phys. 1982, 15, 4835-4846. 
(20) Khomchenko, V. A.; Kiselev, D. A.; Vieira, J. M.; Kholkin, A. L.; Sa, M. A.; 
Pogorelov, Y. G., Appl. Phys. Lett. 2007, 90, 242901. 
(21) Khomchenko, V. A.; Kopcewicz, M.; Lopes, A. M. L.; Pogorelov, Y. G.; Araujo, 
J. P.; Vieira, J. M.; Kholkin, A. L., J. Phys. D: Appl. Phys. 2008, 41, 102003. 
(22) Chen, W.-t.; Williams, A. J.; Ortega-San-Martin, L.; Li, M.; Sincliar, D. C.; 
Zhou, W.; Attfield, J. P., Chem. Mater. 2009, 21, 2085-2093. 
(23) Khomchenko, V. A.; Kiselev, D. A.; Kopcewicz, M.; Maglione, M.; Shvartsman, 
V. V.; Borisov, P.; Kleemann, W.; Lopes, A. M. L.; Pogorelov, Y. G.; Araujo, J. P.; 
Rubinger, R. M.; Sobolev, N. A.; Vieira, J. M.; Kholkin, A. L., J. Magn. Magn. Mater. 
2009, 321, 1692-1698. 
(24) Wang, L. Y.; Wang, D. H.; Huang, H. B.; Han, Z. D.; Cao, Q. Q.; Gu, B. X.; Du, 
Y. W., J. Alloys Compd. 2009, 469, 1-3. 
(25) Das, R.; Mandal, K., J. Magn. Magn. Mater. 2012, 324, 1913-1918. 
(26) Zhang, S.-T.; Zhang, Y.; Lu, M.-H.; Du, C.-L.; Chen, Y.-F.; Liu, Z.-G.; Zhu, Y.-
Y.; Ming, N.-B.; Pan, X. Q., Appl. Phys. Lett. 2006, 88, 162901. 
(27) Suresh, P.; Srinath, S., J. Appl. Phys. 2013, 113, D920. 



37 
 

(28) Abakumov, A. M.; Hadermann, J.; Bals, S.; Nikolaev, I. V.; Antipov, E. V.; Van 
Tendeloo, G., Angew. Chem. 2006, 118, 6849-6852. 
(29) Dachraoui, W.; Hadermann, J.; Abakumov, A. M.; Tsirlin, A. A.; Batuk, D.; 
Glazyrin, K.; McCammon, C.; Dubrovinsky, L.; Van Tendeloo, G., Chem. Mater. 
2012, 24, 1378-1385. 
(30) Abakumov, A. M.; Batuk, M.; Tsirlin, A. A.; Tyablikov, O. A.; Sheptyakov, D. V.; 
Filimonov, D. S.; Pokholok, K. V.; Zhidal, V. S.; Rozova, M. G.; Antipov, E. V.; 
Hadermann, J.; Van Tendeloo, G., Inorg. Chem. 2013, 52, 7834-7843. 
(31) Batuk, D.; Batuk, M.; Abakumov, A. M.; Tsirlin, A. A.; McCammon, C.; 
Dubrovinsky, L.; Hadermann, J., Inorg. Chem. 2013, 52, 10009-10020. 
(32) Batuk, M.; Turner, S.; Abakumov, A. M.; Batuk, D.; Hadermann, J.; Van 
Tendeloo, G., Inorg. Chem. 2014, 53, 2171-2180. 
(33) Bhattacharjee, S.; Pandey, D., J. Appl. Phys. 2010, 107, 124112. 
(34) Christen, H. M.; Nam, J. H.; Kim, H. S.; Hatt, A. J.; Spaldin, N. A., Phys. Rev. 
B 2011, 83, 144107. 
(35) Simões, A. Z.; Cavalcante, L. S.; Moura, F.; Longo, E.; Varela, J. A., J. Alloys 
Compd. 2011, 509, 5326-5335. 
(36) Iliev, M. N.; Abrashev, M. V.; Mazumdar, D.; Shelke, V.; Gupta, A., Phys. Rev. 
B 2010, 82, 014107. 
(37) Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B., J. Electrochem. Soc. 
1997, 144, 1188-1194. 
(38) Wakihara, M., Mater. Sci. Eng., R 2001, R33, 109-134. 
(39) Islam, M. S.; Driscoll, D. J.; Fisher, C. A. J.; Slater, P. R., Chem. Mater. 2005, 
17, 5085-5092. 
(40) Dasgupta, S.; Das, B.; Knapp, M.; Brand, R. A.; Ehrenberg, H.; Kruk, R.; 
Hahn, H., Adv. Mater. 2014, 26, 4639-4644. 
(41) Sanjaya Ranmohotti, K. G.; Josepha, E.; Choi, J.; Zhang, J.; Wiley, J. B., Adv. 
Mater. 2011, 23, 442-460. 
(42) Greaves, C.; Francesconi, M. G., Curr. Opin. Solid State Mater. Sci. 1998, 3, 
132-136. 
(43) McCabe, E. E.; Greaves, C., J. Fluorine Chem. 2007, 128. 
(44) Clemens, O.; Slater, P. R., Rev. Inorg. Chem. 2013, 33, 105-117. 
(45) Al-Mamouri, M.; Edwards, P. P.; Greaves, C.; Slaski, M., Nature (London, 
U.K.) 1994, 369, 382-384. 
(46) Al-Mamouri, M.; Edwards, P. P.; Greaves, C.; Slater, P. R.; Slaski, M., J. 
Mater. Chem. 1995, 5, 913-916. 
(47) Hirai, D.; Climent-Pascual, E.; Cava, R. J., Phys. Rev. B 2011, 84. 
(48) Romero, F. D.; Bingham, P. A.; Forder, S. D.; Hayward, M. A., Inorg. Chem. 
2013, 52, 3388-3398. 
(49) Luo, K.; Tran, T. T.; Halasyamani, P. S.; Hayward, M. A., Inorg. Chem. 2014, 
52, 13762-13769. 
(50) Saratovsky, I.; Lockett, M. A.; Rees, N. H.; Hayward, M. A., Inorg. Chem. 
2008, 47, 5212-5217. 
(51) Ehora, G.; Renard, C.; Daviero-Minaud, S.; Mentré, O., Chem. Mater. 2007, 
19, 2924-2926. 
(52) Mentré, O.; Kabbour, H.; Ehora, G.; Tricot, G. g.; Daviero-Minaud, S.; 
Whangbo, M.-H., J. Am. Chem. Soc. 2010, 132, 4865-4875. 
(53) Sturza, M.; Daviero-Minaud, S.; Kabbour, H.; Gardoll, O.; Mentré, O., Chem. 
Mater. 2010, 22, 6726-6735. 
(54) Sturza, M.; Daviero-Minaud, S.; Huvé, M.; Renaut, N.; Tiercelin, N.; Mentré, 
O., Inorg. Chem. 2011, 50, 12499-12507. 



38 
 

(55) Sturza, M.; Kabbour, H.; Daviero-Minaud, S.; Filimonov, D.; Pokholok, K.; 
Tiercelin, N.; Porcher, F.; Aldon, L.; Mentré, O., J. Am. Chem. Soc. 2011, 133, 
10901-10909. 
(56) Slater, P. R., J. Fluorine Chem. 2002, 117, 43-45. 
(57) Clemens, O.; Rongeat, C.; Anji Reddy, M.; Giehr, A.; Fichtner, M.; Hahn, H., 
Dalton Trans. 2014, 43, 15771-15778. 
(58) Berry, F. J.; Ren, X.; Heap, R.; Slater, P.; Thomas, M. F., Solid State 
Commun. 2005, 134, 621-624. 
(59) Berry, F. J.; Heap, R.; Helgason, Ö.; Moore, E. A.; Shim, S.; Slater, P. R.; 
Thomas, M. F., J. Phys.: Condens. Matter 2008, 20, 215207. 
(60) Heap, R.; Slater, P. R.; Berry, F. J.; Helgason, O.; Wright, A. J., Solid State 
Commun. 2007, 141, 467-470. 
(61) Berry, F. J.; Coomer, F. C.; Hancock, C.; Helgason, Ö.; Moore, E. A.; Slater, 
P. R.; Wright, A. J.; Thomas, M. F., J. Solid State Chem. 2011, 184, 1361-1366. 
(62) Clemens, O.; Berry, F. J.; Bauer, J.; Wright, A. J.; Knight, K. S.; Slater, P. R., 
J. Solid State Chem. 2013, 203, 218-226. 
(63) Clemens, O.; Wright, A. J.; Berry, F. J.; Smith, R. I.; Slater, P. R., J. Solid 
State Chem. 2013, 198, 262-269. 
(64) Clemens, O.; Haberkorn, R.; Slater, P. R.; Beck, H. P., Solid State Sci. 2010, 
12, 1455-1463. 
(65) Clemens, O.; Kuhn, M.; Haberkorn, R., J. Solid State Chem. 2011, 184, 2870-
2876. 
(66) Clemens, O.; Berry, F. J.; Wright, A. J.; Knight, K. S.; Perez-Mato, J. M.; 
Igartua, J. M.; Slater, P. R., J. Solid State Chem. 2013, 206, 158-169. 
(67) Hancock, C. A.; Herranz, T.; Marco, J. F.; Berry, F. J.; Slater, P. R., J. Solid 
State Chem. 2012, 186, 195-203. 
(68) Khomchenko, V. A.; Kiselev, D. A.; Seluneva, E. K.; Vieira, J. M.; Lopes, A. M. 
L.; Pogorelov, Y. G.; Araujo, J. P.; Kholkin, A. L., Mater. Lett. 2008, 62, 1927-1929. 
(69) Khomchenko, V. A.; Kiselev, D. A.; Vieira, J. M.; Jian, L.; Kholkin, A. L.; Lopes, 
A. M. L.; Pogorelov, Y. G.; Araujo, J. P.; Maglione, M., J. Appl. Phys. 2008, 103, 
024105. 
(70) Coelho, A. A. TOPAS-Academic. http://www.topas-academic.net (20th of 
October 2014),  
(71) Topas V4.2, General profile and structure analysis software for powder 
diffraction data, User's Manual. Bruker AXS: Karlsruhe, Germany, 2008. 
(72) Brand, R. A.; Lauer, J.; Herlach, D. M., Jour. Phys. F: Met. Phys. 1983, 13, 
675. 
(73) Boullay, P.; Grebille, D.; Hervieu, M.; Raveau, B.; Suard, E., J. Solid State 
Chem. 1999, 147, 450-463. 
(74) Boullay, P.; Hervieu, M.; Nguyen, N.; Raveau, B., J. Solid State Chem. 1999, 
147, 45-57. 
(75) Jovalekić, Č.; Zdujić, M.; Poleti, D.; Karanović, L.; Mitrić, M., J. Solid State 
Chem. 2008, 181, 1321-1329. 
(76) Conflant, P.; Boivin, J. C.; Nowogrocki, G.; Thomas, D., Solid State Ionics 
1983, 9–10, Part 2, 925-928. 
(77) Collomb, A.; Wolfers, P.; Obradors, X., J. Magn. Magn. Mater. 1986, 62, 57-
67. 
(78) Kreisel, J.; Vincent, H.; Tasset, F.; Wolfers, P., J. Magn. Magn. Mater. 2000, 
213, 262-270. 

http://www.topas-academic.net/


39 
 

(79) Clemens, O.; Gröting, M.; Witte, R.; Perez-Mato, J. M.; Loho, C.; Berry, F. J.; 
Kruk, R.; Knight, K. S.; Wright, A. J.; Hahn, H.; Slater, P. R., Inorg. Chem. 2014, 53, 
5911-5921. 
(80) Wang, D. H.; Goh, W. C.; Ning, M.; Ong, C. K., Appl. Phys. Lett. 2006, 88. 
(81) Kubel, F.; Schmid, H., Acta Crystallogr. 1990, B46, 698-702. 
(82) Hoppe, R., Angew. Chem. 1959, 71, 457-457. 
(83) Harada, J.; Pedersen, T.; Barnea, Z., Acta Crystallogr. 1970, 26, 336-344. 
(84) Reitz, C.; Leufke, P. M.; Hahn, H.; Brezesinski, T., Chem. Mater. 2014, 26, 
2195-2202. 
(85) Sani, A.; Hanfland, M.; Levy, D., J. Solid State Chem. 2002, 167, 446-452. 
(86) Hamilton, W., Acta Crystallogr. 1965, 18, 502-510. 
(87) Cohen, R. E., Nature 1992, 358, 136-138. 
(88) Hyde, B. G.; Andersson, S., Inorganic Crystal Structures. John Wiley: New 
York, 1989. 
(89) Walsh, A.; Watson, G. W.; Payne, D. J.; Edgell, R. G.; Guo, J.; Glans, P.-A.; 
Learmonth, T.; Smith, K. E., Phys. Rev. B 2006, 73, 235104. 
(90) Shannon, R. D., Acta Crystallogr. 1976, A32, 751-767. 
(91) Holleman, A. F.; Wiberg, N., Lehrbuch der Anorganischen Chemie, 101. 
Auflage. deGruyter: Berlin, 1995. 
(92) MAXMAGN in the Bilbao Crystallographic Server. http://cryst.ehu.es (20th of 
October 2014),  
(93) Aroyo, M. I.; Kirov, A.; Capillas, C.; Perez-Mato, J. M.; Wondratschek, H., Acta 
Crystallogr. 2006, A62, 115-128. 
(94) Aroyo, M. I.; Perez-Mato, J. M.; Capillas, C.; Kroumova, E.; Ivantchev, S.; 
Madariaga, G.; Kirov, A.; Wondratschek, H., Z. Kristallogr. 2006, 221, 15-27. 
(95) Aroyo, M. I.; Perez-Mato, J. M.; Orobengoa, D.; Tasci, E.; de la Flor, G.; Kirov, 
A., Bulg. Chem. Commun. 2011, 43, 183-197. 
(96) Kisi, E. H.; Howard, C. J., Applications of Neutron Powder Diffraction. Oxford 
University Press: New York, 2008. 
(97) Sai Sunder, V. V. S. S.; Halliyal, A.; Umarji, A. M., J. Mater. Res. 1995, 10, 
1301-1306. 
(98) Coey, J. M. D., Magnetism and Magnetic Materials. Cambridge University 
Press: Cambridge, 2009. 
(99) Meiya, L.; Min, N.; Yungui, M.; Qibin, W.; Ong, C. K., J. Phys. D: Appl. Phys. 
2007, 40, 1603. 
(100) Moon, E. J.; Xie, Y.; Laird, E. D.; Keavney, D. J.; Li, C. Y.; May, S. J., J. Am. 
Chem. Soc. 2014, 136, 2224-2227. 
(101) Katayama, T.; Chikamatsu, A.; Hirose, Y.; Takagi, R.; Kamisaka, H.; 
Fukumura, T.; Hasegawa, T., J. Mater. Chem. C 2014, 2, 5350-5356. 

 

 

  

http://cryst.ehu.es/


40 
 

Figure Captions 

Figure 1. Rietveld analysis of the nuclear and magnetic structure of Bi0.8Ba0.2FeO2.9. 
HRPD bank 1 (a) and XRD (b) data are shown. HRPD bank2 and bank3 data are 
provided as Figure S1a and Figure S1b in the Supplementary Material. 

Figure 2. Rietveld analysis of the nuclear and magnetic structure of Bi0.7Ba0.3FeO2.85 
(unknown reflection at d = 3.199 is marked with *). HRPD bank 1 (a) and XRD (b) 
data are shown. HRPD bank2 and bank3 data are provided as Figure S2a and 
Figure S2b in the Supplementary Material. 

Figure 3. XRD patterns of the oxide and oxyfluoride compounds Bi1-xBaxFeO3-x/2 and 
Bi1-xBaxFeO3-xFx. 

Figure 4. Rietveld analysis of the nuclear and magnetic structure of 
Bi0.8Ba0.2FeO2.8F0.2. HRPD bank 1 (a) and XRD (b)Figure 4. Rietveld analysis of the 
nuclear and magnetic structure of Bi0.8Ba0.2FeO2.8F0.2. HRPD bank 1 (a) and XRD 
(b)Figure 5. Rietveld analysis of the nuclear and magnetic structure of 
Bi0.7Ba0.3FeO2.7F0.3 (unknown reflection at d = 3.415-3.420 is marked with *). HRPD 
bank 1 (a) and XRD (b) data are shown. HRPD bank2 and bank3 data are provided 
as Figure S4a and Figure S4b in the Supplementary Material. 

Figure 5. Rietveld analysis of the nuclear and magnetic structure of 
Bi0.7Ba0.3FeO2.7F0.3 (unknown reflection at d = 3.415-3.420 is marked with *). HRPD 
bank 1 (a) and XRD (b) data are shown. HRPD bank2 and bank3 data are provided 
as Figure S4a and Figure S4b in the Supplementary Material. 

Figure 6. Refined crystal structure together with thermal ellipsoids for the different 
ions of Bi0.8Ba0.2FeO2.8F0.2 (a). The location of Bi ion (green) in its anion (red) 
coordination polyhedron together with the mutual position (as found for PbTiO3

 87) of 
the lone pair indicated by an yellow arrow (b). 

Figure 7. Temperature dependence of the tetragonal lattice parameters a and c as 
well as the cube root of the cell volume V1/3 for heating Bi1-xBaxFeO3-xFx to 400 °C. 

Figure 8. 57Fe Mössbauer spectrum recorded from Bi0.7Ba0.3FeO2.7F0.3 at room 
temperature. 

Figure 9. Field dependent measurements of the magnetisation of Bi0.8Ba0.2FeO2.9 and 
Bi0.8Ba0.2FeO2.8F0.2 (inlay), measured magnetisation correlated with the amount of 
BaFe12O19 determined by quantitative phase analysis of the NPD data.  
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Ba-doping of BiFeO3 followed by low-temperature fluorination to form compounds of 

composition Bi1-xBaxFeO3-xFx was found to introduce a large tetragonal polar 

distortion with PbTiO3-type structure. 
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