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Competition and constraint drove Cope’s rule
in the evolution of giant flying reptiles
Roger B.J. Benson1, Rachel A. Frigot2, Anjali Goswami3, Brian Andres4 & Richard J. Butler5

The pterosaurs, Mesozoic flying reptiles, attained wingspans of more than 10 m that greatly

exceed the largest birds and challenge our understanding of size limits in flying animals.

Pterosaurs have been used to illustrate Cope’s rule, the influential generalization that

evolutionary lineages trend to increasingly large body sizes. However, unambiguous examples

of Cope’s rule operating on extended timescales in large clades remain elusive, and the

phylogenetic pattern and possible drivers of pterosaur gigantism are uncertain. Here we show

70 million years of highly constrained early evolution, followed by almost 80 million years of

sustained, multi-lineage body size increases in pterosaurs. These results are supported by

maximum-likelihood modelling of a comprehensive new pterosaur data set. The transition

between these macroevolutionary regimes is coincident with the Early Cretaceous adaptive

radiation of birds, supporting controversial hypotheses of bird–pterosaur competition, and

suggesting that evolutionary competition can act as a macroevolutionary driver on extended

geological timescales.
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T
he pterosaurs, a diverse clade of Mesozoic flying reptiles,
achieved body sizes unparalleled by other airborne
organisms in Earth’s history1. Maximum wingspans over

10 m are twice those of the largest birds, exceed many small
aircraft, and have fundamentally challenged our biomechanical
understanding of the limits to body size in flying animals2,3.
Marked increases in pterosaur body size through their 4150
million year evolutionary history have lead to their frequent
use as examples of Cope’s rule4, the influential hypothesis that
active selection generates trends of increasing body size through
time5,6. However, the generality of this ‘rule’, its ability to persist
in large clades comprising numerous, independently evolving
lineages over timescales of 107–108 years, and the existence of
sustained, long-term drivers of such trends, are widely
questioned7–11. Well-documented examples of Cope’s rule are
restricted to specialized clades (for example, herbivores and
hypercarnivores) within larger radiations such as mammals5

or carnivorans6. This indicates that adaptation to niches
requiring large body size drives evolutionary change along
individual lineages. However, it does not provide evidence that
phylogenetically inclusive trends towards gigantism are common
within major animal radiations.

Previous authors have suggested that Cope’s rule applied to
some groups of pterosaurs, and identified temporal and
taxonomic variation in pterosaur body size evolution4,12,13.
However, the explanatory power of these studies was limited
by: (i) small data sets; (ii) failure to use detailed phylogenetic
information; and (iii) methods that do not reliably distinguish
active selection for body size increases along evolutionary lineages
from those driven by species sorting (for example, selective
extinction of smaller taxa14,15). Because of this, the evolutionary
processes underlying pterosaur gigantism remain elusive.

A classic, but controversial, hypothesis posits competitive
replacement of pterosaurs by birds16–18. One version of this
hypothesis suggests that early birds excluded pterosaurs from
small-bodied flying niches, causing selective extinction of small-
bodied pterosaurs19,20, and perhaps driving pterosaur lineages to
evolve larger sizes4. However, quantitative studies of limb
proportion morphospace occupation and species richness led
recent authors to suggest that birds did not compete with
pterosaurs21,22. Indeed, although competition between species
might occur on microevolutionary timescales, clear examples of
competition as a macroevolutionary driver are rare23,24.

We examined phylogenetic and non-phylogenetic patterns of
pterosaur body size evolution using a large phylogeny and data
set of wingspan measurements and estimates. Our results indicate
that pterosaurs exhibit an extremely long term, whole-clade trend
to increasing body sizes during the Cretaceous, coincident with
the adaptive radiation of pygostylian birds. This suggests that
competition between distantly related clades (for example, birds
and pterosaurs) can act as a macroevolutionary driver on
extended timescales.

Results
Pterosaur body size through time. For the first 70 million years
of their evolutionary history, during the Triassic and Jurassic,
pterosaur body sizes showed stable variance about a sub-constant
mean, suggesting highly constrained body size evolution in basal
(non-pterodactyloid) pterosaurs (Fig. 1a). Sustained increases in
maximum and minimum body size began between 150 and
130 Ma, continuing for 65–85 million years, until pterosaur
extinction at the Cretaceous–Palaeogene boundary. During this
second interval, body sizes show no evidence of increased var-
iance through time (on a logarithmic scale; Fig. 1a), and so are
consistent with a driven evolutionary trend25. Our results

demonstrate an abrupt upwards inflection in pterosaur
wingspans some time between the latest Jurassic and Early
Cretaceous, around the time of the appearance and subsequent
adaptive radiation of birds26,27.

Macroevolutionary models. All of the best phylogenetic models
suggest that pterodactyloids had larger optimal body sizes than
non-pterodactyloids, and some suggest of them larger optimal
sizes in ornithocheiroid pterodactyloids compared with non-
ornithocheiroid pterodactyloids. AICc (Akaike’s Information
Criterion for finite sample sizes) weights for these clade-specific
alternatives are comparable to those of a temporal regime shift
occurring late in the Jurassic (Tithonian), around the origination
date of birds (Fig. 2 and Table 1).

Some of the best models suggest a macroevolutionary optimum
(y) for non-pterodactyloids (N¼ 19) that is different to the root
node value (Z0) (Table 1: models D and F, both taking values
B1 m wingspan). However, AICc weights do not distinguish this
from the possibility that the non-pterodactyloid optimum is equal
to the root node optimization. Critically, estimation errors for
both root node and non-pterodactyloid optimum values are high
enough that their confidence intervals overlap (Table 1). The
possibility that non-pterodactyloid optimum and root node
values are approximately equal is consistent with stasis-like,
constraint-dominated body size evolution in non-pterodacty-
loids28–30.

Broadly two classes of solution, which form a continuum, are
recovered for pterodactyloid body size optima:

In one class, macroevolutionary optima for pterodactyloids as a
whole (3.81 m; 0.581 log10m; N¼ 53), Tithonian and younger
pterosaurs (including some non-pterodactyloids; 4.01 m; 0.603
log10m; N¼ 52), or archaeopterodactyloids (2.46 m; 0.391 log10m;
N¼ 15) and ornithocheiroids (4.16 m; 0.619 log10m; N¼ 38)
individually, fall within their observed range of wingspans, and
attraction to optima is relatively strong (a¼ 0.0067–0.0282;
Table 1: models A–C). This suggests that pterodactyloids were
attracted to larger body size optima than non-pterodactyloids
through the Cretaceous, and also that temporally successive
clades might have had progressively larger body size optima.

In the other class of solutions, macroevolutionary optima of
pterodactyloid body size commonly exceed the range of observed
values (Table 1: models D–G), but attraction to optima (a) is
weak in pterosaurs (a¼ 0.0011–0.0210), and might be weaker in
pterodactyloids than in non-pterodactyloids (Table 1: models E
and G). Models with large optima, but low attraction, indicate a
sustained directional trend towards larger size, because as a
converges on zero, the Ornstein–Uhlenbeck (OU) model reduces
to Brownian motion (BM) with a constant trend coefficient m
(ref. 28), estimated B0.0050–0.0100 log10(m)/Ma (Table 1: model
D; median results for ±2 s.e. y, using m¼ a� y; (ref. 28), p.
1348) or 0.0078–0.0133 (Table 1: model E; a worse model). The
value of this coefficient is similar to the absolute slope of the non-
phylogenetic regression line fit to Cretaceous pterosaur body size
(0.0060 log10(m)/Ma), and is within (or overlaps with) its 95%
confidence intervals: 0.0039–0.0082 log10(m)/Ma. This suggests
that all, or almost all, of the observed pattern of Cretaceous
pterosaur body size increase can be explained by directional
evolution along lineages. Therefore, if this model is correct, then
among-lineage factors such as selective extinction had a negligible
role in determining pterosaur body size distributions at the
resolution of our study14.

Discussion
Pterosaur body sizes showed sustained evolutionary increases for
the last 65–85 million years of their existence, culminating in giant
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flying animals with wingspans of 3–10 metres. This might have
been achieved by sustained directional evolution along individual
lineages, or by increasingly large macroevolutionary optima in
temporally successive clades. Whichever is the case, the documen-
ted pattern represents a striking example of long-term directional
trend in the fossil record. The result is all the more conspicuous
because earlier pterosaur body size evolution was constrained to a
very limited range of relatively small adult body sizes (o1.6 m) and
showed no evidence of directional change through time.

This fundamental shift in the mode of body size evolution
across Pterosauria suggests a long-term, phylogenetically inclu-
sive driver. We recognize the following two major hypotheses that
are not mutually exclusive19:

(1) Intrinsic features of the pterodactyloid body plan, such as
modifications of the tail and limbs, which allowed improved
terrestrial abilities and diversification of flight styles facilitated
invasion of new, large-bodied niches3,19,31.

(2) Extrinsic factors such as the Late Jurassic appearance and
Cretaceous diversification of birds26,27 may have excluded
pterosaurs from the ecological niches available to smaller flying
animals, causing selective extinction of smaller pterosaurs, and
also possibly causing active selection for larger body size in
pterosaur evolution.

Intrinsic factors explain how pterodactyloids were able to
exceed previous constraints on basal pterosaur body size, and
continuously extend their maximum body size throughout the
Cretaceous. However, intrinsic factors acting alone predict

expansion into a greater range of body sizes and do not explain
the loss of smaller-sized pterosaurs14,25. Extrinsic forcing must
therefore also have been important. Indeed, directional models of
along-lineage evolution are sufficient to explain all of the
observed increase in Cretaceous pterodactyloid body size at the
scale of this study (for example, Table 1: model D). However,
these models receive approximately equal support to models of
successively higher optima in temporally younger clades (for
example, Table 1: model A), which allow a partial role for
selective extinction in explaining pterosaur body size trends.

Birds (Avialae) originated in the Late Jurassic, and key
aspects of the avian body plan, which enabled the ecological
and taxonomic diversification of birds, occurred from the Early
Cretaceous26,27. Forcing by a sustained, Cretaceous adaptive
radiation of birds could explain how increases in pterodactyloid
minimum body size were sustained over a remarkably
long-time interval, and why most or all smaller pterosaurs
became abruptly extinct around the Jurassic–Cretaceous
boundary (non-pterodactyloids). Although the small pterosaur
Dendrorhynchoides was originally reported from the Cretaceous
of China32, its provenance is uncertain and it might be of
Jurassic age33.

Birds underwent expansion into both smaller and larger body
sizes during the Early Cretaceous (Fig. 1a). Their pattern of
increasing body size variance suggests an unconstrained or
‘passive’ pattern of body size diversification25, unlike the active,
directional pattern seen in pterosaurs of the same time interval.
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regression line includes zero, indicating an absence of size increases (P¼0.396 (regression slope); N¼ 18; slope¼ �0.0004 (�0.0040 to 0.0031)
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Strikingly, the maximum skeletal wingspans of birds appear to
increase at approximately the same rate as minimum pterosaur
wingspans during the Late Jurassic–Early Cretaceous (Fig. 1a).
The rarity of bird skeletons complete enough for wingspan
estimation means that this pattern cannot yet be assessed in the
Late Cretaceous. However, fragmentary remains suggest body
masses of 3–5 kg for some likely volant latest Cretaceous birds,
which are among the largest of the Mesozoic34 and demonstrate
persistent increases in maximum body size. Furthermore, it is
clear that Late Cretaceous birds occupied an ever increasing
number of those ecological niches available to smaller or
medium-sized flying animals, and continued to diversify in
body size and shape26,27, raising the possibility that they exerted
competitive pressure on an expanding range of ecological niches.
Early Cretaceous pterosaurs took advantage of new large body-
sized niches, and might have had comparable diversity and
disparity to Jurassic pterosaurs35–37. However, it is clear that
pterosaur species diversity35 and morphological disparity36,37

declined during the Late Cretaceous until their final extinction,
coinciding with the culmination of their pattern of escalating
body size.

When estimated feather lengths are included, the largest birds
have similar wingspans to smaller contemporaneous pterosaurs in
well-sampled Cretaceous time intervals. This does not appear to
have been the case during the latest Jurassic (Fig. 1a). However,
some latest Jurassic pterosaurs are known from subadult
individuals that might have had small adult wingspans (for
example, the non-pterodactyloid Anurognathus) but could not be
included in our analyses. If smaller latest Jurassic pterosaurs
existed, then the pattern of increasing pterosaur wingspans might
have begun later than our results suggest, during the Early
Cretaceous instead of the latest Jurassic. This possibility is
consistent with the lack of ecological and taxonomic diversity
among latest Jurassic birds (a single genus, Archaeopteryx).
Competitive interactions occur on generational timescales, which
cannot usually be resolved in the fossil record38. Therefore, the
apparent temporal delay between the disappearance of small, Late
Jurassic pterosaurs and the appearance of ecologically diverse
Early Cretaceous birds with comparable wingspans to those
pterosaurs is not evidence of non-competition. Instead, it might
reflect the poor earliest Cretaceous record of both birds and
pterosaurs (Fig. 1).
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Our arguments generally rest on observations of similar body
sizes in contemporaneous birds and pterosaurs. However, smaller
birds might also have had a significant role in competing with
pterosaurs. Pterosaurs and birds are separated from one another
by substantial phylogenetic distance and might have had distinct
energetic requirements, life history strategies and functional
means of exploiting similar ecological niches. In these circum-
stances, strong competitive interactions can exist between animals
of different sizes in modern ecosystems, including examples in
which smaller taxa have the competitive advantage (for example,
the invasive cyprinid fish Pseudorasbora parva39).

Several observations contribute to the plausibility of compe-
titive ecological interactions between pterosaurs and birds:

(1) Both clades co-occur in the same marginal marine and
continental units during the Late Jurassic40 and Cretaceous41,
demonstrating overlap in environmental and geographic
distributions38. Interestingly, birds are substantially more
abundant and diverse than pterosaurs in inland environments
from the Early Cretaceous42, whereas pterosaurs remained
abundant in coastal environments43. However, the Late
Cretaceous decline of pterosaurs, even those living in coastal
environments35–37, is coincident with a Late Cretaceous
diversification of coastal birds26.

(2) Similar diets are hypothesized for many pterosaurs and
birds from Early Cretaceous units, including fish, seeds,

invertebrates and hard food items in the Jehol Biota and other
faunas26,44. Critically, many pterodactyloids, including most non-
pterodactyloids, are characterized as eating fish19, which are
included in the fossilized gut contents of Early Cretaceous birds45.
These observations all demonstrate consumption of common
resources by many birds and pterosaurs38. Future discoveries of
Late Cretaceous birds will provide a further test of evolutionary
interactions between birds and pterosaurs.

Our interpretation of pterosaur body size evolution resulting
from bird diversification differs from those of previous studies
asserting a lack of ecological interactions between birds and
pterosaurs. For example, McGowan and Dyke21 suggested that
differences in the limb proportion of birds and pterosaurs
demonstrated that they occupied different niches. Butler et al.22

suggested that pterosaur diversity did not decline until the Late
Cretaceous, and proposed that it was difficult to attribute these
late diversity losses to competition with birds. However, given the
pronounced structural differences between bird and pterosaur
wings, it is not clear that differences in their limb proportions
indicate substantial differences in ecological niche occupation
rather than differences in flight mechanics. Furthermore, Early
Cretaceous losses of small-bodied pterosaur species due to
competition with birds might have been balanced by gains in
pterosaur diversity at large body sizes, or by pterodactyloids
exploiting new ecological niches, especially in coastal

Table 1 | Macroevolutionary model parameters for pterosaur body size evolution.

Model Ngroups AICc
weight

Group/interval Attraction (a)
and phylogenetic

half-life
(in square
brackets)

Stochastic rate (b) Optimum
(h) or root
value (Z0)

s.e. of h or Z0

Median Median Range Median Range Median Range Median Range

A OUM 3 0.125 Basal 0.0158
[48.9]

(0.0106–
0.0195)

0.00078 (0.00060–
0.00093)

�0.001 (�0.019 to
�0.007)

0.076 (0.072–
0.079)

Archaeopterodactyloidea 0.0158
[48.9]

(0.0106–
0.0195)

0.00078 (0.00060–
0.00093)

0.391 (0.318–0.475) 0.155 (0.136–
0.181)

Ornithocheiroidea 0.0158
[48.9]

(0.0106–
0.0195)

0.00078 (0.00060–
0.00093)

0.619 (0.552–0.713) 0.092 (0.085–
0.106)

B OUM 2 0.115 Triassic–Kimmeridgian 0.0206
[33.6]

(0.0150–
0.0282)

0.00094 (0.00068–
0.00123)

0.000 (�0.012–
0.005)

0.076 (0.073–
0.079)

Tithonian–Cretaceous 0.0206
[33.6]

(0.0150–
0.0282)

0.00094 (0.00068–
0.00123)

0.603 (0.527–0.684) 0.069 (0.058–
0.086)

C OUM 2 0.105 Basal 0.0106
[65.4]

(0.0067–
0.0148)

0.00077 (0.00061–
0.00089)

�0.016 (�0.026 to
�0.013)

0.080 (0.074–
0.082)

Pterodactyloidea 0.0106
[65.4]

(0.0067–
0.0148)

0.00077 (0.00061–
0.00089)

0.581 (0.521–0.671) 0.108 (0.090–
0.125)

D OUM 2 þ
root

0.098 Root — — — — �0.011 (�0.044 to
0.017)

0.114 (0.098–
0.124)

Basal 0.0056
[124]

(0.0011–
0.0120)

0.00056 (0.00038–
0.00072)

�0.098 (�0.941 to
0.097)

0.511 (0.263–
2.540)

Pterodactyloidea 0.0056
[124]

(0.0011–
0.0120)

0.00056 (0.00038–
0.00072)

1.350 (0.836–5.930) 0.221 (0.104–
1.170)

E OUMA 2 0.067 Basal 0.0242
[28.6]

(0.0197–
0.0345)

0.00165 (0.00118–
0.00265)

�0.008 (�0.017 to
�0.002)

0.091 (0.085–
0.095)

Pterodactyloidea 0.0112
[61.9]

(0.0059–
0.0203)

0.00165 (0.00118–
0.00265)

0.939 (0.725–1.730) 0.121 (0.063–
0.249)

F OUM 3 þ
root

0.067 Root — — — — �0.021 (�0.055 to
0.013)

0.123 (0.101–
0.131)

Basal 0.0108
[64.2]

(0.0055–
0.016)

0.00063 (0.00043–
0.00078)

0.024 (�0.161 to
0.113)

0.286 (0.201–
0.460)

Archaeopterodactyloidea 0.0108
[64.2]

(0.0055–
0.016)

0.00063 (0.00043–
0.00078)

0.619 (0.494–1.100) 0.248 (0.174–
0.430)

Ornithocheiroidea 0.0108
[64.2]

(0.0055–
0.016)

0.00063 (0.00043–
0.00078)

0.910 (0.741–1.500) 0.130 (0.089–
0.224)

G OUMVA 2 0.061 Basal 0.0352
[19.7]

(0.0252–
0.0638)

0.00112 (0.00093–
0.00173)

0.006 (�0.008 to
0.023)

0.070 (0.060–
0.074)

Pterodactyloidea 0.0126
[55.0]

(0.0066–
0.0210)

0.00697 (0.00298–
0.06560)

1.370 (0.972–3.170) 0.193 (0.117–
0.494)

AICc, Akaike’s Information Criterion for finite sample sizes; OU, Ornstein–Uhlenbeck model.
The parameters of models of adult pterosaur body size evolution with non-negligible support are shown. These results are drawn from comparisons among single- and multi-regime generalized OU
models67. Median parameter values and their absolute ranges are given for analyses conducted on 25 time-calibrated phylogenies. OUM is an OU model with group-specific trait optima (y, in log10m);
OUMV allows group-specific y and stochastic rate parameters (b, Brownian variance in log10 (metres)/Ma); OUMA allows a group-specific y and an attraction parameter (a). The trait optimum (y) for
each group equals the ancestral node value (Z0), except in models D and F, in which separate y and Z0 are specified for basal (non-pterodactyloid) pterosaurs. The phylogenetic half-life (ln(2)/a) is the
time in millions of years (Ma) taken for an OU process to erase half the phylogenetic covariance between sister taxa. Parameter values varying between groups are shown in bold. Only models with B0.5
times the median AICc weight of the best model, or better, are shown.
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environments19. This could have delayed the apparent decline of
overall pterosaur diversity.

Pterosaurs became extinct at the end of the Cretaceous, at a
time when their wingspans ranged from 3 to 10 m. Whether
pterosaurs would have survived the Cretaceous–Palaeogene
extinction if they had retained their earlier, smaller body size
niches into the latest Cretaceous cannot be known. However,
exponentially fewer niches are available for larger animals46, a
well-known correlation between increasing body size and
extinction risk exists for modern birds47 and other groups48,
and large terrestrial animals were disproportionately affected
by the Cretaceous–Palaeogene extinction49,50. It seems likely
that the absence of such small, late-surviving pterosaurs was a
result of the ecological radiation of early birds. If so, competition
with birds was responsible in part for the ultimate demise of these
spectacular animals.

Methods
All analyses were performed in R version 3.0.0 (ref. 51) using log10-transformed
data. Our data set and code are archived at DRYAD (doi:10.5061/dryad.n0310).

Data set. We assembled the following data on the preserved skull and forelimb
elements in 168 nominal pterosaur species: skull length, mandible length, pre-
orbital rostrum length, humerus length, ulna length excluding olecranon process,
radius length, metacarpal IV length and the lengths of phalanges 1–4 of the wing
finger (digit IV) (Supplementary Data 1). Data was collected via direct specimen
measurement by B.A. and from literature sources. For 34 taxa with complete
forelimbs, wingspans were calculated as the summed lengths of the measured
forelimb elements. Wingspans were log10-transformed before analysis because
relative, not absolute, changes form the natural scale of phenotypic evolution46.
Pterosaur phylogeny was based on a new taxon-rich and well-resolved cladogram
including 109 species52, 92 of which had wingspans that could be measured or
estimated (Fig. 1b), and temporally calibrated to geological age using paleotree
version 1.8.2 (ref. 53).

The geological ages of most taxa were resolved to stage or substage level. These
were converted to numerical maximum and minimum ages using the timescale of
Gradstein et al.54

We also collected comparable osteological wingspan data for 50 Mesozoic
birds27 (Supplementary Data 2) so that pterosaur body size and avialan body size
during the Cretaceous radiation of birds could be compared. Pterosaur and bird
wings are constructed differently. In pterosaurs, the forelimb skeleton spans the
entire length of the membranous wing. In contrast, bird wings include a large non-
osteological portion comprised by flight feathers. Only a few Mesozoic bird fossils
preserve feathers sufficiently complete to measure their proportional contribution
to estimated wingspan. However, among these taxa, feathers add 50% in
Archaeopteryx, or B100% in Cretaceous birds, to the summed length of the
forelimb bones (Supplementary Data 2). The effects of this are indicated in Fig. 1.

Time-calibrated phylogenies. Phylogenetic approaches were based on the strict
consensus cladogram reported by Andres and Myers52 that includes 109 taxa and
105 resolved nodes. The remaining nodes were resolved randomly and alternative
randomizations had little effect on our results. Tip ages (that is, the ages of taxa in
the tree) were drawn randomly from a uniform distribution between the maximum
and minimum possible ages of each taxon. These were used to generate minimum
node ages. The resulting zero-length branches of our cladogram were extended
by imposing a minimum branch length of 2 Ma. All randomizations were
implemented using the timePaleoPhy function of the R package paleotree
version 1.8.2 (ref. 53), and analyses carried out on different versions of the time-
calibrated tree yielded similar results to those reported here. We also calibrated
trees using a minimum branch length of 1 Ma, and using the ‘equal’ method, which
extends zero-length branches by sharing duration from the more basal non-zero-
length branches. Analyses on these phylogenies yielded similar results to those
reported.

Missing data estimation—phalanx IV-4. Twelve taxa with incomplete forelimbs
were missing only the terminal wing finger phalanx (phalanx IV-4: phalanx 4 of
digit IV). Therefore, we estimated the missing phalanx IV-4 lengths, resulting in a
total of 47 wingspans that could be calculated directly. To determine the best
estimation formula, we compared phylogenetic and non-phylogenetic generalized
least squares regression models55,56 using the R packages ape version 3.0–8 (ref. 57)
and nlme version 3.1–109 (ref. 58) to establish which other element of the skull or
forelimb best predicted the length of phalanx IV-4. We used AICc59,60 to
determine the level of phylogenetic signal in each regression relationship by
comparing models with three different values of the phylogenetic signal parameter
lambda l (ref. 61): (1) l¼ 0, equivalent to ordinary least squares regression (non-
phylogenetic); (2) l¼ 1, equivalent to regression phylogenetic independent
contrasts; and (3) l allowed to vary, and estimated using maximum-likelihood.

For multiple phylogenies (see below), the best predictive regression model for
the length of phalanx IV-4 is phylogenetic regression (l¼ 1) on the length of
phalanx IV-3, with an R2¼ 0.86. When l is allowed to vary and estimated
separately, a value of 0.96 is obtained (approximately equal to 1.0). This result
supports the use of phylogenetically informed estimation methods62 based on
phylogenetic regression of phalanx IV-4 length on phalanx IV-3 length to predict
the length of phalanx IV-4. In confirmation of this approach, the predicted values
of taxa for which the length of phalanx IV-4 is known are strongly correlated with
real values (R2¼ 0.85) and become substantially stronger when Jeholopterus, which
has an atypically short phalanx IV-4 (ref. 63), is removed from comparisons
(R2¼ 0.92). Once this is done, the mean absolute difference between predicted and
known measurements is 0.058 log10mm, which is negligible, compared with the
mean (1.74 log10mm) and s.d. (0.25 log10mm) of its absolute length across our
taxon sample.

Missing data estimation—wingspan. To establish the best regression model for
estimation of unknown wingspans, we used the protocol applied above a second
time. The results are shown in Table 2, excluding Jeholopterus, which has an
unusually short skull and phalanx IV-4 (ref. 63), and is therefore an outlier in
several analyses. For regression of wingspan on skull length, mandible length,
rostrum length, humerus length, metacarpal IV length and the lengths of phalanges
IV-1, IV-2, IV-3 and IV-4, phylogenetic regression provides the best model, and
independently estimated l values are approximately equal to 1.0 (range: 0.90–1.10).
However, for regression of wingspan on radius or ulna length, non-phylogenetic

Table 2 | Results of generalized least squares regression of wingspan on other skeletal measurements.

Explanatory variable Non-phylogenetic Phylogenetic k estimate N No. of estimates Mean standard
estimate error

R2 AICc R2 AICc

Skull length 0.82 540.8 0.64 533.7* 0.92 37 35 —
Mandible length 0.87 528.7 0.71 525.2* 0.89 37 35 0.085
Rostrum length 0.71 527.0 0.52 514.9* 0.94 35 29 —
Humerus length 0.94 634.9 0.87 622.1* 0.91 46 27 0.063
Ulna length 0.95 620.7* 0.85 628.3 �0.07 46 19 0.068
Radius length 0.95 624.6* 0.84 630.7 �0.06 46 19 —
Metacarpal IV length 0.87 668.2 0.73 656.3* 0.95 46 11 —
Phalanx IV-1 length 0.97 607.7 0.92 601.1* 1.07 46 16 0.054
Phalanx IV-2 length 0.95 625.5 0.90 611.7* 0.90 46 12 0.039
Phalanx IV-3 length 0.78 689.5 0.82 643.4* 1.08 46 6 —
Phalanx IV-4 length 0.60 504.3 0.85 456.5* 1.11 35 5 —

Mean standard estimate error, the s.d. of differences between wingspans estimated from each regression model, and actual measured wingspans for taxa with known wingspans (only presented for
selected, best variables); N, sample size; No. of estimates, the maximum number of additional estimates of unknown wingspans enabled by the explanatory variable.
The coefficient of determination (R2) and Akaike’s Information Criterion (AICc; the best is indicated with an asterisk*) are given for non-phylogenetic (l¼0) and phylogenetic (l¼ 1) regression models.
An independent, maximum-likelihood estimate of l (phylogenetic signal strength) is also given (l estimate). Results are shown from one representative time-calibrated tree, and exclude Jeholopterus.
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regression provides the best model, and estimated l values are approximately equal
to zero (Table 2). The absence of phylogenetic signal in the relationship between
wingspan and ulna/radius length implies a strong functional or developmental
correlation between these measurements.

Based on R2 values, it is clear that phalanges IV-1 and IV-2 provide the best
(phylogenetic) predictions of pterosaur wingspan, and ulna length might also
provide good (non-phylogenetic) predictions (Table 2). But these variables only
enable a few additional wingspan estimates (12–19 estimates; Table 2). Humerus
length allows more additional estimates (27 estimates) but apparently has a slightly
weaker relationship with wingspan (Table 2). Mandible length is the best cranial
predictor of pterosaur wingspan. When known wingspans are estimated using
these relationships, the mean standard errors are low (Table 2), and favour use of
phalanx lengths, humerus length and mandible length to maximize the number
and accuracy of estimates for pterosaurs in which wingspan was not known. In our
analyses, we used wingspans from directly measured values preferentially. Where
these were absent, we preferred estimated wingspans based on the length of
phalanx II-4, then phalanx I-4, then the humerus and then the mandible.
This resulted in 72 wingspans or wingspan estimates associated with estimates of
standard error.

Because we used the skeletal proportions of specimens to estimate pterosaur
wingspans, our data collection focussed only on complete individuals and not on
maximum-sized or adult individuals. Therefore, our wingspans were known to be
underestimates in several taxa. The wingspans of the following taxa were scaled up
by the proportions of their largest individual (Supplementary Data 1):
Ardeadactylus longicollum, Batrachognathus volans, Campylognathoides liasicus,
Darwinopterus modularis, Dimorpodon macronyx, Dorygnathus banthensis,
Eudimorphodon rosenfeldi, Germanodactylus rhamphastinus, Noripterus parvus,
Pteranodon longiceps, Pterodactylus antiquus, Pterodaustro guinazui, Rhamphor-
hynchus muensteri, Sinopterus dongi and Zhejiangopterus linhaiensis.

Pterosaur body size through time. In addition to phylogenetic model fitting
(explained below), we also fit (non-phylogenetic) ordinary least squares regression
lines to wingspan versus age separately for Triassic–Jurassic and Cretaceous
pterosaurs. These lines capture the long-term trajectory of pterosaur body size
distributions that emerges from interactions between along-lineage evolution
(models described above) and among-lineage factors such as species sorting14.

Macroevolutionary models. Analyses were conducted excluding taxa known only
from juveniles and subadults, identified using well-established skeletal ossification
and fusion characters64,65). In total, 72 adult wingspans, or estimated wingspans
with mean standard errors, were known for taxa included in our tree.

BM is a two parameter model in which b is the Brownian variance, a measure of
evolutionary rate29,66, and Z0 is the root node value. OU is a three/four parameter
model of evolution constrained around a trait optimum (y) by strength of
attraction a28,67,68. In the OU model, b becomes the dominant variable when trait
values are approximately equal y. When this occurs, b specifies expected trait
variance about a mean value of y, thus mimicking macroevolutionary stasis28,29.
The trait optimum of OU models can be set equal to the root node optimization
(Z0), or for non-ultrametric trees a separate value can be estimated (y), resulting in
a four parameter model of attraction towards the trait optimum from a distinct
root node value67.

Hypotheses of non-Brownian body size evolution on our time-calibrated trees
were examined by testing the fit of numerical evolutionary models using maximum
likelihood15,61,66–68, using the R packages geiger version 1.99–3 (ref. 69) for
exploratory analyses, and OUwie version 1.33 (ref. 67) for the full set of final
analyses. Although geiger includes some models that cannot be tested in OUwie,
most of these (early burst and the ‘white’ stasis model) had poor fit to our data
compared with BM or the OU model28,67, and trend (or ‘drift’) can effectively be
modelled by an OU model (ref. 28, p. 1348).

Alternative macroevolutionary models were evaluated in Pterosauria and
subsets of Pterosauria including non-pterodactyloid grade pterosaurs, Pterodacty-
loidea, the two major pterodactyloid clades Archaeopterodactyloidea and
Ornithocheiroidea, the ornithocheiroid clades Pteranodontoidea and
Azhdarchoidea, and between time intervals specified using the make.era.map
function of phytools70. Models were compared using Akaike weights60 based
on AICc59.

Single regime models (that is, one set of evolutionary model parameters applied
to the whole tree) were compared with multiple regime models in which stochastic
rates (b), body size optima (y) and strength of attraction (a) to optima vary
between groups67. Specifically, we tested whether modes of evolution varied among
non-pterodactyloid pterosaurs, pterodactyloids and pterodactyloid subclades
(Archaeopterodactyloidea, Ornithocheiroidea, Pteranodontoidea and
Azhdarchoidea), and between two pairs of time intervals: (1) Triassic–
Kimmeridgian and Tithonian–Cretaceous; and (2) Triassic–Tithonian and
Cretaceous; note that the Tithonian stage of the latest Jurassic marks the first
fossil occurrence of Avialae: Archaeopteryx).

Owing to the large numbers of parameters, and the explicit inclusion of
estimation errors and stratigraphic uncertainty in our data, model optimization
was not successful for all analyses. For example, sometimes, probable local optima
or saddle points in the likelihood surface were recovered. The results reported here

are those from 25 time-calibrated phylogenies with successfully optimized
parameters across all the candidate models. These results are representative of
those recovered in other analyses.
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