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   BIVALENCE AND DETERMINACY
*
 

 

           Ian Rumfitt 

 

 

Abstract 

The principle that every statement is bivalent (i.e. either true or false) has been a bone of philosophical 

contention for centuries, for an apparently powerful argument for it (due to Aristotle) sits alongside 

apparently convincing counterexamples to it.  I analyse Aristotle’s argument (§§1-2), showing that it 

relies crucially on the logical laws of Excluded Middle and Proof by Cases.  Even given these logical 

laws, however, the argument only shows that every determinate statement is true or false, where a 

determinate statement ‘says one thing’, i.e. has univocal truth-conditions.  In the light of this analysis, I 

examine three sorts of problem case for bivalence.  Future contingents, I contend, are bivalent (§3). 

Certain statements of higher set theory, by contrast, are not.  Pace the intutionists, though, this is not 

because Excluded Middle does not apply to such statements, but because they are not determinate 

(§§4-6).  Vague statements too are not bivalent, in this case because the law of Proof by Cases does not 

apply (§§7-8).  I show how this opens the way to a solution to the ancient Paradox of the Heap or 

Sorites (§9) that draws on quantum logic. 

 

 

Keywords 

Bivalence, future contingents, Continuum Hypothesis, Georg Kreisel, vagueness, quantum logic, 

Paradox of the Heap, Sorites Paradox 
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The Principle of Bivalence is the thesis that every statement is either true or false.  By a statement, I 

mean a declarative utterance or inscription that expresses a complete thought.  Statements, in this 

sense, need not be assertions: the antecedent of the conditional ‘If Tom is in Germany, he is in Berlin’ 

expresses the thought that Tom is in Germany and hence qualifies as a statement, even though a 

speaker who affirms the whole conditional does not assert that Tom is in Germany.  The notion of 

expressing a complete thought is not completely clear and, as the sequel will show, the truth of the 

Principle depends, among other factors, on how it is clarified.  But it is clear enough to identify our 

topic. 

The Principle of Bivalence has been a bone of philosophical contention for centuries.  An 

apparently powerful argument for it sits alongside apparently convincing counterexamples to it.  I start 

with the classic argument for the Principle. 

 

 

1. The Simple Argument for Bivalence 

 

The argument I have in mind is all but explicit in Aristotle.  Everybody remembers Aristotle’s 

explanations of truth and falsity in Metaphysics Γ.7, but it is sometimes forgotten that they form part of 

an argument for Bivalence: 

 

Of one subject we must either affirm or deny any one predicate.  This is clear, in the first 

place, if we define what the true and the false are.  To say of what is that it is not, or of what is 

not that it is, is false, while to say of what is that it is, and of what is not that it is not, is true; 

so that he who says of anything that it is, or that it is not, will say either what is true or what is 

false (Metaphysics 1011b25; cf. Plato, Cratylus 385b2). 

 

The idea behind these definitions is this: an utterance is true if it says that things are somehow, and 

they are thus; it is false if it says that things are somehow, and they are not thus.  The non-nominal 

quantifier ‘somehow’ is one that English speakers understand, but in tracing out the implications of the 

proposed definitions, we shall need a rigorous statement of the rules governing its use.  What are those 

rules? 
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In his book Objects of Thought (1971), Arthur Prior gave an answer.  Let us suppose that a 

standard first-order formalized language is enriched with universal and existential quantifiers whose 

attendant variables replace complete well-formed formulae.  Let us also suppose that the introduction 

and elimination rules for these two new ‘propositional’ quantifiers are analogues of the rules that 

govern the corresponding quantifiers into name position, aside from differences consequential upon the 

different syntactic categories of the associated variables.  Then, for example, assuming that the 

underlying propositional logic is classical, the formulae ‘P (P  P)’ and ‘P(P  P)’ will be 

logical theorems.  What Prior noticed is that if we read ‘P’ as ‘However things may be said or 

thought to be’, read ‘P’ as ‘There is a way things may be said or thought to be’, and read the 

associated variables as ‘they are thus’, then the theorems of this system emerge as logical truths under 

the proposed interpretation.  Thus the theorem ‘P (P  P)’ says ‘However things may be said or 

thought to be, either they are thus or they are not thus’, which a classical logician will take to be a 

logical truth.  Reversing the translation, we can formalize Aristotle’s definitions of truth and falsity as 

follows, where ‘u’ is an ordinary objectual quantifier ranging over utterances (which I shall 

henceforth take to include inscriptions), and ‘P’ is the existential propositional quantifier lately 

explained: 

 

(T) u(True (u) ↔ P(Say (u, P)  P)) 

 

(F) u(False (u) ↔ P(Say (u, P)  P)). 

 

(T) and (F), then, capture Aristotle’s definitions of truth and falsity in a way that enables us rigorously 

to trace out their implications.\
1
/ 

Aristotle presents his formulae as definitions, and (T) and (F), if they are correct at all, can 

serve as explicit definitions of ‘true’ and ‘false’ as these notions apply to utterances.\
2
/  Just for this 

                                                 
1
  Read strictly, Aristotle affirms only the right-to-left halves of (T) and (F), but the converse 

conditionals are implied by his advertising his formulae as definitions of truth and falsity.  If I say ‘This 

result is clear if we define what an Abelian group is. If a group is commutative it is Abelian’, my 

second sentence has the force of a biconditional. 

 
2
  Corresponding formulae could serve as definitions of truth and falsity as these notions apply to states 

of belief and to other bearers of truth and falsehood.  For some discussion of the range of truth-bearers, 

see Rumfitt 2011 §2. 
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reason, though, it might seem as if (T) and (F) cannot be correct: they appear to conflict with Alfred 

Tarski’s theorem that truth is indefinable (Tarski 1935).  Tarski’s theorem applies to a formalized 

language, L, containing a negation operator  and a device 
 

 which, when applied to any well-formed 

expression of L, yields a singular term designating that expression.  It is assumed that the syntax of the 

language is strong enough to prove the diagonal lemma: for any formula A(x) in L, with x free, there is 

a formula B in L such that B is equivalent to A(

B

).  According to Tarski, a truth-predicate for L is a 

one-place predicate Tr(ξ) such that, for any closed formula A of L, Tr(

A

) is equivalent to A: Tarski 

assumes that L contains no context-sensitive expressions, which is why he can take a truth-predicate for 

L to be a unary predicate of L’s type sentences.  What Tarski then proves is that no truth-predicate for L 

can be a predicate in L.  For suppose Tr(ξ) were a truth-predicate for L in L.  Then Tr(x) would be a 

well-formed formula of L with x the only free variable.  By the diagonal lemma, there would exist a 

closed formula D in L such that D is equivalent to Tr(

D

).  Since Tr(ξ) is a truth-predicate for L, we 

would also have that Tr(

D

) is equivalent to D, so that Tr(


D

) and Tr(


D

) would be equivalent.  This 

contradiction reduces to absurdity the supposition that Tr(ξ) is a truth-predicate in L.  So no truth-

predicate for L can be in L (Tarski 1935, 249-51).  Although Aristotle does not of course attain modern 

standards of explicitness in such matters, he does seem to advance, in Greek, an account of a truth-

predicate which applies (among other things) to Greek utterances and inscriptions, so Tarski’s theorem 

appears to cast doubt on his account.  It also casts doubt on (T) and (F), insofar as the predicates they 

purport to define are predicates of a semi-formalized version of English which apply, inter alia, to 

utterances and inscription in that semi-formal language. 

Given Tarski’s assumptions, his proof of the indefinability theorem is unassailable, but one of 

those assumptions is highly contestable.  Tarski assumes that if Tr(ξ) is a truth-predicate for L, then any 

closed formula A of L is equivalent to Tr(

A

).  He thereby presupposes that any closed formula of L has 

truth-conditions.  A formula will have truth-conditions, though, only if it expresses a complete thought, 

so Tarski’s argument presupposes that any closed formula of the relevant language expresses such a 

thought.  The very formula that Tarski uses in proving his theorem, however, casts doubt on that 

presupposition.  That formula ‘says of itself’ that it is not true.  To see why Tarski’s presupposition is 

doubtful, then, let us consider a corresponding English inscription, λ: 
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The inscription on the top line of page 5 of this essay is not true. 

 

When applied to λ, (T) yields 

 

1. True (λ) ↔ P(Say (λ, P)  P). 

 

Now if λ says anything, what it says is that the inscription on the top line of page 5 of this essay is not 

true, so on the assumption that λ does succeed in saying something, (1) yields 

 

2. True (λ) ↔ the inscription on the top line of page 5 of this essay is not true. 

 

By inspection we also have 

 

3. λ = the inscription on the top line of page 5 of this essay. 

 

By Leibniz’s Law, (2) and (3) together entail 

 

4. True (λ) ↔ True (λ). 

 

As in Tarski’s proof of his indefinability theorem, (4) is a contradiction, but we need not take this as 

reducing to absurdity the assumption that semi-formal English contains a predicate with the intended 

sense of ‘True’.  In order to move from (1) to (2), we need the assumption that λ expresses a thought 

and we may, instead, take the contradiction to refute that assumption.  Tarski entirely overlooks this 

possibility.  He writes that we ‘wish to use the term “true” in such a way that all [T-equivalences in the 

form “S is true if and only if P”] can be asserted, and we shall call a definition of truth “adequate” if 

[and only if] all these equivalences follow from it’ (Tarski 1944, 344, emphasis added).  But what this 

sort of case reveals is that our commitment to assert such T-equivalences is provisional.  We shall 

assert ‘S is true if and only if P’ only when we believe that S expresses a thought; in particular, we shall 

assert (2) only when we believe this of λ.  For all that Tarski says, the above deduction is simply a 

proof by Reductio that λ fails to express a thought, i.e. that P Say (λ, P).  On this view, (T) and (F) 
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transform ‘the semantic paradoxes…into sound arguments for constraints on what can say what in what 

contexts’ (Williamson 1998, 19). 

Whether this approach gives the best solution to the Paradox of the Liar is a large issue that I 

cannot address here.\
3
/  It is clear, though, that the theory of truth and falsity that comprises (T), (F) and 

their logical consequences is formally consistent.  As Timothy Williamson has observed, we can show 

this ‘by constructing an unintended model…in which formulas are treated as referring to truth-values, 

the propositional quantifiers range over truth-values, and all formulas of the forms “Say (A, c, P)”, 

“True (A, c)”, and “False (A, c)” are treated as false’ (Williamson op. cit., 14). 

Assuming that the logic of this theory is classical, the Principle of Bivalence seems, at first 

blush, to be a theorem of it.  For, given an arbitrary statement, u, we can reason as follows: 

 

(1) P Say (u, P)    Definition of statement 

(2) Say (u, P)    (1), existential instantiation 

(3) P  P     Excluded middle 

(4) P     Assumption 

(5) Say (u, P)  P    (2), (4), -introduction 

(6) P (Say (u, P)  P)   (5), existential generalization 

(7) True (u)     (6), (T) 

(8) True (u)  False (u)   (7), -introduction 

(9) P     Assumption 

(10) Say (u, P)  P    (2), (9), -introduction 

(11) P (Say (u, P)  P)   (10), existential generalization 

(12) False (u)     (11), (F) 

(13) True (u)  False (u)   (12), -introduction 

(14) True (u)  False (u)   (3), (8), (13) -elimination, with 

  discharge of assumptions (4) and (9) 

 

                                                 
3
  For approaches to the Liar along these general lines, see Prior 1971 chap. 6, Kneale 1972, Mackie 

1973 chap. 6, Parsons 1974, Smiley 1993, Glanzberg 2001, and Rumfitt 2014. 
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Since u was an arbitrarily chosen statement, we may generalize to reach the conclusion ‘Every 

statement is either true or false’.  I shall call this deduction the Simple Argument for Bivalence.  It 

spells out the argument that is implicit in the passage I quoted from Aristotle. 

 

 

2. Problems with the Simple Argument: determinacy of sense 

 

The Simple Argument may seem to be conclusive, at least if the underlying logic is classical.  In fact, 

though, there is a serious problem with it. 

The Principle of Bivalence, I said, is the thesis that every statement is either true or false, but 

the ‘or’ here is exclusive, not the logician’s vel.  That is, the Principle might more explicitly be 

formulated as ‘Every statement is either true or false but not both’.  However, even in classical logic, 

which has ‘P(P  P)’ as a theorem, (T) and (F) leave open the possibility that a statement is both 

true and false.  A statement might be true by virtue of saying that P in a circumstance where P, and at 

the same time false by virtue of saying that Q in a circumstance where not Q.  Where ‘P’ and ‘Q’ are 

distinct formulae, the truth of ‘P  Q’ may well be a logical possibility.  Even given classical logic, 

then, nothing in the Aristotelian definitions (T) and (F) excludes the possibility that a statement is both 

true and false. 

What would exclude that possibility is the further assumption that the statement has a 

determinate sense.  Any statement, we said, expresses a complete thought.  But if it has a determinate 

sense, it will express just one such thought: there will be such a thing as the thought it expresses.  

While there may be alternative ways of expressing that thought, those ways cannot diverge in truth 

value.  If u has a determinate sense, then, it will meet the following condition: 

 

(D) PQ(Say (u, P)  Say (u, Q)  (P ↔ Q)). 

 

If u has a determinate sense it will meet stronger conditions too, such as the following necessitated 

form of (D): 

 

 (PQ(Say (u, P)  Say (u, Q)   (P ↔ Q))). 
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In the present essay, though, I am not concerned with the modal aspects of statements, so we may focus 

on (D), which I shall take to be the defining condition for u to be determinate.  Given (T) and (F), and 

the premiss that u satisfies (D), it is straightforward to show that u cannot be both true and false. 

How might a statement fail to be determinate?  How could an utterance say something without 

there being one thing that it says?  We should set aside as irrelevant a shallow sense in which this is 

possible.  If I say ‘It is wet and cold’, I may be reported as having said that it is wet, and as having said 

that it is cold.  In the intended sense, though, ‘Say (u, P)’ means ‘The whole of what u says is that P’; 

partial reports of an utterance’s content are beside the point. 

Even in the intended sense of ‘Say (u, P)’, however, (D) may fail.  As we shall see in more 

detail below, special problems attend the use of classical logic when this is applied to statements 

involving unrestricted quantification over sets.  The usual semantic justification for the use of classical 

logic when reasoning with first-order statements presumes that the domain of quantification constitutes 

a set.  In standard set theory, however, there is no set of all sets.  An alternative justification for the use 

of classical logic in set theory rests on the view that apparently unrestricted quantification over sets is 

implicitly restricted to the members of a standard model for set theory.  Since there are many such 

models, however, this view casts doubt upon (D).  For what, on this view, does the statement ‘There 

exists a strongly inaccessible cardinal’ say?  It ‘says’ that there is such a cardinal in the smallest 

standard model V1; but it equally ‘says’ that there is such a cardinal in the second smallest model V2, 

and so forth.  The claims that our statement ‘says’ are not even materially equivalent.  The first 

inaccessible, 1, is a member of V2 but not of V1 so, on the first reading, the statement is false whereas 

it is true on the second reading.  I put the word ‘say’ in scare quotes because it is somewhat strained to 

use the term in this way: we want to ask, ‘Well, which does it say?’  On the view in question, though, 

the only available sense for ‘u says that P’ is that of ‘An interpretation of u under which it says that P is 

as legitimate as any other interpretation’.  The existence of equally legitimate ways of interpreting u 

should not prevent us from classifying u as a statement: it is not that it fails to say anything.  All the 

same, in such a case no unique content can be ascribed to it. 

For statements that exhibit this kind of indeterminacy, (T) is inadequate as an account of truth.  

If the only available sense for ‘u says that P’ is ‘An interpretation of u under which it says that P is as 

legitimate as any other interpretation’ then the only available sense of the formula ‘P(Say (u, P)  P)’ 
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is ‘An interpretation which renders u true is as legitimate as any other interpretation’; but to say so 

much is to say something weaker than ‘u is true’.  Similarly, (F) is inadequate as an account of falsity.  

When the only available sense for ‘u says that P’ is as above, ‘P(Say (u, P)  P)’ means ‘An 

interpretation which renders u false is as legitimate as any other interpretation’.  In such a case, then, 

the Simple Argument fails to establish that u is either true or false (even in the weak sense in which 

‘or’ means vel).  Its conclusion says only that u is either such that it could, with maximal legitimacy, be 

taken to be true, or could, with equal legitimacy, be taken to be false. 

How should we define truth and falsity when there is a serious possibility of some statements 

being indeterminate?  The natural answer is this.  We count a statement as true if, however it may 

legitimately be taken to say that things are, they are thus; we count it as false if, however it may 

legitimately be taken to say that things are, they are not thus.  In other words, when indeterminacy of 

sense is a serious possibility we need to replace (T) and (F) by the following: 

 

(T*) u(True (u) ↔ (P Say (u, P)  Q(Say (u, Q)  Q))) 

 

(F*) u(False (u) ↔ (P Say (u, P)  Q(Say (u, Q)  Q))). 

 

Like (T) and (F), (T*) and (F*) may be regarded as explicit definitions. 

The theory whose axioms are (T*) and (F*) in a logical system permitting quantification into 

sentence position is again consistent.  In fact, this new theory is consistent even if every utterance in 

the domain of quantification says something.  This may be shown by constructing an unintended 

interpretation in which each utterance both ‘says’ that P and ‘says’ that not P, so that every formula 

‘P Say (u, P)’ is true, while every formula of the form ‘True (u)’ or ‘False (u)’ is false.  In this new 

theory, the semantic paradoxes are transformed into sound arguments to show that a paradoxical 

utterance expresses no unique thought. 

When we took truth and falsity to be defined by (T) and (F), we needed the assumption that u 

is determinate in order to show that u is not both true and false.  Now that truth and falsity are defined 

by (T*) and (F*), we do not need the assumption of determinacy to show that truth and falsity are 

contraries.  Under the new definitions, however, we need determinacy in order to show that u is true vel 

false.  For now that ‘true’ is defined by (T*), we cannot move from line (6) of the Simple Argument, 
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viz. ‘P (Say (u, P)  P)’, to line (7), viz. ‘True (u)’.  Similarly, now that ‘false’ is defined by (F*), we 

are blocked from moving from line (11) to line (12).  Given the assumption that u satisfies (D), 

however, we can recast the deduction as follows: 

 

(1) P Say (u, P)    Definition of statement 

(2) Say (u, P)    (1), existential instantiation 

(3) Q(Say (u, P)  Say (u, Q)  (P ↔ Q)) (D), universal instantiation 

(4) Q(Say (u, Q)  (P ↔ Q))  (2), (3) 

(5) P  P     Excluded middle 

(6) P     Assumption 

(7) Q(Say (u, Q)  Q)   (4), (6) 

(8) P Say (u, P)  Q(Say (u, Q)  Q) (1), (7) -introduction 

(9) True (u)     (8), (T*) 

(10) True (u)  False (u)   (9), -introduction 

(11) P     Assumption 

(12) Q(Say (u, Q)  Q)   (4), (11) 

(13) P Say (u, P)  Q(Say (u, Q)  Q) (1), (12) -introduction 

(14) False (u)     (13), (F*) 

(15) True (u)  False (u)   (9), -introduction 

(16) True (u)  False (u)   (5), (10), (15) -elimination, with the 

  discharge of assumptions (6) and (11) 

 

(I have elided some elementary logical steps at lines (4), (7) and (12).)  I shall call this latest deduction 

the Revised Argument.  Its conclusion is a restricted version of Bivalence: every determinate statement 

is either true or false. 

Miroslava Andjelković and Timothy Williamson (2000) claim to be able to deduce the thesis 

that every statement satisfies (D) from (T*).  If their argument worked, (T*) would entail (T) and (F*) 

would entail (F); moreover, the Simple Argument would apply to every statement and we would have 

no need for the Revised Argument.  Andjelković and Williamson reason as follows.  Where s and t are 
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type sentences in a given language L, let sEt be the sentence formed by writing s, then a sign E in L that 

means ‘if and only if’, and finally t.  (It is assumed that L contains at least one expression meaning ‘if 

and only if’.)  sEt, they claim, will always express a biconditional proposition whose first component is 

what s says and whose last component is what t says.  That is, where <s, c> is the (possible) utterance 

of sentence s in the context c, 

 

(E1) stcPQ [Say (<s, c>, P)  Say (<t, c>, Q)  Say (<sEt, c>, P ↔ Q)]. 

 

Andjelković and Williamson further claim that if the utterance of a sentence s in a context says 

something, then an utterance in that same context of a complex sentence in which an occurrence of s is 

followed by E, which in turn is followed by a second occurrence of s, is true: 

 

(E2) scP [Say (<s, c>, P)  True (<sEs, c>)]. 

 

Now a special case of (E1) is 

 

(1)            scPQ [Say (<s, c>, P)  Say (<s, c>, Q)  Say (<sEs, c>, P ↔ Q)]. 

 

Furthermore, (T*) yields 

 

(2) scPQ [Say (<sEs, c>, P ↔ Q)  (True (<sEs, c>)  (P ↔ Q)]. 

 

From (1) and (2) we get 

 

(3) scPQ [Say (<s, c>, P)  Say (<s, c>, Q)  (True (<sEs, c>)  (P ↔ Q))]. 

 

But (E2) and (3) yield 

 

(4) scPQ [Say (<s, c>, P)  Say (<s, c>, Q)  (P ↔ Q)]. 
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Since any possible utterance is the utterance of a sentence in a context, (4) amounts to the claim that 

any possible statement satisfies (D). 

How does this argument fare when the only available interpretation of ‘u says that P’ is ‘An 

interpretation of u under which it says that P is as legitimate as any other interpretation’?  When ‘says’ 

has that meaning, (E2) and (1) cannot both be correct.  (1) implies that, in a given context, a speaker-

hearer may give non-equivalent, but equally legitimate, interpretations to the two occurrences of s in 

sEs.  (E2), by contrast, presumes that those two occurrences will be interpreted in equivalent ways: if 

<sEs, c> is always true, then an utterance of sEs must either be heard as saying that P ↔ P or be heard 

as saying that Q ↔ Q (where P and Q are the legitimate interpretations of s).  The latter presumption 

may well be correct: there may be a convention in the relevant language that precludes switching from 

one legitimate interpretation of s to another when interpreting the two occurrences of s in the complex 

sentence sEs.  But if such a convention is in place, (1) will be false. 

Andjelković and Williamson are right to say that (E1) logically entails (1).  That point, 

however, merely shows that one’s first thought—that (E1) is a wholly exceptionless truth about 

biconditionals—may need to be revised.  It is an interesting question how it is best emended.  One 

suggestion is this.  Let us call a context regular when it is understood that repeated occurrences of a 

single expression type in the same sentence must be interpreted in the same way.\
4
/  To ensure that (E2) 

is true, we must restrict the range of the variable ‘c’ to regular contexts.  When the range of ‘c’ is so 

restricted, though, (E1) needs to be revised by adding the conjunct s ≠ t to its antecedent; this ensures 

that (1) is not among its consequences.  In any case, whether or not this way of preserving what is right 

in (E1) is optimal, the Andjelković-Williamson argument fails.  Indeterminate statements are a real 

possibility and (T), (F), and the Simple Argument all need to be revised to take account of them. 

The Revised Argument shows, indeed, from where challenges to Bivalence must come.  A 

non-bivalent statement must either be indeterminate—i.e. fail to satisfy (D)—or express thoughts to 

which classical logic does not apply.  In the latter case, the inapplicable laws will almost certainly be 

Excluded Middle (invoked at line (5)) or the rule of -elimination (alias ‘Proof by Cases’) that is 

needed at the last step.  One reason for thinking that this latest reconstruction of the argument for 

                                                 
4
  I write of expressions in general, for puzzle cases of this kind are not confined to complete sentences.  

In any regular context, ‘Princeton = Princeton’ will be true, even though ‘Princeton’ could equally 

legitimately be taken to refer to Princeton Borough or to Princeton Township, and Princeton Borough ≠ 

Princeton Township (David Lewis’s example; see Lewis 1988, 128). 
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Bivalence is on the right lines is that the most interesting challenges to the bivalence of a given 

statement proceed by questioning its determinacy, or the application to it of Excluded Middle, or of 

Proof by Cases.  With that in mind, I turn to consider three putative counterexamples to Bivalence in 

the light of our analysis. 

 

 

3. Future contingents 

 

The first of these putative counterexamples is not, I think, especially persuasive, but it needs to be 

mentioned because it looms so large in the history of the topic. 

On the traditional reading, Aristotle put forward a counterexample to Bivalence in the ninth 

chapter of his early treatise De Interpretatione.\
5
/  ‘A sea-battle will take place tomorrow’ expresses a 

complete thought, and so qualifies as a statement.  But to ascribe truth to that statement, Aristotle 

seems to argue, would imply that it is settled that battle will be joined; and to ascribe falsehood to it 

would imply that it is settled that battle will be avoided.  So, at a time when it is not settled whether 

battle will be joined, we cannot say that the statement is either true or false. 

Aristotle’s discussion of the case is convoluted and hard to interpret.  Part of the difficulty 

stems from his switching between two formulations of Bivalence.  We can see this switch in the 

passage already quoted from the Metaphysics.  The passage concludes with a good formulation of the 

Principle: 

 

(1) He who says…anything…will say either what is true or what is false. 

 

But it starts with a potentially misleading formulation: 

 

(2) Of one subject we must either affirm or deny any one predicate. 

 

                                                 
5
  The traditional reading has been challenged.  The debate continues, but classic contributions include 

Łukasiewicz 1922, Anscombe 1956, Kneale and Kneale 1962 chap. II §4, Hintikka 1964, and von 

Wright 1984. 
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(2) may be read as equivalent to (1).  However, mentioning the speech acts of affirmation and denial 

muddies the waters, for (2) is more naturally read as expressing a principle that is not equivalent to 

Bivalence: 

 

(3) Given any statement, we must either be entitled to affirm it or be entitled to deny it.  

 

Principle (3) is false, and future contingents are among many counterexamples to it.  In order to be 

entitled to affirm ‘There will be a sea-battle tomorrow’, a speaker needs some ground for that assertion; 

he needs evidence that battle will be joined.  Similarly, in order to be entitled to deny ‘There will be a 

sea-battle tomorrow’, he needs evidence that battle will not be joined.  In a case where the admirals 

have not decided whether to fight, there may be no such evidence, so Aristotle’s case is a plausible—if 

rather sketchy—counterexample to (3).  But it is not thereby a counterexample to (1), which is the 

correct formulation of Bivalence.  The correct formulation does not mention affirmation or denial; it 

mentions only truth and falsity. 

Can the Revised Argument be applied to show that ‘There will be a sea-battle tomorrow’ is 

either true or false?  I think it can.  The relevant instance of Excluded Middle is in order: there is 

nothing amiss in the claim ‘Either there will be a sea-battle tomorrow or there won’t be’.  Moreover, 

‘There will be a sea-battle tomorrow’ seems to have a determinate sense.  As uttered on 1 January 

2015, what it says is that a sea-battle will take place on 2 January 2015.   If a sea-battle does take place 

on the latter date, the utterance is true; if no sea-battle takes place then, it is false.  In order for the 

utterance to be true, it is not necessary that battle was inevitable on 1 January; and in order for the 

utterance to be false, it is not necessary that battle was then precluded.  So the claim that the statement 

is either true or false carries no deterministic implications. 

At least, this is so if we understand ‘true’ and false’ ‘atemporally’—i.e. in a sense that does 

not permit significant tensing.\
6
/  It is this understanding of these words that (T*) and (F*) articulate—

for the quantification in (T*) and (F*) is itself tenseless.  In this atemporal sense, the statement’s truth 

does not imply that a battle was determined by 1 January, and its falsity does not imply that a battle 

                                                 
6
  This paragraph and the next summarise the argument of von Wright 1984, to which I refer the reader 

for further elaboration. 
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was then precluded.  When ‘true’ and ‘false’ are taken in this sense, Bivalence is consistent with the 

future’s being open. 

What further muddies the waters here, and gives the present attack on Bivalence some 

spurious plausibility, is that some English speakers use ‘true’ in a way that does permit significant 

tensing.  They say things like ‘It is already true (now, on 1 January 2015) that there will be a total solar 

eclipse, visible from the Faeroe Islands, on 15 March 2015’—meaning thereby that the occurrence of 

such an eclipse on that date is already settled, fixed, or determined.  Now in this sense of ‘true’, the 

Revised Argument would be fallacious and its conclusion false.  Whilst it is now determined that there 

either will or will not be a sea-battle tomorrow, it does not follow that it is either now determined that 

there will be a battle tomorrow or now determined that there will not be.  To the contrary: if the 

admirals have yet to decide whether to fight, that conclusion will be false.  The Revised Argument fails 

because (T*) does not capture this temporal sense of ‘true’ (and (F*) does not capture the 

corresponding sense of ‘false’).  But the failure of the Argument, and the falsity of its conclusion, when 

‘true’ and ‘false’ are understood temporally are irrelevant to the Argument and to the Principle in the 

sense articulated here, in which ‘true’ and ‘false’ are understood atemporally.  When the Principle is 

understood in that latter way, future contingents pose no threat to it whatever. 

In his essay ‘Truth’, Michael Dummett considers a statement that may be regarded as an 

infinitary version of Aristotle’s example of the sea-battle: ‘A city will never be built on this spot’ 

(Dummett 1959, 16).  Dummett takes a statement’s content to be given by the commitments that a 

speaker who affirms it thereby incurs (i.e. by the ‘requirements’ that must be satisfied if his assertion is 

to have been correct: op. cit., 22).  He also holds that a speaker incurs a commitment only if there is 

some finite bound on the time by which that commitment will either have been fulfilled or not.  Let v 

be an utterance of ‘A city will never be built on this spot’, made on day d at place π.  Then the 

commitments of v are these: that there be no city at π on day (d + 1); that there be no city at π on day 

(d + 2); … Or, using Prior’s quantifiers into sentence position: 

 

Pn [Commit (v, P) ↔ (P ↔ there is no city at π on day d + n)]. 

 

Now if we think of content in these terms, it is plausible to count a statement as true if all its 

commitments are fulfilled: 
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(T
D
) u(True (u) ↔ P(Commit (u, P)  P)). 

 

Similarly, it is it is plausible to take a statement to be false if one of its commitments is not fulfilled: 

 

(F
D
) u(False (u) ↔ P (Commit (u, P)  P)). 

 

So in the present case we shall have 

 

True (v) ↔ n (there is no city at π on day d + n) 

 

and 

 

False (v) ↔ n (there is a city at π on day d + n). 

 

These specifications of v’s truth- and falsity-conditions seem to be correct: Dummett’s requirement that 

commitments are met or unmet in a finite time does not stop (T
D
) and (F

D
) from delivering the desired 

results in this case.  Indeed, given classical logic, we can now prove that v is bivalent.  A theorem of 

first-order classical logic is 

xFx  xFx


.  In particular, then, where 


Cn


 symbolizes 


There is a city 

at π on day (d + n)

 we have 


nCn  nCn


,\

7
/ which combines with our conditions for v’s truth and 

falsity to yield the conclusion that v is either true or false. 

Dummett, however, insists that we cannot assert the bivalence of v.  In part this reflects his 

rejection of classical logic, and I shall return to the validity of 

xFx  xFx


 in the next section.  His 

claim that we cannot assert v’s bivalence also rests, though, upon a thesis about truth.  There is, he 

writes, an ‘important feature of the concept of truth which is not expressed by the law “It is true that p 

if and only if p” and which we have so far left quite of account: that a statement is true only if there is 

something in the world in virtue of which it is true’ (Dummett 1959, 14).  The things in virtue of which 

a statement is true, he explains, are ‘the sort of fact we have been taught to regard as justifying us in 

                                                 
7
  In fact, this particular instance of Excluded Middle may be justified otherwise than by appeal to 

classical logic; see n.8 below. 
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asserting it’ (op. cit., 16).  Let us call such a fact a ground of the statement.  In these terms, Dummett is 

making the following claim: 

 

(T
G
) u(True (u)  a ground for u obtains). 

 

Dummett holds that there is a corresponding thesis about falsehood.  Let us say that a fact is an anti-

ground of a statement if its obtaining justifies us in denying the statement.  Then he also maintains 

 

(F
G
) u(False (u)  an anti-ground for u obtains). 

 

(T
G
) and (F

G
) together entail 

 

(Biv
G
)    u((True (u)  False (u))  (a ground for u obtains)  (an anti-ground for u obtains)) 

 

and, in the case of v, we are not entitled to assert the consequent of the relevant instance of (Biv
G
): 

 

We are entitled to say that a statement P must be either true or false, that there must be 

something in virtue of which either it is true or it is false, only when P is a statement of such a 

kind that we could in a finite time bring ourselves into a position in which we are justified 

either in asserting or in denying P; that is, when P is an effectively decidable statement.  This 

limitation is not trivial: there is an immense range of statements which, like ‘Jones was brave’ 

[said of a man who died without facing danger], are concealed conditionals, or which, like ‘A 

city will never be built here’, contain—explicitly or implicitly—an unlimited generality, and 

which therefore fail the test (Dummett 1959, 16-17). 

 

We should agree with Dummett that we may not be entitled to assert that either a ground or an anti-

ground for v obtains.  A ground for v is the sort of fact that justifies us in asserting ‘A city will never be 

built here’.  We know what sort of facts these are: the place in question is too cold to support a city, or 

it is too hot, or it lacks water, etc.  Let us suppose, then, that none of the features afflicts π.  The locus 

of v, in other words, is a place where a city could well be built.  On that supposition, no ground for v 

obtains.  An anti-ground for v is the sort of fact that justifies us in denying ‘A city will never be built 
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here’.  We know what sort of facts these are too: population growth makes the urbanization of the place 

inevitable, or plans to build a city are already laid, etc.  Let us suppose that none of these facts obtains 

either.  In that case, we shall not be entitled to say that either a ground or an anti-ground for v obtains. 

But does it follow that we cannot assert that v is bivalent?  I think not.  Dummett maintains 

that (T
G
) is a general constraint on the application of the predicate ‘true’: truth is an ‘epistemically 

constrained’ notion.  In ‘Truth’, however, he offers no defence of this claim and it is striking that (T
G
) 

is not needed to derive the intuitively correct truth-conditions for v.  It is, then, open to a philosopher to 

defend Bivalence by maintaining that v is a counterexample to (T
G
) and hence to (Biv

G
).  Indeed, v is a 

particularly strong form of counterexample to (T
G
), for v may be true even though a ground for v never 

obtains.  It might be that π always remains a place where a city could be built—so that no one is ever 

justified in asserting ‘A city will never be built here’—while, as a matter of fact, no one ever happens 

to build a city there—so that ‘A city will never be built here’ is true.  This is why it is helpful to place 

Dummett’s example alongside Aristotle’s.  Today, on 1 January, we can assert that ‘There will be a 

sea-battle tomorrow’ is either true or false.  Because the admirals have not decided whether to fight, no 

one today can assert that the statement is true and no one today can assert that it is false.  Tomorrow, 

though, some people will be able to assert either that the statement is true or that it is false; by 2 

January, either a ground or an anti-ground will have obtained.  From a perspective that rejects (T
G
), the 

proper moral of Dummett’s example is that even this eventual obtaining of either a ground or an anti-

ground is inessential to a statement’s bivalence.  We may assert that v is either true or false even 

though we know that neither a ground nor an anti-ground for v may ever obtain.  Dummett’s case 

brings out something interesting, then, but it is not counterexample to Bivalence. 

 

 

4. The continuum hypothesis: the intuitionist analysis 

 

A second class of putative counterexamples is more problematic. 

When Cantor hypothesized ‘There is no set strictly intermediate in cardinality between the 

integers and the real numbers (the continuum)’, it seems he succeeded in expressing a thought.  Many 

philosophers, however, resist the claim that this statement—Cantor’s celebrated Continuum 

Hypothesis, CH for short—is bivalent.  Gödel (1940) showed that the truth of CH was consistent with 
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the axioms of Zermelo-Fraenkel set theory including the Axiom of Choice (assuming that those axioms 

are themselves consistent).  Cohen (1966) proved that its falsity (i.e. the truth of its negation) was also 

consistent with the same axioms (under the same assumption).  These results do not refute the claim 

that CH is either true or false, but they do cast doubt upon it.  Contra Dummett, a statement may be 

true even though there are no (and never will be) grounds for asserting it.  But many philosophers 

believe that a true (false) statement must have a basis: if a statement is true (false), there must be 

something that makes it true (false), even if we can never find out whether that basis obtains.  The 

results of Gödel and Cohen appear to show that, in the case of CH, there is no basis for its truth or 

falsity in the generally accepted axioms of set theory, and it is wholly unclear where else such a basis 

might be. 

But, if CH is not bivalent, where does the Revised Argument go wrong when applied to it?  

The intuitionists hold that we are not entitled to assert that CH is bivalent; on their view, the fallacious 

step in the Revised Argument is the appeal to the classical logical law of Excluded Middle at step (5).  

They identify ‘the principle of excluded middle with the principle of the solvability of every 

mathematical problem’ (Brouwer 1927, 491).  Since no one is entitled to assert that the continuum 

problem is solvable, no one is entitled to assert line (5) of the Argument in the relevant case.  As I now 

argue, though, the intuitionists do not properly capture the nature of mathematical doubts about the 

bivalence of statements like CH. 

The semantic theory that Arend Heyting (1934) developed for the language of intuitionist 

mathematics reflects Brouwer’s identification of Excluded Middle with universal solvability.  

According to that theory, 

 

the meaning of each [logical] constant is to be given by specifying, for any sentence in which 

that constant is the main operator, what is to count as a proof of that sentence, it being 

assumed that we already know what is to count as a proof of any of the constituents. 

(Dummett 2000, 8). 

 

Specifically, Heyting stipulated that a proof of 

A  B


 is anything that is a proof either of A or of B, 

and that a proof of 

A


 is a construction of which we can recognize that, applied to any proof of A, it 

will yield a proof of a contradiction.  A statement counts as intuitionistically valid if the semantic 
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principles guarantee it to be provable no matter which atomic statements are provable.  So a statement 

of the form 

A  A


 will be valid only if either A or 


A


 is provable, i.e. only if the problem of 

deciding A is solvable.  On this semantics, to take 

A  A


 to be valid, no matter what mathematical 

statement A might be, would precisely be to postulate that every mathematical problem is solvable. 

At first blush, the Heyting semantics seems to give us what we want.  Since we cannot assert 

that the continuum problem is solvable, we cannot assert the relevant instance of Excluded Middle in 

line (5).  So, in intuitionistic logic, the Revised Argument for the bivalence of the Continuum 

Hypothesis barely gets started. 

There is a snag, though.  Consider Goldbach’s Conjecture: ‘Every even number greater than 

two is the sum of two primes’.  At the time of writing, no one has a proof or a refutation of this 

conjecture, or a demonstration that a proof or refutation must exist.  If the statement is false, a 

refutation will exist.  For if the statement is false, there will be a counterexample to the Conjecture, and 

in that event it will be possible in principle to identify all the prime numbers less than the 

counterexample and then verify that no pair of them has the counterexample as its sum.  However, 

there is at present no reason to assert that the Conjecture must have either a proof or a refutation.  For 

all we know, there may be no counterexample to it, but at the same time no uniform reason why every 

even number greater than two is the sum of two primes, nor even a finite partitioning of those numbers 

with a uniform reason for each partition.  Given the Heyting semantics, then, we are at present unable 

to assert 

GC  GC


 where GC states Goldbach’s Conjecture.  This is a problem, however, for almost 

every mathematician believes that we can assert 

GC  GC


, even in the face of the recognition that 

GC may not be decidable.  For this reason, the intuitionist seems to give the wrong explanation of why 

CH is not bivalent. 

What grounds the widespread belief that we can assert 

GC  GC


?  In articulating these 

grounds, it helps to spell out some notions.  Let us say that a property φ is definite (with respect to a 

domain) if each member of that domain is either φ or not φ.  And let us say that a domain D is 

determinate when, for any property φ that is definite with respect to D, the following thesis holds when 

the range of the quantifiers is restricted to D: 

 

(Det) xφx  xφx. 
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The thought underlying (Det) is this.  For a domain to be determinate is for it to be determinate which 

objects belong to it.  Now where φ is definite with respect to D, each member of D is either φ or not φ.  

If it is also determinate which objects belong to D, then the question ‘Is every member of D a φ?’ must 

have one of its expected answers.  If that answer is ‘yes’, then xφx.  If the answer is ‘no’, then some 

member of D is not φ, so that xφx.  Either way, we have 

xφx  xφx


. 

These notions enable us to spell out the basis for the widespread conviction that we are 

entitled to assert 

GC  GC


.  Let the domain of quantification, D, be the even natural numbers 

greater than two; and let 

Fn


 be the statement 


n is the sum of two primes


.  Then Goldbach’s 

Conjecture is expressed by the formula 

x Fx


.  Now it is agreed on all hands (even by intuitionists 

operating under the Heyting semantics) that each even number greater than two is either the sum of two 

primes or it is not.  In our terms, F is a definite property of the members of the domain D.  Moreover, it 

is natural to hold that the domain of even numbers is determinate: that is, it is determinate which 

objects are even numbers.  For example, 2, 4, and 6 are even numbers, while 1, 3, and Julius Caesar are 

not.  We can, then, assert 

xFx  xFx


.  Even in intuitionistic logic, though, 


xFx


 entails 


xFx


, so 


xFx  xFx


 entails 


xFx  xFx


, i.e., 


GC  GC


.\

8
/ 

The contentious premiss of this argument is the claim that the domain of even numbers—and, 

with it, the domain of all natural numbers—is determinate.  Whether these domains are determinate or 

not is a deep question in the philosophy of arithmetic that I cannot discuss here.\
9
/  Whatever the 

answer may be, though, our analysis shows where Brouwer’s doubts about CH’s bivalence diverge 

from those of mainstream mathematicians.  The problem does not lie in the use of intuitionistic logic 

per se.  In that logic, some instances of Excluded Middle may be asserted.  Rather, the divergence 

stems from Brouwer’s contention, which is embodied in the Heyting semantics, that 

A  A


 may be 

asserted only when A is decidable.  For Brouwer, we cannot assert that CH is bivalent because we 

cannot assert that CH is decidable.  For most mathematicians who have doubts about the bivalence of 

CH, though, that cannot be the proper explanation: they take themselves to be entitled to assert that 

                                                 
8
  A parallel argument establishes the truth of 


nCn  nCn


, where 


Cn


 means 


There is a city at 

place π on day (d + n)

.  (An empirical property of the natural numbers may still be definite in the 

specified sense.)  The truth of 

nCn  nCn


 was the main premiss of the positive argument given in 

§3 for the bivalence of Dummett’s example v.  That example may be regarded as an ingenious hybrid 

of Goldbach’s Conjecture and Aristotle’s Sea Battle. 

 
9
  For an interesting discussion, see Field 1998. 
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Goldbach’s Conjecture is bivalent even though they cannot assert that the Conjecture is decidable.  If 

CH is not bivalent, its being so does not lie simply in its being undecidable.\
10

/ 

 

 

5. Failures of bivalence in set theory: a better analysis 

 

I think people are right to doubt the bivalence of many statements of set theory but I do not think that 

those doubts offer any support to Brouwer’s intuitionism.  Rather, I want to argue, the doubts are well-

founded because many set-theoretic statements are indeterminate: they fail to be bivalent because they 

do not satisfy condition (D). 

When a mathematician utters the sentence ‘There is no set strictly intermediate in cardinality 

between the integers and the real numbers (the continuum)’, what is he saying?  He is clearly saying 

something about sets, but what are sets?  The word ‘set’, as it comes from his mouth, is surely a 

theoretical term, and the theory that implicitly defines it—the theory that endows it with sense—can 

only be set theory.  In uttering CH, then, the mathematician is saying something about the 

mathematical structure that is characterized by the axioms of set theory. 

An account of the content of set-theoretic statements along these lines seems to me to be the 

only one that is remotely plausible.\
11

/  There is, however, a problem with the formulation I have given: 

there is no such thing as the mathematical structure (in the singular) that is characterized by the axioms 

of standard set theory.  The point is that even second-order set theory, ZFC
2
, is not fully categorical.  

Its axioms leave (at least) the ‘height’ of the set-theoretic universe undetermined, so two models of 

ZFC
2
 need not be isomorphic.  As Zermelo showed, the theory is only quasi-categorical: given any 

two models, one will be isomorphic to an initial sub-model of the other (Zermelo 1930).  More exactly, 

each model of ZFC
2
 has the form Vκ, where κ is a strongly inaccessible cardinal.  (The hierarchy of sets 

Vα is defined as follows for each sort of ordinal α: V0 = ; Vα+1 = (Vα) for each successor ordinal 

                                                 
10

  Cfr. Benacerraf and Putnam: ‘It is instructive to compare [and contrast] set theory with number 

theory.  In number theory too there are statements that are neither provable nor refutable from the 

axioms of present-day mathematics.  Intuitionists might <argue> that that this shows (not by itself, of 

course, but together with other considerations) that we do not have a clear notion of “truth” in number 

theory, and that our notion of a “totality of all integers” is not precise.  Most mathematicians would 

reject this conclusion.  Yet most mathematicians feel that the notion of an “arbitrary set” is somewhat 

unclear’ (Benacerraf and Putnam 1983, 19). 

 
11

  For a persuasive elaboration of the account, see now Issacson 2011. 
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α+1; Vλ = β<λ Vβ for each limit ordinal λ.  For present purposes, the cardinal number of a set A may be 

taken to be the least ordinal equinumerous with A.) 

What are the consequences of this?  One is that some theorems of first-order classical logic 

are hard to justify when the domain of quantification is understood to range over all sets.  An example 

of such a theorem is (Det) from §4: 

 

xφx  xφx. 

 

I argued there that we are entitled to assert (Det) whenever the domain of quantification is determinate 

and φ is a definite property.  Even when φ is definite, however, it is hard to see what entitles us to 

assert 

xφx  xφx


 when the variable ‘x’ ranges over absolutely all sets.  Certainly the justification 

given in §4 does not apply.  That justification presumed that it was a determinate matter which objects 

are sets.  But it is hard to see how this can be a determinate matter if (a) set theory is what determines 

which objects satisfy ‘set’ whereas (b) set theory is not categorical. 

Is the use of classical logic illegitimate, then, when reasoning about the totality of all sets?  

Not necessarily.  For one might maintain that statements apparently involving quantification over all 

sets need to be tamed before we can do any systematic reasoning with them and that, once we tame 

them, it is legitimate to apply classical logic to them.  The sort of ‘taming’ I have in mind is already 

implicit in Zermelo’s writings.  The very idea of non-categoricity presumes a multiplicity of non-

isomorphic models of ZFC
2
; but the domains of those models are themselves sets and, as such, are 

determinate.  Thus ‘what appears as an “ultra-finite non- or super-set” in one model is, in the 

succeeding model, a perfectly good, valid set with both a cardinal number and an ordinal type, and is 

itself a foundation stone for the construction of a new domain’ (Zermelo 1930, 1233).  Now when the 

domain of quantification is restricted to the members of some set, the laws of classical logic will apply.  

What is peculiar about statements apparently about all sets, on this view, is not that their variables 

range over a collection that is not a set.  It is, rather, that the semantics of such statements must be 

understood in relation to a whole sequence of domains of quantification each of which is a set: ‘To the 

unbounded series of Cantor ordinals there corresponds a similarly unbounded double-series of 

essentially different set-theoretic models, in each of which the whole classical theory is 

expressed…This series reaches no true completion in its unrestricted advance, but possesses only 
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relative stopping-points, just those “boundary numbers” [i.e. strongly inaccessible cardinals] which 

separate the higher model types from the lower’ (ibid.). 

This way of understanding statements involving apparent quantification over all sets may 

justify the use of classical logic in reasoning with them.  It does so, however, at the price of rendering 

certain set-theoretic statements indeterminate.  For we have here an example of the situation considered 

earlier, where the only available sense that can be attached to ‘u says that P’ is ‘An interpretation of u 

under which it says that P is as legitimate as any other interpretation’.  Ex hypothesi, the only 

legitimate interpretations of u are those which vindicate the classical logic by restricting the domain of 

quantification to the members of a standard model of ZFC
2
.  Under this hypothesis, what is our 

mathematician saying when he utters CH?  Where κ1 is the first strongly inaccessible cardinal, one 

maximally legitimate interpretation of his statement is that there is no set in Vκ1 that is strictly 

intermediate in cardinality between the integers and the reals.  But, where κ2 is the second strongly 

inaccessible cardinal, another maximally legitimate interpretation of his statement is that there is no set 

in Vκ2 that is strictly intermediate in cardinality between the integers and the reals.  And so forth.  In 

making a set-theoretic statement, a speaker presents himself as saying something about the universe of 

sets, but there is no such thing—no unique such thing, anyway.  The various determinations of that 

universe generate various, but equally legitimate, interpretations of set-theoretic statements. 

For this reason, many set-theoretic statements fail to satisfy condition (D).  Let u be the 

statement ‘There is at least one strongly inaccessible cardinal’, let ‘P’ abbreviate ‘There is at least one 

strongly inaccessible cardinal in Vκ1’ and let ‘Q’ abbreviate ‘There is at least one strongly inaccessible 

cardinal in Vκ2’.  An instance of (D) is 

 

(**) Say (u, P)  Say (u, Q)  (P ↔ Q). 

 

On the view we are considering, (**) is false.  On that view, the only available interpretation that 

sustains a classical logic for ‘P’, ‘Q’ etc. is one whereby ‘Say (u, P)’ means ‘An interpretation of u 

under which it says that P is as legitimate as any other interpretation’.  Under that interpretation, the 

antecedent of (**) is true.  Because our set-theoretic axioms fail to single out a unique intended 

‘universe’ of sets, one maximally legitimate interpretation of u is that there is at least one strongly 
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inaccessible cardinal in Vκ1, while another is that there is at least one strongly inaccessible cardinal in 

Vκ2.  The consequent of (**), however, is false: P is false (κ1 is not a member of Vκ1) whereas Q is true. 

The Revised Argument cannot be applied, then, to establish that an arbitrarily selected 

statement of set theory is bivalent.  Since some set-theoretic statements do not satisfy (D), we cannot 

always affirm line (3) of the Argument.  Indeed, if the theory that gives content to the notion of ‘set’ is 

simply ZFC
2
, many set-theoretic statements are not bivalent, u of the previous paragraph being a case 

in point.  u ‘says’ that P and ‘says’ that Q, where Q but not P.  Since u says that P, and not P, (T*) 

entails that u is not true.  Since u says that Q, and Q, (F*) entails that u is not false.  So u is neither true 

nor false. 

Unlike Brouwer’s analysis, the present ground for saying that certain set-theoretic statements 

are not bivalent is entirely consistent with holding that undecidable statements of number theory such 

as Goldbach’s Conjecture are bivalent.  The crucial difference is that there are theories which provide a 

fully categorical axiomatization of the natural number structure: our comprehension of such a theory 

provides the basis for a conception of the domain of natural numbers as being determinate in the sense 

of §4.  Second-order Peano arithmetic (PA
2
) is the most famous example of a categorical 

axiomatization of the natural number structure.  Some philosophers doubt if we really understand full 

second-order quantification over infinite domains, but even if we cannot grasp PA
2
, there are weaker 

theories—indeed, theories whose logic is weaker than full second-order logic—that characterize the 

natural numbers up to isomorphism.  By the Löwenheim-Skolem Theorem, the logic of a categorical 

axiomatization of number theory cannot be first-order.  But consider ‘ancestral logic’, a system in 

which first-order logic is supplemented with introduction and elimination rules for an operator * which 

maps a relation to its ancestral (see Myhill 1952).  (The *-operator is counted as a logical constant.)  In 

this system, we may formulate a theory, T, in which the axioms of first-order Peano arithmetic, PA
1
, 

are supplemented by the axiom 

x(x = 0  S*0x)


, where S is the relation of immediate succession.  

Unlike PA
1
, T characterizes the natural numbers up to isomorphism: since the new axiom requires each 

member of the domain to be only finitely many steps of immediate succession from zero, it excludes 

the non-standard numbers.  However, the conceptual resources needed to make sense of T are much 

weaker than those needed to understand PA
2
.  In particular, it is not necessary to make sense of the idea 

of an arbitrary set of natural numbers. 
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Many contemporary set theorists regard ZFC
2
 as too weak a theory to characterize the notion 

of ‘set’.  Most of the stronger theories that have been proposed do not threaten the above argument that 

not all set-theoretic statements are bivalent, for the theories in question remain only quasi-categorical.  

Vann McGee (1997), however, has proposed a new axiom that renders the resulting set theory 

categorical.  McGee works in a system, ZFU
2
, in which the first-order quantifiers are permitted to 

range over Urelemente—objects that are not sets—as well as over sets.  He proposes as a further set-

theoretic axiom the postulate that these Urelemente form a set (call this axiom ‘McG’); he then proves 

that the theory ZFU
2
 + McG gives a categorical characterization of the pure sets—i.e. the sets that may 

be formed from the empty set using the standard set-theoretic operations.  More precisely, McGee 

shows that there is a theorem of ZFU
2
 + McG which, under the intended interpretation of the language 

of ZFU
2
, says the following: any structure that could, given the axioms of ZFU

2
 + McG, serve as the 

interpretation of ‘pure set’ and ‘is a member of’, will be isomorphic to the intended structure of the 

pure sets.\
12

/ 

McGee’s result is striking, and one commentator has welcomed it as opening ‘the door to a 

structuralist account of set-theoretic truth on which every sentence of [the language of] pure set theory 

is assigned a determinate truth value’ (Uzquiano 2002, 181).  But have we reason to accept McGee’s 

axiom?  So far from its being an evident truth, I think it is highly doubtful. 

Let us consider the notion of an ordinal, i.e. the order-type of a well-ordered set.  Ordinals can 

be represented as sets.  However, there are many equally good ways of so representing them.  For the 

reasons expounded by Paul Benacerraf in ‘What Numbers Could Not Be’ (Benacerraf 1965), this 

suggests forcibly that they are not themselves sets.  If an ordinal were a set, there would have to be a 

fact as to which set it is.  Given the multiplicity of equally good set-theoretic representations of the 

ordinals, it is hard to see what that fact could be.\
13

/  We shall do better to follow Christopher Menzel 

and treat ordinals as properties of well-ordered sets: an ordinal is something that isomorphic well-

ordered sets have in common (Menzel 1986, 43). 

                                                 
12

  That is, McGee shows that the theory of pure sets in ZFU
2
 + McG is ‘internally categorical’ in the 

sense of Walmsley 2002, section IV. 

 
13

  For this application of Benacerraf’s argument see Menzel 1986, 41-3.  Of course, if the natural 

numbers are ordinals, this is not a new application of Benacerraf’s argument but a reiteration of it.  In 

‘What Numbers Could Not Be’, though, Benacerraf seemed to think of a natural number as something 

abstracted from its ordinal and cardinal applications. 
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On this view, an ordinal is an Urelement, so McG (together with Separation) implies that there 

is a set On of all ordinals.  At this point, however, the Burali-Forti Paradox looms (see Menzel op. cit., 

38).  Certainly, that Paradox does not need the assumption that ordinals are sets.  All we need is that the 

putative set On is well-ordered by the relation  of being strictly less than: since an ordinal just is the 

order-type of a well-ordered set, it follows immediately from this theorem that On possesses an 

ordinal, .  Now any ordinal is the order-type of the set of ordinals strictly less than itself.  So  is also 

the order-type of the set A of all ordinals that are strictly less than .  Since A and On share an order-

type, they must be isomorphic.  It is easy to show, though, that no well-ordered set is isomorphic to any 

of its proper initial segments, so that A and On must be identical.  Since On is the set of all ordinals, 

  On, whence   A.  But then, by the definition of A, it follows that   .  Menzel (1986 and 

2014) has explored ways of avoiding outright contradiction here by restricting some of the other axiom 

of ZF.  The fact remains, though, that McG’s having this implication renders it highly doubtful.  Nice 

as it might seem to have a categorical characterization of the universe of sets, we have reason not 

accept McGee’s theory. 

 

 

6. Kreisel’s argument for the bivalence of CH 

 

The argument of the previous section shows that some set-theoretic statements are not bivalent.  Others 

are, though.  Further confirmation of our analysis comes from the sense it makes of a famous argument 

purporting to show that CH, in particular, is bivalent. 

The argument I have in mind was given by Georg Kreisel in section 1 of his paper ‘Informal 

Rigour and Completeness Proofs’ (1967).  Kreisel’s point of departure is Gödel’s well-known essay 

‘What is Cantor’s Continuum Problem?’ (Gödel, 1964).  In that essay, Gödel was concerned to 

distinguish between the sort of independence that the Parallel Postulate has from the other axioms of 

Euclidean geometry, and the sort of independence that CH has from the axioms of ZFC.  Gödel’s 

account of the difference is informal and somewhat vague; Kreisel aims to characterize it more 

precisely ‘in terms of higher-order consequence’ (Kreisel 1967, 79).  He duly begins section 1 by 

remarking that second-order logic has a good claim to be the implicit logic of the working 

mathematician: 
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The familiar classical structures (natural numbers with the successor relation, the continuum 

with a denumerable dense base, etc.) are definable [i.e. may be characterized up to 

isomorphism] by second-order axioms, as shown by Dedekind.  Zermelo showed that his 

cumulative hierarchy up to  or  + , or  + n (for fixed n) and other important ordinals is 

equally definable by second-order formulae.  Whenever we have such a second-order 

definition there is associated a schema in first-order form (in the language considered): For 

instance, in Peano’s [induction] axiom 

 P[{P(0)  x [P(x)  P(x + 1)]}  x P(x)] 

one replaces the second-order quantifier P by a list of those P which are explicitly defined in 

ordinary first-order form (from + and , for instance).  A moment’s reflection shows that the 

evidence of the first-order axiom schema derives from the second-order schema: the 

difference is that when one puts down the first-order schema one is supposed to have 

convinced oneself that the specific formulae used (in particular, the logical operations) are 

well defined in any structure that one considers (op. cit., 85-6). 

 

This point enables Kreisel to put his finger on the relevant difference between the two cases of 

independence.  Geometry, too, admits of a second-order axiomatization, and ‘the parallel axiom is not 

even a second-order consequence’ of the other geometric axioms (op. cit., 88, Kreisel’s emphasis).  So 

there really are different geometries, in some of which the Parallel Postulate holds, in others of which it 

does not.  Consequently, it makes no sense to ask whether the Postulate is true or false simpliciter; all 

one can say is that it holds in some geometries and does not hold in others.  For the question of its truth 

or falsity to be meaningful, we would need to give some extra-axiomatic specification of the meaning 

of the geometric theory’s primitive terms—for example, by stipulating that a straight line is the path 

that a light-ray traverses in vacuo.  Once that stipulation had been made, it would make sense to ask 

whether the Parallel Postulate is true or false, and the question would be settled by empirical 

investigation (our best theory of the path of light-rays says that the Postulate is false).  Per contra, ‘CH 

is only independent of the first-order schema (associated with the axioms) of Zermelo-Fraenkel’ 

(ibid.)—i.e. of the schema that is associated with the second-order Zermelo-Fraenkel axioms in the way 
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in which the formula with ‘P’ as a schematic letter is associated with the second-order induction axiom 

displayed above. 

Kreisel surely identified an important point of difference between the independence of the 

Parallel Postulate from the other axioms of classical geometry and the independence of CH from the 

axioms of ZFC.  But how, exactly, is that point supposed to establish that CH is bivalent?  Here is the 

crucial passage: 

 

Let Z be Zermelo’s axiom with the axiom of infinity, and let CH be the (canonical) 

formulation of the continuum hypothesis in the following form: if C is the collection of 

hereditarily finite sets without individuals, C + 1 = C  (C), C+2 = C+1  (C +1), CH 

states that 

 X  C+1  (XCX=C+1), 

which is expressed by means of quantifiers over C+2.  As Zermelo pointed out, if we use the 

current set-theoretic definition Z (x) of the cumulative hierarchy, in any model of Z, this 

formula Z defines a C  for a limit ordinal   .  Consequently we have 

 (Z├2 CH)  (Z├2 CH) (op. cit., 87-8). 

 

Although the single turnstile ‘├2’ is standardly used to signify deducibility in axiomatic second-order 

logic, Kreisel does not (or should not) mean this: Weston (1976, 289-90) extends an argument of 

Tharp’s to show that neither CH nor CH is a theorem of axiomatic ZFC
2
.  The proper conclusion of 

his argument is that either Z╞2 CH or Z╞2 CH, where ‘╞2’ signifies the model-theoretic consequence 

relation of full second-order logic.\
14

/ 

Kreisel’s argument is compressed, but it may be spelled out as follows.  Let us begin by 

considering a theory, T, formulated in a second-order language L, and let us suppose that T is 

                                                 
14

  Kreisel gives his argument for Zermelo’s original (1908) axiom system Z, which lacks the Axiom of 

Replacement, rather than for the more familiar system ZF, which includes it.  (Kreisel clearly uses ‘Z’ 

to stand for Zermelo’s original system rather than for ZF itself.  He observes (1967, 88) that while CH 

is determined by the second-order axioms of Z, Replacement is not; this would make no sense if ‘Z’ 

meant ZF.)  This renders his argument problematical, for Z
2
 is not even quasi-categorical.  Indeed, in 

the context of Z
2
, standard formulations of the axiom of infinity turn out to be non-equivalent, and 

some interpretations of Z
2
 + Infinity have non-well-founded models (see Uzquiano 1999).  A charitable 

exposition of Kreisel’s argument cuts through these complexities by taking it to apply to ZFC, not Z. 
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categorical—i.e. that all its models are isomorphic.  Consider now two such models, M and N.  A 

general theorem tells us that the same closed sentences of L are true in the two models.  That is, for any 

closed sentence σ of L, M╞2 σ if and only if N╞2 σ.  The proof of this theorem is in essence 

straightforward.  Since T is categorical, there is an isomorphism f from M to N.  One then shows by 

induction on complexity that, for any expression e of L, the semantic value of e with respect to N is the 

result of applying f to the value of e with respect to M.  This shows that if N╞2 σ then M╞2 σ, for any 

closed sentence σ of L.  Since there is also an isomorphism from N to M, a parallel argument 

establishes the converse. 

As we have seen, because ZFC
2
 is only quasi-categorical, there are closed sentences in its 

language that are true in some of its models and false in others.  Kreisel’s insight, though, was to 

recognize that CH is not subject to this variation in truth-value between models.  As he remarks in the 

last passage quoted from him, CH may be formulated using quantification over sets at levels Vω+2 and 

below.  All the models of ZFC
2
, when restricted to those levels, are isomorphic, so the argument of the 

previous paragraph shows that, for any models M and N of ZFC
2
, M╞2 CH if and only if N╞2 CH.  The 

argument rests on particular features of CH; it turns on the fact that CH quantifies only over sets that lie 

so low in the set-theoretic hierarchy that every model of ZFC
2
 will include them. 

The argument as presented so far, however, does not take us all the way to Kreisel’s 

conclusion.  The quasi-categoricity of ZFC
2
 combines with the particular features of CH to yield 

 

(1) For any models of ZF
2
 M and N, M╞2 CH if and only if N╞2 CH. 

 

Kreisel’s eventual conclusion is the bivalence of CH: 

 

 (B) CH is either true or false. 

 

How are we supposed to move from (1) to (B)? 

The natural reconstruction runs as follows.  A familiar principle of classical model theory says 

that, for any model, any closed sentence is either true in the model or false in it.  So, in particular, 

 

(2) For any model M of ZFC
2
, either M╞2 CH or M╞2 CH. 
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Together, (1) and (2) entail 

 

(3) Either M╞2 CH for any model M of ZFC
2
, or M╞2 CH for any model M of ZFC

2
. 

 

An abbreviated way of writing (3) is 

 

(4) Either ZFC
2
╞2 CH or ZFC

2
╞2 CH 

 

which is what Kreisel wrote—or meant to write—in the last line quoted from him.  But in order to get 

from (4) to (B) we need 

 

(5) If ZFC
2
╞2 CH then CH is true 

 

and 

 

(6) If ZFC
2
╞2 CH then CH is false. 

 

What justifies (5) and (6)? 

I think (5) and (6) may be justified as specializations, to the present case, of our general 

principles (T*) and (F*).  According to (T*), a statement will be counted as true if and only if, however 

it may legitimately be taken to say that things are, they are thus.  As we have seen, the various models 

of ZFC
2
 correspond to the various things that set-theoretical statements could legitimately be taken to 

say.  So (T*) yields 

 

(5+) CH is true if and only if ZFC
2
╞2 CH 

 

from which (5) follows.  Similarly, according to (F*), a statement will be counted as false if and only 

if, however it may legitimately be taken to say that things are, they are not thus.  As before, the models 



 32 

of ZFC
2
 correspond to the ways set-theoretical statements could legitimately be taken to say that things 

are.  So (F*) yields 

 

(6+) CH is false if and only if ZFC
2
╞2 CH 

 

from which (6) follows. 

In saying this, I am not endorsing Kreisel’s argument. One doubtful step is line (2).  Although 

(2) follows from a principle of classical model theory, the present application of that theory has been 

contested.  Since the pure hereditarily finite sets are isomorphic to the set N of natural numbers, line (2) 

assumes that both(N) and((N)) exist as well-defined sets, over which it is legitimate to quantify 

classically.  The discussion of Kreisel’s argument among philosophers of mathematics has focused on 

whether such quantification is legitimate (see especially Feferman 2009 and forthcoming, and Koellner 

2010).  All the same, our analysis confirms that his argument has the right ‘shape’ to justify the 

bivalence of CH.  In effect, Kreisel argues that CH is determinate (despite the general indeterminacy in 

the sense of ‘set’) so that line (3) of the Revised Argument can be asserted.\
15

/ 

Even those set theorists who doubt the bivalence of some set-theoretic statements generally 

take classical logic for granted in doing set theory.  Our analysis shows that their position is coherent.  

There can be failures of determinacy, and hence statements that are neither true nor false, without any 

deviations from classical logic.  It is noteworthy, however, that without the Principle of Bivalence, one 

cannot justify the classical logical laws on the basis of the specifications of the meanings of the 

connectives in the familiar classical truth-tables, even given a classical metalogic.  Thus the truth-tables 

for ‘’ and ‘’ entail that 

A  A


 is true if A is either true or false, but we need Bivalence to infer 

                                                 
15

  Kreisel’s claim that CH is bivalent is entirely consistent with the philosophical thesis (cf. the 

beginning of §4) that a statement can be true (false) only if something makes it true (makes it false)—

i.e. that truth and falsehood require a basis.  If Kreisel’s argument works at all, it shows that either 

ZFC
2
╞2 CH or ZFC

2
╞2 CH.  So the basis of the truth or falsehood of CH (as the case may be) lies in 

the axioms of ZFC
2
.  Since the consequence relation of full second-order logic cannot be completely 

axiomatized, it does not follow that either ZFC
2
├2 CH or ZFC

2
├2 CH, where ‘├2’ signifies 

deducibility in axiomatic second-order logic.  Indeed, the Tharp-Weston result shows that this claim is 

false.  If our knowledge of set-theory were confined to what we could deduce from ZFC
2
 in axiomatic 

second-order logic, it would follow that neither CH nor CH has a ground in the sense of §3.  That is 

to say: we shall never be entitled to assert CH or to deny it.  However, that is no threat to CH’s 

bivalence, for we found reason to reject Dummett’s claim that a statement can be true only if it has a 

ground and false only if it has an anti-ground.  The case of CH, then, is one where it is important to 

distinguish between basis and ground. 
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from that that any instance of 

A  A


 is true.  This need not disturb a set-theorist who is wedded to 

classical logic.  Even if called upon to justify his adherence to that logic, there are alternative 

justifications—indeed, alternative semantic justifications—that he can pray in aid.\
16

/  Given a weak 

metalogic, Bivalence is sufficient to establish the validity of the classical logical laws, but it is far from 

being necessary. 

 

 

7. The challenge of vague statements 

 

Another class of putative counterexamples to Bivalence are statements in which a vague predicate 

attaches to a borderline case of the property that it signifies.  Let us call such a vague statement.  

Imagine a hundred transparent tubes of paint, a1,…, a100, that steadily and almost imperceptibly change 

from clearly red to clearly orange as the subscript increases.  Then consider the corresponding 

sequence A1,…, A100 of statements, in which the statement An says that the tube an is red.  Bivalence 

tells us that each of these statements is either true or false.  Now if a statement attributing redness to an 

object a is true, and if b is redder than a, then a statement attributing redness to b will also be true.  So 

Bivalence implies that there is a number N such that all of the statements A1,…, AN in our sequence are 

true and all of the statements AN+1,…, A100 are false.  It implies, in other words, that there is a cut-off 

point in the sequence at which the statements switch from being true to being false.  But that in turn 

implies that there is a cut-off point at which the tubes switch from being red to being not red—a grossly 

implausible conclusion.  Yet the only premisses needed to reach that conclusion were Bivalence and a 

highly intuitive assumption about how the predicate ‘red’ is to be applied. 

One way of resisting the claim that vague statements are bivalent runs parallel to the treatment 

of set-theoretic statements recommended in §§5 and 6.  On this approach, only sentences with 

completely precise conditions of truth may replace the propositional variables ‘P’, ‘Q’ etc., so the 

applications of classical logic in the Revised Argument are unexceptionable.  When the variables are 

interpreted in this way, vague statements will not be determinate in sense: a vague statement may be 

interpreted equally legitimately as saying that P and as saying that Q, where ‘P’ and ‘Q’ are 

inequivalent.  Some of these precise specifications of its sense come out true and others come out false, 

                                                 
16

  See Rumfitt 2015, chapter 9 for one of them. 
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so (T*) and (F*) entail that the statement is neither true nor false.  This conclusion is consistent with 

the soundness of the Revised Argument, whose conclusion says only that every determinate statement 

is either true or false. 

This approach yields a supervaluational treatment of vagueness, and so exhibits what it at 

once the great strength and the great weakness of any such treatment, its concern to preserve classical 

logic.\
17

/  Just as set-theorists use classical logic to construct their proofs, even when they doubt or 

deny the bivalence of some of the statements in those proofs, so ordinary thinkers apply the classical 

laws to vague statements, even as they doubt or deny their bivalence.  All the same, there are grounds 

for querying the application of classical logic to vague statements that have no counterpart in the case 

of set theory.  For by applying classical logic to vague statements we can derive apparently absurd 

conclusions, without making any appeal to Bivalence. 

This is shown, of course, by versions of the Sorites Paradox.  Let us revert to our hundred 

tubes of paint and the statements that attribute redness to each of them.  The ground for denying that all 

of those statements are bivalent was that Bivalence entails the existence of a sharp boundary to the red 

tubes, and that consequence is absurd.  But if that consequence is absurd, we ought to be able to assert 

its negation.  Now there will be a sharp boundary to the red tubes if some tube in the sequence is red 

and its successor is not, i.e. if 

An  An+1


 is true for some n.  So the claim that there is a sharp 

boundary may be formulated as a long disjunction 

[(A1  A2)  …  (A99  A100)]


, and the claim 

that there is none as its negation. That is, we ought to be able to assert the following: 

 

 (1) [(A1  A2)  …  (A99  A100)]. 

 

In the situation described, though, we are also given that a1 is red and that a100 is not red.  So it seems 

that we ought also to be able to assert 

 

 (2) A1 

 

and 

 

                                                 
17

  See Fine 1975 for the classic exposition and Varzi 2007 for a recent survey of the logical issues. 
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 (3) A100. 

 

Now if we suppose that a99 is red, i.e. if we suppose 

 

(4) A99 

 

then the rule of conjunction-introduction applied to (3) and (4) would yield 

 

(5) A99  A100, 

 

which, after 99 applications of -introduction, yields 

 

 (6) (A1  A2)  …  (A99  A100) 

 

which directly contradicts (1).  Given (1) and (3), then, supposition (4) stands refuted, so by Reductio 

we may assert 

 

 (7) A99. 

 

By repeating this inferential sub-routine a further 98 times, we reach 

 

 (8) A1 

 

which contradicts (2).  This, then, is the initial paradox.  We have some reason to accept the trio of 

postulates (1), (2), and (3), but we also have an apparently valid deduction showing that the trio is 

inconsistent.  It may be noted that the form of Reductio that is applied in reaching line (7)—and that is 

re-applied at the corresponding later steps—is acceptable to an intuitionist.  So the trio comprising (1), 

(2), and (3) is inconsistent in intuitionistic logic as well as in classical logic. 

How should we react to this apparent demonstration of inconsistency?  Since the case is one in 

which (2) and (3) are clearly true, it seems that we must take it as showing that (1) is false.  In other 
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words, we would appear to be entitled—indeed, compelled if the question of (1)’s truth arises—to 

make a further application of the relevant form of Reductio and infer the negation of (1), namely, 

 

 (9) [(A1  A2)  …  (A99  A100)]. 

 

In classical logic, however, (9) is equivalent to 

 

 (10) (A1  A2)  …  (A99  A100). 

 

This, however, seems to land us in a yet more acute paradox, which Crispin Wright has called the 

Paradox of Sharp Boundaries (see Wright 2007).  For formula (10) says that at some point in the 

sequence a red tube is immediately followed by a non-red tube, and this seems to ascribe a sharp 

boundary to the red tubes.  Wright calls this conclusion ‘unpalatable’ and it does indeed seem to be 

something we are reluctant to accept.  Given classical logic, however, it follows from the premisses (2) 

and (3).  That is, given only the premisses ‘Tube a1 is red’ and ‘Tube a100 is not red’, classical logic 

yields a conclusion which seems to say that there is a sharp boundary to the red tubes in the sequence 

a1, …, a100.  Little wonder that many philosophers have taken the Sorites to cast doubt on whether 

classical logic can be applied to deductions involving vague predicates. 

Wright (op. cit.) takes this form of the paradox as a ground for switching from classical to 

intuitionist logic.  That logic validates all the steps up to line (9), but it does not validate the elimination 

of double negation needed to reach (10).  Wright’s response, though, is not founded on any semantic 

analysis of vague expressions; as Dummett (2007) noted, the Heyting semantics certainly will not 

do.\
18

/  Because the choice of logic is in play, it would help to have a semantic model for vague 

statements against which intuitions about the validity of arguments involving them can be tested.  But 

what might that model be? 

 

 

 

                                                 
18

   See, though, Rumfitt 2016 for a semantic theory which, if accepted, would vindicate Wright’s 

choice of intuitionistic logic as providing the standards for assessing arguments involving vague 

predicates. 
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8. The semantics and logic of vague statements 

 

What is characteristic of vague expressions?  An attractive general account was put forward by C. S. 

Peirce.  In the entry ‘Vague (in logic)’ that he contributed to Baldwin’s Dictionary of Philosophy and 

Psychology, Peirce explained the word ‘vague’ as meaning: 

 

Indeterminate in intention. 

A proposition is vague when there are possible states of things concerning which it is 

intrinsically uncertain whether, had they been contemplated by the speaker, he would have 

regarded them as excluded or allowed by the proposition.  By intrinsically uncertain we mean 

not uncertain in consequence of any ignorance of the interpreter, but because the speaker’s 

habits of language were indeterminate; so that one day he would regard the proposition as 

excluding, another as admitting, those states of things.  Yet this must be understood to have 

reference to what might be deduced from a perfect knowledge of his state of mind; for it is 

precisely because those questions never did, or did not frequently, present themselves that his 

habit remained indeterminate (Baldwin 1901-2, vol. 2, 748). 

 

In remarking that a statement like ‘This is red’ might exclude different states of affairs from day to day, 

Peirce points to an adaptability that vague terms confer upon a language.  Precisely because the 

accepted sense of a vague statement is indeterminate, a speaker is free to render it more determinate by 

laying it down, as it might be, that the statement is to be taken as excluding certain possibilities whose 

status as excluded or allowed had hitherto been left unsettled.  These determinations resemble decisions 

more closely than they resemble discoveries, so that indeterminacy of sense goes hand in hand with a 

form of semantic ‘freedom’ whose importance for the analysis of vagueness Mark Sainsbury has 

stressed.  The word ‘red’ is associated with no boundary between the red things and the rest.  But 

 

it can be permissible to draw a line even where it is not mandatory to do so.  No one can 

criticize an art materials shop for organizing its tubes of paint on various shelves, including 

one labelled ‘red’ and another ‘orange’, even though there is a barely detectable, or perhaps 

even in normal circumstances undetectable, difference between the reddest paint on the shelf 
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marked ‘orange’ and the most orange paint on the shelf marked ‘red’.  Hence one can 

consistently combine the following: red draws no boundaries, that is, there is no adjacent pair 

in the series of tubes of paint such that the nature of the concept, together with the colour of 

the tube, requires one to apply red to one member of the pair but withhold it from the other; 

yet one can draw a boundary to the reds, that is, one may behave consistently with the nature 

of the concept in drawing a line between adjacent pairs.\
19

/ 

 

This seems right, as far as it goes, but I would add two points.  First, many determinations of the sense 

of vague terms will be partial: even after the determination has been made, there will be some possible 

states of affairs of which it remains unsettled whether the statement is understood to exclude them.  

Sainsbury’s paint shop owner may determine the senses of ‘red’ and ‘orange’ so that precisely one of 

these predicates applies to every tube of paint in his shop.  But there may be other tubes, redder than 

the reddest tube on his ‘orange’ shelf but more orange than the most orange tube on his ‘red’ shelf, 

whose classification remains undetermined even after he has settled how all the tubes currently in his 

shop are to be classified. 

Second, in further determining the sense of a vague term, we often settle the truth-value of a 

complex statement without settling the truth-values of the components.  Determination need not 

proceed from atoms to molecules.  In particular, this holds for disjunctive statements: we often settle 

that a disjunction is true without settling which disjunct is true.  A simple example of this will be 

familiar to readers who have been examiners in British universities.  Undergraduate degrees in Britain 

are classified, and vague principles relate the candidate’s average numerical mark to his or her eventual 

class of degree.  Thus the examiners’ deliberations are directed towards making the vague senses of 

‘first-class’, ‘upper second-class’ etc. sufficiently determinate (in the given context) that one (and only 

one) of these predicates applies to each of that year’s finalists.  Now suppose that there are two finals 

candidates, A and B, whose performance is borderline first-class.  Suppose, in particular, that A’s 

average numerical mark is 69.25 while B’s is 69.2.  Eventually, the examination board will have to 

determine the sense of the predicates of classification sufficiently precisely that each atom—in this 

case, each statement that ascribes a class to a candidate—is either true or false.  But there may be 

                                                 
19

   Sainsbury 1990, 259-60.  Here and in the next quotation, I have written ‘orange’ where he writes 

‘yellow’. 
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stages in the determination where it is settled that a disjunction is true, but where it is left open which 

disjunct is true.  Thus, having re-read the scripts of A and B, the examining board may decide that their 

work is so similar in overall quality that the difference in their average mark reflects no real difference 

in the standard attained, so that the two candidates must be classified alike.  Moreover, it may well 

reach this decision before settling which degrees A and B are to receive.  This decision, then, amounts 

to determining the senses of ‘first-class’ and ‘upper second-class’ so as to verify the disjunction ‘Either 

A and B both receive first-class degrees, or A and B both receive upper second-class degrees’ in 

advancing of determining which disjunct is true.  Examples to the same effect could easily be 

multiplied. 

This suggests that we might model the meanings of vague statements by reference to a space 

of partial determinations of sense, or pds’s for short; a pds will partially determine the senses of all the 

vague expressions in the relevant language.  When a given pds renders a statement true, I shall say that 

it verifies the statement.  As in the example of the examiners’ classification, we allow that a pds may 

verify a complex statement even though it does not verify any of its parts.  With the notion of 

verification in play, we may lay down the condition for consequence for a language containing vague 

terms: B follows from A1,…, An just in case any pds that verifies all of A1,…, An also verifies B.  This 

account takes as given the extra-linguistic circumstances, which of course help to determine whether a 

given pds verifies a given statement.  For the present, though, I shall suppress the way those 

circumstances vary in order to focus on the particular bearing that vagueness has on consequence. 

A pds verifies a statement when it renders it true.  In a similar spirit, we say that a pds falsifies 

a statement when it renders it false.  It is natural to use the notion of falsification alongside that of 

verification in analysing cases of vagueness.  The customary sense of the word ‘red’ is partial: it is 

indeterminate or ‘intrinsically uncertain’ (in Peirce’s phrase) whether the term applies to our tube a50.  

All the same, a grasp of that customary sense enables a speaker both to assert ‘Pillar boxes are red’ and 

to deny ‘Oranges are red’.  That is to say: the customary sense of ‘red’ is marked out both by its 

verifying the first statement and by its falsifying the second.  Because the customary sense is partial, 

we cannot infer that a statement is falsified from the premiss that it is not verified.  In order to 

characterize a pds adequately, we need to say both which statements it verifies and which it falsifies. 

How are we to do this?  Let us first define a dyadic relation  of incompatibility between 

pds’s as follows: 
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x  y if and only if there is some possible statement A such that x falsifies A and y verifies A. 

 

I postulate that incompatibility is (1) irreflexive and (2) symmetric.  Postulate (1) says that no pds both 

verifies and falsifies a single statement.  It amounts, in other words, to a requirement that every pds 

avoid the incoherence of entitling a speaker who uses terms in accordance with it simultaneously to 

assert and deny a given statement.  As for postulate (2), let us assume that a speaker who denies A is 

committed to asserting A’s negation, and that a speaker who asserts A is committed to denying A’s 

negation.  Given these assumptions, if x falsifies A and y verifies A, then y falsifies 

not A


 and x 

verifies 

not A


.  That is, given these assumptions, if x  y then y  x.  Postulate (2), then, is sustained 

by the assumption that any possible statement has a negation with the following properties: any speaker 

who denies the original statement is committed to asserting the negation; and any speaker who asserts 

the original statement is committed to denying the negation.  These properties are widely accepted 

attributes of negation. 

This suggests that the space of pds’s is an orthoframe—that is, a structure <X, > comprising 

a non-empty set X of pds’s, and a symmetric and irreflexive relation  between members of X.  I use 

the notationAto signify the set of pds’s which verify the statement A.  It is then straightforward to 

define the notion of falsification.  Let us write x  Y to mean that x  y for every y belonging to a set Y, 

and consider the relation x A.  This will obtain when x is incompatible with every pds that verifies 

A; that is, when for every verifier y of A, x falsifies a statement which y verifies.  This condition is met 

only when x falsifies A.  Conversely, if x falsifies A, x will certainly be incompatible with any verifier 

of A.  Given the meaning we have attached to , then, ‘x falsifies A’ is equivalent to ‘x A’.  

Although this obviates the need for separate semantic axioms concerning the conditions in which 

complex statements are falsified, the definition of the -relation still presupposes a grip on the notion 

of denying a statement that does not reduce to asserting its negation. 

Indeed, with the notion of falsification in play, we can lay down the semantic axiom for 

negation.  A partial determination of sense will verify A’s negation precisely when it falsifies A itself: 

 

(N) A
 
=A


. 
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(I write U

 for {x: x  y for all y  U}.)  The axiom for conjunction is also straightforward.  A partial 

determination of sense will verify a conjunction just in case it verifies both conjuncts, so again we have 

 

(C) A  B = AB. 

 

However, the analogous axiom for disjunction would be wrong.  That axiom would be 

 

(D1) A  B = AB, 

 

but the case of the examination candidates is a counter-example to (D1).  We there had a partial 

determination of sense that verifies a disjunction without verifying either disjunct. 

How can we find a correct axiom for disjunction?  The key is to attend to the topological 

properties of those sets that comprise a statement’s verifiers.  When Y and Z are subsets of X in an 

orthoframe <X, >, let us say that Y is -closed in Z if the following condition is met: 

 

 For all x  Z, x  Y only if there exists y  Z such that y  Y and not x  y. 

 

I now argue that whenever sets Y and Z are semantic values of statements (i.e. whenever there are 

statements A and B such that Y isAand Z isB), the following condition is met: 

 

(-closure) If Y  Z, then Y is -closed in Z. 

 

I shall give the argument for particular choices of A and B; it will be clear how it generalizes. 

Let us take A to be the statement ‘Tube an+1 is red’ and B to be the statement ‘Tube an is red’, 

and let Y =‘Tube an+1 is red’and Z =‘Tube an is red’.  Since tube an+1 is less red than the tube an, any 

determination of the sense of ‘red’ that renders A true also renders B true, so Y  Z.  In order to 

establish -closure, then, we need to show that Y is -closed in Z. 

What is it for Y to be -closed in Z?  It comes to this.  Consider an arbitrary pds, x, that 

verifies the statement ‘Tube an is red’.  We need to show that if x does not verify ‘Tube an+1 is red’ then 

there is a pds, y, compatible with x, that verifies ‘Tube an is red’ but falsifies ‘Tube an+1 is red’.  There 
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are two cases to consider.  If x falsifies ‘Tube an+1 is red’, then x itself is such a y, for any pds is 

compatible with itself.  If x does not falsify ‘Tube an+1 is red’, then x leaves that statement 

undetermined—neither verified nor falsified.  Now if a pds leaves a statement undetermined, there will 

be a further determination of it that renders it false.  Such a further determination of x will of course 

verify ‘Tube an is red’ (as x does) and will be compatible with x, so this further determination serves as 

the desired y.  Either way, then, such a pds y exists, so the condition for Y to be -closed in Z is met. 

Although I have given the argument only for a particular choice of statements, it generalizes.  

The crux of the argument is that, if a pds leaves a statement undetermined, there will be a further 

determination of that pds that renders the statement false.  I claim that this is a generally acceptable 

principle.  Indeed, it is really just a manifestation of the ‘semantic freedom’ that Sainsbury identified as 

being a mark of a vague term such as ‘red’ and that follows from Peirce’s conception of vagueness as 

indeterminacy of sense.  To quote Sainsbury’s formula once more, while ‘red’ itself draws no 

boundary, ‘yet one can draw a boundary to the reds, that is, one may behave consistently with the 

nature of the concept in drawing a line between adjacent pairs’.  On the Peircean view, such freedom is 

a mark of all vague concepts.  If that is right, the argument for -closure will generalize to all vague 

statements. 

We call a set -closed (simpliciter) if it is -closed in the whole space of pds’s, X.  Since the 

verifiers of any statement form a subset of X, the verifiers of each statement must be -closed 

(simpliciter).  If sets Y and Z are -closed, so are Y  Z and Y

.  So, for complex statements built up 

using and  alone, the verifiers of every statement will be -closed so long as the verifiers of each 

atom form a -closed set. 

This suggests the following definitions.  Let us call the triple <X, , > a vagueness frame if 

<X, > is an orthoframe and  is a non-empty collection of -closed subsets of X such that (1)  is 

closed under set intersection and the orthocomplementation operation 

, and (2) if Y, Z  , then Y  Z 

only if Y is -closed in Z.  We then call the quadruple <X, , , V> a vagueness model if V is a function 

which assigns a member of  to be the verifiers of each atomic statement of the relevant language and 

which respects axioms (C) and (N) above.  Since Y  Z and Y

 are -closed whenever Y and Z are, V 

will assign members of  to complex statements built up using conjunction and negation.  We can then 
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say that a conclusion follows logically from some premisses if every vagueness model that verifies all 

the premisses also verifies the conclusion. 

Our account of the constraints on the assignment function V is incomplete, for we have as yet 

said nothing about disjunction.  Assuming contraposition in the meta-logic, the condition for Y to be -

closed is that x  Y whenever y (y  Y  y  x).  That is to say, it is equivalent to the condition: 

Y


  Y.  By the symmetry of , any set is such that Y  Y


, so Y is -closed if and only if Y


 = Y. 

This analogy points the way towards the correct semantic axiom for disjunction.  We surely 

want the entailments from A to 

A  B


 and from B to 


A  B


 to come out valid, soA  Bmust include 

(AB).  Since the verifiers of any statement are -closed, it is natural to takeA  Bto be the 

smallest -closed set that includes (AB).  Thus we reach 

 

(D) A  B= (AB)


. 

 

Since (Y  Z)


 = (Y

  Z


)

, (D) is equivalent to A  B= (A


 B


)

. 

What logic does the proposed semantic theory validate?  My definitions of a vagueness frame 

and of a vagueness model are exactly parallel to Goldblatt’s definitions of a quantum frame and a 

quantum model, and it is quantum logic that turns out to be sound and complete with respect to the 

recommended notion of consequence (see Goldblatt 1974, 32-4).  Quantum logic is usually formalized 

as a ‘binary’ system, in which consequence is taken to relate a single statement serving as premiss to a 

single conclusion, but it may also be formalized as characterizing a relation X : A between a finite set of 

premisses X and a single conclusion A.  That formalization includes the usual structural rules of 

Reflexivity, Dilution and Cut, and the following rules for the operators: 

 

-intro  If X : A and Y : B then X, Y : A  B 

 

-elim  If X, A, B: C then X, A  B : C 

 

-intro  If X : A then X : A  B and X : B then X : A  B 

 

-elim  If A : C and B : C then A  B : C 
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DN  A : A and A : A 

 

Con  If A : B then B : A 

 

Red  If X : A then X, A:  

 

DS  If B : A then A  (A  B) : B. 

 

Quantum logic does not contain the unrestricted version of -elimination (with side-premisses): 

if X, A : C and Y, B : C then X, Y, A  B : C.  The form of Disjunctive Syllogism that I have called DS, 

and which is a ‘mixed rule’ in that involves all three operators, partly compensates for the loss of 

deductive power that the restriction on -elimination engenders.  (One may prove that these rules are 

sound and complete with respect to the recommended account of consequence by adapting the 

completeness proof for quantum logic in Goldblatt 1974, §6.) 

 

 

9. The problems resolved 

 

How does this help to diagnose the flaw in the Sorites argument of §7? 

Where An is the statement ‘Tube an is red’, the first phase of that argument was a 

demonstration that a trio of plausible premisses was inconsistent.  We formulated the first of these 

premisses—which says that the red tubes have no sharp boundary—as the negation of a disjunction, 

viz., 

[(A1  A2)  …  (A99  A100)]


.  But since all of De Morgan’s Laws are valid in quantum 

logic, I shall now take the equivalent formula below to be the canonical formulation of premiss (1): 

 

(1) (A1  A2)  …  (A99  A100). 

 

As before, premisses (2) and (3) of the Sorites argument are A1 and A100.  Let us call premiss (1), ‘B’ 
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The first part of our soritical deduction was directed towards showing that premisses (1), (2) 

and (3) are an inconsistent trio—in other words, that B, A1, A100 : .  Our rules enable us to derive this 

sequent as follows.  From Reflexivity and -elim we have B : (A1  A2), which gives B : A1  A2 

by De Morgan and DN.  Since A2 : A1, the rule DS yields A1, A1  A2 : A2 whence B, A1: A2 by Cut.  A 

similar deduction shows that B, A2 : A3, whence B, A1 : A3 by Cut.  By repeating this inferential sub-

routine a further 98 times, we eventually reach B, A1 : A100, whence B, A1, A100 :  by Red.  Our 

analysis confirms, then, that premisses (1), (2), and (3) are an inconsistent trio. 

What about the next stage of the Sorites argument, which moves from the two apparently 

incontrovertible premisses—(2) and (3)—to the negation of premiss (1)?  Our rules validate this stage 

of the argument too.  We already have A1, B : A100, which yields A1  B : A100 by -elim.  This gives 

A100 : (A1  B) by Con, whence A100 : A1  B by De Morgan.  We also have B : A1.  The 

formula 

B


 can only be rendered true if some tube in the sequence is red; since a1 is the reddest tube 

in the sequence, it must be counted red if any tube is, so any pds that verifies 

B


 will verify A1.  

Accordingly DS yields A1, A1  B : B.  Cut then gives A1, A100 : B.  This validates the second 

stage of the original argument: A1 and A100 are its premisses (2) and (3), and 

B


 is the negation of 

premiss (1). 

At this stage, it may seem as though we have made no progress in escaping from the Sorites 

paradox.  Premisses (2) and (3) are highly plausible: if we can be sure of the truth-values of any 

statements involving vague terms, we can be sure that our paradigm red tube a1 is red and that our 

paradigm orange tube a100 is not.  So it seems that we must accept the conclusion 

B


.  But B is 

equivalent to the long negated disjunction 

[(A1  A2)  …  (A99  A100)]


, and hence 


B


 is 

equivalent to the doubly negated disjunction 

[(A1  A2)  …  (A99  A100)]


.  In quantum logic 

double negations are eliminable, so our conclusion 

B


 is equivalent to the long disjunction 

 

 (A1  A2)  …  (A99  A100), 

 

a formula I shall label C.  C is simply Wright’s ‘unpalatable’ conclusion, unpalatable because it seems 

to say that there is a cut-off point somewhere in the sequence.  Our logic, then, has taken us from two 
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apparently certain premisses—viz., A1 and A100—to an apparently unacceptable conclusion, viz., C.  

So it may seem that no substantial progress has been made in resolving the paradox. 

In fact, though, we have made progress.  For, when C is understood in the way our semantic 

theory requires, it is in truth entirely palatable.  C appears to be unpalatable because it seems to assert 

the existence of a sharp boundary between the red and the non-red tubes.  We imagine that C can be 

true only if one of its component disjuncts is true—say 

A50  A51


.  In turn, that disjunct can be true 

only if there is a sharp boundary between the red members of the sequence—a1, …, a50—and the non-

red members: a51, …, a100.  Given our semantics, though, this assumption about the truth-conditions of 

disjunctions is not correct.  The semantic axiom for ‘or’ does not say that a disjunction is true just when 

one of its disjuncts is true.  Rather, it says that a partial determination of sense verifies a disjunction if 

it belongs to the closure of the union of the verifiers of the disjuncts, where closure is double 

orthocomplementation.  It is therefore entirely possible for a pds to verify a disjunction without 

verifying either disjunct and this makes it possible for a disjunction to be true without either disjunct’s 

being true. 

Indeed, when we think what the present closure operator means, we can see how C may be 

true even though the concept red lacks a sharp boundary.  Our semantic axiom for disjunction says that 

A  B= (AB)


.  A pds belongs to U


 if it is incompatible with every pds that is itself 

incompatible with all the members of U.  Hence a pds verifies C if it is incompatible with every pds 

that falsifies the claim that there is a cut-off point in the sequence of red tubes.  Now a pds falsifies that 

claim only when either the entire sequence is red or the entire sequence is not red.  Given premisses (2) 

and (3)—that tube a1 is red and that tube a100 is not red—neither of these possibilities obtains.  So the 

customary current sense of the word ‘red’, partial as it is, is indeed incompatible with every pds in the 

orthocomplement of the union 

 

 A1  A2  …  A99  A100 

 

and hence belongs to(A1  A2)  …  (A99  A100).  It belongs to that set, and hence verifies C, 

because it verifies‘a1 is red’ while falsifying ‘a100 is red’.  But because that pds verifies no particular 

disjunct 

An  An+1


, the truth of C carries no commitment to the existence of a sharp cut-off in the 

sequence of red tubes.  As one might put it: C says that there is a shift from red to non-red tubes 
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somewhere in the sequence, but there need be no determinate place where the shift occurs.  It makes no 

sense to ask which is the last red tube, not because there is such a tube but we cannot in principle know 

which it is (as in Timothy Williamson’s (1994) account of these matters), but because there is no such 

thing.  The question presupposes a determinate answer, but none exists. 

How, though, is such indeterminacy possible?  We can, perhaps, dispel any remaining mystery 

by recalling the semantic freedom that is the concomitant of Peirce’s account of vagueness.  Suppose 

one is called upon to answer the successive questions ‘Is tube a1 red?’, ‘Is tube a2 red?’, etc.  What C 

records is the unsurprising fact that one will have to stop answering ‘yes’ somewhere if one is to avoid 

giving an affirmative answer to the question ‘Is tube a100 red?’.  Within limits, though, one may choose 

where to stop answering ‘yes’.  One has to stop somewhere, but there is no place where one has to stop.  

The verifying disjunct of C, then, is indeterminate because it is, within limits, arbitrary.  When 

introduced to the Sorites, many people’s first reaction is to say: there must be a switch in colour 

somewhere, but there is no fact of the matter where, and the place we choose to make the switch does 

not mark any boundary of the concept red.  Our analysis shows that this naïve reaction paradox is 

essentially right.  Or better, the Peircean semantics provides a theoretical context within which this 

naïve thought can alleviate the sense of perplexity that the truth of C—the ineluctable conclusion of our 

Sorites argument—presents. 

Where, finally, does this leave the Revised Argument for Bivalence, when this is applied to a 

vague statement?  Unlike the supervaluationist, we can allow that a vague statement expresses just one 

thought: the statement A50 (for example) says that the tube a50 is red—no more, no less.  We can also 

accept the relevant instance of Excluded Middle: we can say that the tube a50 is either red or not red.  

This too is attractive: a50 is problematic because it is indeterminate whether it is red; there is no impulse 

to deny that it is one or the other.  All the same, the statement A50 is not bivalent.  The Revised 

Argument to show that it is bivalent falls at the final hurdle, viz. in the application of -elimination to 

reach line (16).  In quantum logic, we cannot apply -elimination in the presence of a non-logical 

premiss; yet the assumption that the relevant statement satisfies (D), made at line (3), is such a premiss.  

(The analogous argument to show that a true disjunction contains a true disjunct breaks down at the 

corresponding point.)  In both set theory and vague discourse we find statements that are neither true 
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nor false, but only vague statements put pressure on classical logic itself.\
20

/

                                                 
20

   Note added (July 2015).  I completed this essay in 2012 and my view of some of the matters it 

treats has evolved since I finished it.  (1) I now prefer to justify the use of classical logic when 

reasoning about absolutely all sets by way of a negative translation into an intuitionistic language rather 

than via the supervaluational semantics proposed in §§5 and 6.  This alternative approach confirms the 

main thesis of those sections—that there is no general reason to expect the statements of set theory to 

be bivalent.  (2) Contrary to §§7-9, I now think that the Sorites Paradox, and Wright’s Paradox of 

Sharp Boundaries, can be resolved without deviating from classical logic.  For a defence of these 

claims, see Chapters 9 and 8 of my book, The Boundary Stones of Thought (Oxford: Clarendon Press, 

2015). 
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