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Abstract

This paper describes an architecture that combines the complementary strengths
of declarative programming and probabilistic graphical models to enable robots
to represent, reason with, and learn from, qualitative and quantitative descriptions
of uncertainty and knowledge. An action language is used for the low-level (LL)
and high-level (HL) system descriptions in the architecture, and the definition of
recorded histories in the HL is expanded to allow prioritized defaults. For any
given goal, tentative plans created in the HL using default knowledge and com-
monsense reasoning are implemented in the LL using probabilistic algorithms,
with the corresponding observations used to update the HL history. Tight cou-
pling between the two levels enables automatic selection of relevant variables and
generation of suitable action policies in the LL for each HL action, and supports
reasoning with violation of defaults, noisy observations and unreliable actions in
large and complex domains. The architecture is evaluated in simulation and on
physical robots transporting objects in indoor domains; the benefit on robots is a
reduction in task execution time of 39% compared with a purely probabilistic, but
still hierarchical, approach.

1 Introduction
Mobile robots deployed in complex domains receive far more raw data from sensors than is possible
to process in real-time, and may have incomplete domain knowledge. Furthermore, the descriptions
of knowledge and uncertainty obtained from different sources may complement or contradict each
other, and may have different degrees of relevance to current or future tasks. Widespread use of
robots thus poses fundamental knowledge representation and reasoning challenges—robots need
to represent, learn from, and reason with, qualitative and quantitative descriptions of knowledge
and uncertainty. Towards this objective, our architecture combines the knowledge representation
and non-monotonic logical reasoning capabilities of declarative programming with the uncertainty
modeling capabilities of probabilistic graphical models. The architecture consists of two tightly
coupled levels and has the following key features:

1. An action language is used for the HL and LL system descriptions and the definition of
recorded history is expanded in the HL to allow prioritized defaults.
2. For any assigned objective, tentative plans are created in the HL using default knowledge
and commonsense reasoning, and implemented in the LL using probabilistic algorithms, with
the corresponding observations adding suitable statements to the HL history.
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3. For each HL action, abstraction and tight coupling between the LL and HL system descrip-
tions enables automatic selection of relevant variables and generation of a suitable action policy
in the LL.

In this paper, the HL domain representation is translated into an Answer Set Prolog (ASP) program,
while the LL domain representation is translated into partially observable Markov decision processes
(POMDPs). The novel contributions of the architecture, e.g., allowing histories with prioritized
defaults, tight coupling between the two levels, and the resultant automatic selection of the relevant
variables in the LL, support reasoning with violation of defaults, noisy observations and unreliable
actions in large and complex domains. The architecture is grounded and evaluated in simulation and
on physical robots moving objects in indoor domains.

2 Related Work

Probabilistic graphical models such as POMDPs have been used to represent knowledge and plan
sensing, navigation and interaction for robots [1, 2]. However, these formulations (by themselves)
make it difficult to perform commonsense reasoning (e.g., default reasoning and non-monotonic
logical reasoning) in such formulations, especially with information not directly relevant to tasks at
hand. In parallel, research in classical planning has provided many algorithms for knowledge repre-
sentation and logical reasoning [3], but these algorithms require substantial prior knowledge about
the domain, task and possible actions that an agent can perform. Many of these algorithms also
do not support merging of new, unreliable information from sensors and humans with the current
beliefs in a knowledge base. Answer Set Programming (ASP), a non-monotonic logic programming
paradigm, is well-suited for representing and reasoning with commonsense knowledge [4, 5]. It has
been used for reasoning in simulated robot housekeepers and for representing knowledge extracted
from natural language human-robot interactions [6, 7]. However, ASP does not support probabilistic
analysis, whereas a lot of information available to robots is represented probabilistically to quanti-
tatively model the uncertainty in real-world sensing and acting.

Researchers have designed cognitive architectures [8, 9, 10], and developed algorithms that combine
deterministic and probabilistic algorithms for task and motion planning on robots [11, 12]. Recent
work has also integrated ASP and POMDPs for non-monotonic logical inference and probabilis-
tic planning on robots [13]. Principled algorithms developed to combine logical and probabilistic
reasoning include probabilistic first-order logic [14], first-order relational POMDPs [15], Markov
logic network [16], Bayesian logic [17], and a probabilistic extension to ASP [18]. However, al-
gorithms based on first-order logic for probabilistically modeling uncertainty do not provide the
desired expressiveness for capabilities such as default reasoning, e.g., it is not always possible to ex-
press all forms of uncertainty and degrees of belief quantitatively. Other algorithms based on logic
programming that support probabilistic reasoning do not support one or more of the desired capabil-
ities: reasoning as in causal Bayesian networks; incremental addition of probabilistic information;
reasoning with large probabilistic components; and dynamic addition of variables with different
ranges [18]. The architecture described in this paper is a step towards achieving these capabilities. It
exploits the complementary strengths of declarative programming and probabilistic graphical mod-
els to represent, reason with, and learn from qualitative and quantitative descriptions of knowledge
and uncertainty, enabling robots to automatically plan sensing and actuation in larger domains than
was possible before.

3 KRR Architecture

This section describes our architecture’s HL and LL domain representations. The syntax, semantics
and representation of the corresponding transition diagrams are described in an action language
AL [19]. Action languages are formal models of parts of natural language used for describing
transition diagrams. AL has a sorted signature containing three sorts: statics, fluents and
actions. Statics are domain properties whose truth values cannot be changed by actions, while
fluents are properties whose truth values are changed by actions. Actions are defined as a set of
elementary actions that can be executed in parallel. A domain property p or its negation ¬p is a
domain literal. AL allows three types of statements:
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a causes lin if p0, . . . , pm (Causal law)
l if p0, . . . , pm (State constraint)
impossible a0, . . . ,ak if p0, . . . , pm (Executability condition)

where a is an action, l is a literal, lin is a inertial fluent literal, and p0, . . . , pm are domain literals. The
causal law states, for instance, that action a causes inertial fluent literal lin if the literals p0, . . . , pm
hold true. A collection of statements of AL forms a system/domain description.

As an illustrative example used throughout this paper, we will consider a robot that has to move
objects to specific places in an indoor domain. The domain contains four specific places: office,
main library, aux library, and kitchen, and a number of specific objects of the sorts: textbook,
printer and kitchenware.

3.1 HL domain representation
The HL domain representation consists of a system description DH and histories with defaults H .
DH consists of a sorted signature and axioms used to describe the HL transition diagram τH . The
sorted signature: ΣH = 〈O,F ,P〉 is a tuple that defines the names of objects, functions, and predi-
cates available for use in the HL. The sorts in our example are: place, thing, robot, and object;
object and robot are subsorts of thing. Robots can move on their own, but objects cannot move
on their own. The sort object has subsorts such as textbook, printer and kitchenware. The
fluents of the domain are defined in terms of their arguments:

loc(thing, place) (1)
in hand(robot,ob ject)

The first predicate states the location of a thing; and the second predicate states that a robot has an
object.These two predicates are inertial fluents subject to the law of inertia, which can be changed
by an action. The actions in this domain include:

move(robot, place) (2)
grasp(robot,ob ject)
putdown(robot,ob ject)

The dynamics of the domain are defined using the following causal laws:

move(robot,Pl) causes loc(robot,Pl) (3)
grasp(robot,Ob) causes in hand(robot,Ob)
putdown(robot,Ob) causes ¬in hand(robot,Ob)

state constraints:

loc(Ob,Pl) if loc(robot,Pl), in hand(robot,Ob) (4)
¬loc(T h,Pl1) if loc(T h,Pl2), Pl1 6= Pl2

and executability conditions:

impossible move(robot,Pl) if loc(robot,Pl) (5)
impossible A1, A2, if A1 6= A2.

impossible grasp(robot,Ob) if loc(robot,Pl1), loc(Ob,Pl2),Pl1 6= Pl2
impossible grasp(robot,Ob) if in hand(robot,Ob)
impossible putdown(robot,Ob) if ¬in hand(robot,Ob)

The top part of Figure 1 shows some state transitions in the HL; nodes include a subset of fluents
(robot’s position) and actions are the arcs between nodes. Although DH does not include the costs
of executing actions, these are included in the LL (see Section 3.2).

3.1.1 Histories with defaults
A recorded history of a dynamic domain is usually defined as a collection of records of the form
obs( f luent,boolean,step) and hpd(action,step). The former states that a fluent was observed to be
true or false at a given step of the domain’s trajectory, and the latter states that action a happened (or
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was executed by the robot) at that step. In this paper, we expand on this view by allowing histories
to contain (possibly prioritized) defaults describing the values of fluents in their initial states. A
default d(X) stating that in the typical initial state elements of class c satisfying property b also have
property p is represented as:

d(X) =


de f ault(d(X))
head(d(X), p(X))
body(d(X),c(X))
body(d(X),b(X))

(6)

We abbreviate obs( f , true,0) and obs( f , f alse,0) as init( f , true) and init( f , f alse) respectively.

Example 1 [Example of defaults]
Consider the following statements about the locations of textbooks in the initial state in our illus-
trative example. Textbooks are typically in the main library. If a textbook is not there, it is in the
auxiliary library. If a textbook is checked out, it can be found in the office. These defaults can be
represented as:

de f ault(d1(X)) de f ault(d2(X))
head(d1(X), loc(X ,main library)) head(d2(X), loc(X ,aux library))
body(d1(X), textbook(X)) body(d2(X), textbook(X))

body(d2(X),¬loc(X ,main library))

(7)

de f ault(d3(X))
head(d3(X), loc(X ,o f f ice))
body(d3(X), textbook(X))
body(d3(X),¬loc(X ,main library))
body(d3(X),¬loc(X ,aux library))

(8)

A default such as “kitchenware are usually in the kitchen” may be represented in a similar manner.
We first present multiple informal examples to illustrate reasoning with these defaults; Definition 3
(below) will formalize this reasoning. For textbook tb1, history H1 containing the above statements
should entail: holds(loc(tb1,main library),0). A history H2 obtained from H1 by adding an ob-
servation: init(loc(tb1,main library), f alse) renders the first default inapplicable; hence H2 should
entail: holds(loc(tb1,aux library),0). A history H3 obtained from H2 by adding an observation:
init(loc(tb1,aux library), f alse) entails: holds(loc(tb1,o f f ice),0).

Consider history H4 obtained by adding observation: obs(loc(tb1,main library), f alse,1) to H1.
This observation should defeat the default d1 in Equation 7 because if this default’s conclusion were
true in the initial state, it would also be true at step 1 (by inertia), which contradicts our observation.
The book tb1 is thus not in the main library initially. The second default will conclude that this book
is initially in the auxiliary library—the inertia axiom will propagate this information and H4 will
entail: holds(loc(tb1,aux library),1).

The definition of entailment relation can now be given with respect to a fixed system description DH .
We start with the notion of a state of transition diagram τH of DH compatible with a description I
of the initial state of history H . We use the following terminology. We say that a set S of literals is
closed under a default d if S contains the head of d whenever it contains all literals from the body
of d and does not contain the literal contrary to d’s head. S is closed under a constraint of DH if
S contains the constraint’s head whenever it contains all literals from the constraint’s body. Finally,
we say that a set U of literals is the closure of S if S ⊆U , U is closed under constraints of DH and
defaults of H , and no proper subset of U satisfies these properties.

Definition 1 [Compatible initial states]
A state σ of τH is compatible with a description I of the initial state of history H if:

1. σ satisfies all observations of I ,
2. σ contains the closure of the union of statics of DH and the set { f : init( f , true) ∈I }∪
{¬ f : init( f , f alse) ∈I }.

Let Ik be the description of the initial state of history Hk. States in Example 1 compatible with I1,
I2, I3 must then contain {loc(tb1,main library)}, {loc(tb1,aux library)}, and {loc(tb1,o f f ice)}
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respectively. There are multiple such states, which differ by the location of robot. Since I1 = I4
they have the same compatible states. Next, we define models of history H , i.e., paths of the
transition diagram τH of DH compatible with H .

Definition 2 [Models]
A path P of τH is a model of history H with description I of its initial state if there is a collection
E of init statements such that:

1. If init( f , true) ∈ E then ¬ f is the head of one of the defaults of I . Similarly, for
init( f , f alse).

2. The initial state of P is compatible with the description: IE = I ∪E.
3. Path P satisfies all observations in H .
4. There is no collection E0 of init statements which has less elements than E and satisfies

the conditions above.

We will refer to E as an explanation of H . Models of H1, H2, and H3 are paths consisting of
initial states compatible with I1, I2, and I3—the corresponding explanations are empty. However,
in the case of H4, the situation is different—the predicted location of tb1 will be different from the
observed one. The only explanation of this discrepancy is that tb1 is an exception to the first default.
Adding E = {init(loc(tb1,main library), f alse)} to I4 will resolve the problem.

Definition 3 [Entailment and consistency]

• Let H n be a history of length n, f be a fluent, and 0 ≤ i ≤ n be a step of H n. We say that
H n entails a statement Q = holds( f , i) (¬holds( f , i)) if for every model P of H n, fluent literal
f (¬ f ) belongs to the ith state of P. We denote the entailment as H n |= Q.
• A history which has a model is said to be consistent.

It can be shown that histories from Example 1 are consistent and that our entailment captures the
corresponding intuition.

3.1.2 Reasoning with HL domain representation

The HL domain representation (DH and H ) is translated into a program in CR-Prolog, which in-
corporates consistency restoring rules in ASP [19, 20]; specifically, we use the knowledge represen-
tation language SPARC that expands CR-Prolog and provides explicit constructs to specify objects,
relations, and their sorts [21]. ASP is a declarative language that can represent recursive defini-
tions, defaults, causal relations, special forms of self-reference, and other language constructs that
occur frequently in non-mathematical domains, and are difficult to express in classical logic for-
malisms [5]. ASP is based on the stable model semantics of logic programs, and builds on research
in non-monotonic logics [4]. A CR-Prolog program is thus a collection of statements describing
domain objects and relations between them. The ground literals in an answer set obtained by solv-
ing the program represent beliefs of an agent associated with the program1; program consequences
are statements that are true in all such belief sets. Algorithms for computing the entailment relation
of AL and related tasks such as planning and diagnostics are thus based on reducing these tasks to
computing answer sets of programs in CR-Prolog. First, DH and H are translated into an ASP
program Π(DH ,H ) consisting of direct translation of causal laws of DH , inertia axioms, closed
world assumption for defined fluents, reality checks, records of observations, actions and defaults
from H , and special axioms for init:

holds(F,0)← init(F, true) (9)
¬holds(F,0)← init(F, f alse)

For more details, see [19]. In addition, every default of I is turned into an ASP rule:

holds(p(X),0)← c(X),holds(b(X),0), not ¬holds(p(X),0) (10)

and a consistency-restoring rule:

¬holds(p(X),0) +←c(X),holds(b(X),0) (11)

which states that to restore consistency of the program one may assume that the conclusion of the
default is false.

1SPARC uses DLV [22] to generate answer sets.
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Proposition 1 [Models and Answer Sets]
A path P = 〈σ0,a0,σ1, . . . ,σn−1,an〉 of τH is a model of history H n iff there is an answer set S of a
program Π(DH ,H ) such that:

1. A fluent f ∈ σi iff holds( f , i) ∈ S,
2. A fluent literal ¬ f ∈ σi iff ¬holds( f , i) ∈ S,
3. An action e ∈ ai iff occurs(e, i) ∈ S.

The proposition reduces computation of models of H to computing answer sets of a CR-Prolog
program. This proposition allows us to reduce the task of planning to computing answer sets of a
program obtained from Π(DH ,H ) by adding the definition of a goal, a constraint stating that the
goal must be achieved, and a rule generating possible future actions of the robot.

3.2 LL domain representation
The LL system description DL consists of a sorted signature and axioms that describe a transition
diagram τL. The sorted signature ΣL of action theory describing τL includes the sorts from signa-
ture ΣH of HL with two additional sorts room and cell, which are subsorts of sort place. Their
elements satisfy the static relation part of(cell, room). We also introduce the static neighbor(cell,
cell) to describe neighborhood relation between cells. Fluents of ΣL include those of ΣH , an addi-
tional inertial fluent: searched(cell, object)—robot searched a cell for an object—and two defined
fluents: found(object, place)—an object was found in a place—and continue search(room, object)—
the search for an object is continued in a room.

The actions of ΣL are viewed as HL actions represented at a higher resolution, e.g., movement is
possible to specific cells. The causal law describing the effect of move may be stated as:

move(robot,Y ) causes {loc(robot,Y ) : neighbor(Y,X)} if loc(robot,X) (12)

where X ,Y are cells. This causal law states that moving from a cell can cause the robot to be in one
of the neighboring cells2. The LL includes an action search that enables robots to search for objects
in cells; the corresponding causal laws and constraints may be written as:

search(cell,ob ject) causes searched(cell,ob ject) (13)
f ound(ob ject,cell) if searched(cell,ob ject), loc(ob ject,cell)
f ound(ob ject,room) if part o f (cell,room), f ound(ob ject,cell)
continue search(room,ob ject) if ¬ f ound(ob ject,room), part o f (cell,room),

¬searched(cell,ob ject)

We also introduce a defined fluent failure that holds iff the object under consideration is not in the
room that the robot is searching—this fluent is defined as:

f ailure(ob ject,room) if loc(robot,room),¬continue search(room,ob ject), (14)
¬ f ound(ob ject,room)

This completes the action theory that describes τL. The states of τL can be viewed as extensions of
states of τH by physically possible fluents and statics defined in the language of LL. Moreover, for
every HL state-action-state transition 〈σ ,a,σ ′〉 and every LL state s compatible with σ (i.e., σ ⊂ s),
there is a path in the LL from s to some state compatible with σ ′.

Unlike the HL system description in which effects of actions and results of observations are always
accurate, the action effects and observations in the LL are only known with some degree of proba-
bility. The state transition function T : S×A×S′→ [0,1] defines the probabilities of state transitions
in the LL. Due to perceptual limitations of the robot, only a subset of the fluents are observable in
the LL; we denote this set of fluents by Z. Observations are elements of Z associated with a proba-
bility, and are obtained by processing sensor inputs using probabilistic algorithms. The observation
function O : S×Z → [0,1] defines the probability of observing specific observable fluents in spe-
cific states. Functions T and O are computed using prior knowledge, or by observing the effects of
specific actions in specific states.

2This is a special case of a non-deterministic causal law defined in extensions of AL with non-boolean
fluents, i.e., functions whose values can be elements of arbitrary finite domains.
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loc(rob1, office)

HL

LL

move(rob1, kitchen)

move(rob1, office)

loc(rob1, c3)

loc(rob1, c4)

move(rob1, c2) move(rob1, c1) move(rob1, c4) move(rob1, c3)

loc(rob1, c1)

loc(rob1, c2)

move(rob1, c4)

move(rob1, c2)

r1 (office) r2 (kitchen)

loc(rob1, kitchen)

Figure 1: Illustrative example of state transitions in the HL and LL.

States are partially observable in the LL, and we introduce (and reason with) belief states, probability
distributions over the set of states. Functions T and O describe a probabilistic transition diagram
defined over belief states. The initial belief state is represented by B0, and is updated iteratively
using Bayesian inference:

Bt+1(st+1) ∝ O(st+1,ot+1)∑
s

T (s,at+1,st+1) ·Bt(s) (15)

The LL system description includes a reward specification R : S× A× S′ → ℜ that encodes the
relative cost or value of taking specific actions in specific states. Planning in the LL then involves
computing a policy that maximizes the reward over a planning horizon. This policy maps belief
states to actions: π : Bt 7→ at+1. We use a point-based approximate algorithm to compute this
policy [23]. In our illustrative example, an LL policy computed for HL action move is guaranteed
to succeed, and that the LL policy computed for HL action grasp considers three LL actions: move,
search, and grasp. Plan execution in the LL corresponds to using the computed policy to repeatedly
choose an action in the current belief state, and updating the belief state after executing that action
and receiving an observation. We henceforth refer to this algorithm as “POMDP-1”.

Unlike the HL, history in the LL representation consists of observations and actions over one time
step; the current belief state is assumed to be the result of all information obtained in previous time
steps (first-order Markov assumption). In this paper, the LL domain representation is translated au-
tomatically into POMDP models, i.e., specific data structures for representing DL such that existing
solvers can be used to obtain action policies.

We observe that the coupling between the LL and the HL has some key consequences. First, for
any HL action, the relevant LL variables are identified automatically, improving the computational
efficiency of computing the LL policies. Second, if LL actions cause different fluents, these flu-
ents are independent. Finally, although defined fluents are crucial in determining what needs to be
communicated between the levels of the architecture, they themselves need not be communicated.

3.3 Control loop
Algorithm 1 describes the architecture’s control loop. First, the LL observations obtained in the
current location add statements to the HL history, and the HL initial state (sH

init ) is communicated to
the LL (line 1). The assigned task determines the HL goal state (sH

goal) for planning (line 2). Planning
in the HL provides a sequence of actions with deterministic effects (line 3).

In some situations, planning in the HL may provide multiple plans, e.g., when the object that is to
be grasped can be in one of multiple locations, tentative plans may be generated for the different
hypotheses regarding the object’s location. In such situations, all the HL plans are communicated
to the LL and compared based on their costs, e.g., the expected time to execute the plans. The plan
with the least expected cost is communicated to the HL (lines 4-6).

If an HL plan exists, actions are communicated one at a time to the LL along with the relevant fluents
(line 9). For HL action aH

i , the communicated fluents are used to automatically identify the relevant
LL variables and set the initial belief state, e.g., a uniform distribution (line 10). An LL action policy
is computed (line 11) and used to execute actions and update the belief state until aH

i is achieved
or inferred to be unachievable (lines 12-15). The outcome of executing the LL policy, and the LL

7



Algorithm 1 Control loop of architecture
Require: The HL and LL domain representations.
Require: Specific task for robot to perform.

1: LL observations reported to HL history; HL initial state (sH
init ) communicated to LL.

2: Assign goal state sH
goal based on task.

3: Generate HL plan(s).
4: if multiple HL plans exist then
5: Send plans to the LL, select plan with lowest (expected) action cost and communicate to the

HL.
6: end if
7: if HL plan exists then
8: for aH

i ∈ HL plan: i ∈ [1,n] do
9: Pass aH

i and relevant fluents to LL.
10: Determine initial belief state over the relevant LL state space.
11: Generate LL action policy.
12: while aH

i not completed and aH
i achievable do

13: Execute an action based on LL action policy.
14: Make an LL observation and update belief state.
15: end while
16: LL observations and action outcomes add statements to HL history.
17: if results unexpected then
18: Perform diagnostics in HL.
19: end if
20: if HL plan invalid then
21: Replan in the HL (line 3).
22: end if
23: end for
24: end if

observations, add to the HL history (line 16). For instance, if defined fluent failure is true for object
ob1 and room rm1, the robot reports: obs(loc(ob1,rm1), f alse) to the HL history. If the results are
unexpected, diagnosis is performed in the HL (lines 17-19). If the HL plan is invalid, a new plan is
generated (lines 20-22); else, the next action in the HL plan is executed.

4 Experimental setup and results

This section describes the experimental setup and results of evaluating the proposed architecture in
indoor domains.

4.1 Experimental setup

The architecture was evaluated in simulation and on physical robots. To provide realistic observa-
tions in the simulator, we included object models that characterize objects using probabilistic func-
tions of features extracted from images captured by a camera on physical robots [24]. The simulator
also uses action models that reflect the motion of the robot. Specific instances of objects of different
classes were simulated in a set of rooms. In each trial of the experimental results summarized below,
the robot’s goal was to move specific objects to specific places; the robot’s location, target object,
and locations of objects are chosen randomly in each trial. A sequence of actions extracted from an
answer set obtained by solving the program of the HL domain representation provides an HL plan.
If a robot (robot1) that is in the office is asked to fetch a textbook (tb1) from the main library, the
HL plan would be:

move(robot1,main library)
grasp(robot1, tb1)
move(robot1,o f f ice)
putdown(robot1, tb1)

8
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Figure 2: Ability to successfully achieve the assigned goal, as a function of the number of cells in the
domain—proposed architecture significantly increases accuracy in comparison with just POMDPs.

The LL action policies for each HL action are generated by solving the appropriate POMDP models
using the APPL solver [23, 25]. In the LL, the location of an object is considered to be known with
certainty if the belief (of the object’s occurrence) in a grid cell exceeds a threshold (0.85).

We experimentally compared our architecture, with the control loop described in Algorithm 1,
henceforth referred to as “PA”, with two alternatives: (1) POMDP-1 (see Section 3.2); and (2)
POMDP-2, which revises POMDP-1 by assigning arbitrary high probability values to defaults to
bias the initial belief states. These comparisons evaluate two hypotheses: (H1) PA enables a robot to
achieve the assigned goals more reliably and efficiently than using POMDP-1; (H2) our representa-
tion of defaults improves reliability and efficiency in comparison with not using default knowledge
or assigning arbitrary high probability values to defaults.

4.2 Experimental Results

To evaluate H1, we first compared PA with POMDP1 in a set of trials in which the robot’s initial
position is known but the position of the object to be moved is unknown. The solver used in POMDP-
1 is given a fixed amount of time to compute action policies. Figure 2 summarizes the ability to
successfully achieve the assigned goal, as a function of the number of cells in the domain. Each point
in Figure 2 is the average of 1000 trials, and we set (for ease of interpretation) each room to have four
cells. PA significantly improves the robot’s ability to achieve the assigned goal in comparison with
POMDP-1. As the number of cells (i.e., size of the domain) increases, it becomes computationally
difficult to generate good POMDP action policies which, in conjunction with incorrect observations
(e.g., false positive sightings of objects) significantly impacts the ability to successfully complete the
trials. PA, on the other hand, focuses the robot’s attention on relevant regions of the domain (e.g.,
specific rooms and cells). As the size of the domain increases, a large number of plans of similar
cost may still be generated which, in conjunction with incorrect observations, may affect the robot’s
ability to successfully complete the trials—the impact is, however, much less pronounced.

Next, we computed the time taken by PA to generate a plan as the size of the domain increases.
Domain size is characterized based on the number of rooms and the number of objects in the domain.
We conducted three sets of experiments in which the robot reasons with: (1) all available knowledge
of domain objects and rooms; (2) only knowledge relevant to the assigned goal—e.g., if the robot
knows an object’s default location, it need not reason about all other objects and rooms in the domain
to locate this object; and (3) relevant knowledge and knowledge of an additional 20% of randomly
selected domain objects and rooms. Figure 3 summarizes these results. We observe that PA supports
the generation of appropriate plans for domains with a large number of rooms and objects. We
also observe that using only the knowledge relevant to the goal significantly reduces the planning
time—such knowledge can be automatically selected using the relationships included in the HL
system description. Furthermore, if we only use a probabilistic approach (POMDP), it soon becomes
computationally intractable to generate a plan for domains with many objects and rooms; these
results are not shown in Figure 3.
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domain—PA scales to larger number of rooms and objects.
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Figure 4: Effect of using default knowledge—principled representation of defaults significantly
reduces the number of actions (and thus time) for achieving assigned goal.

To evaluate H2, we first conducted multiple trials in which PA was compared with PA∗, a version
that does not include any default knowledge. Figure 4 summarizes the average number of actions
executed per trial as a function of the number of rooms in the domain—each sample point is the
average of 10000 trials. The goal in each trial is (as before) to move a specific object to a specific
place. We observe that the principled use of default knowledge significantly reduces the number
of actions (and hence time) required to achieve the assigned goal. Next PA was compared with
POMDP− 2, which assigns arbitrary high probability values to default information and suitably
revises the initial belief state. We observe that the effect of assigning a probability value to defaults
is arbitrary depending on multiple factors: (a) the numerical value chosen; and (b) whether the
ground truth matches the default information. For instance, if a large probability is assigned to
the default knowledge that books are typically in the library, but the book the robot has to move
is an exception to the default (e.g., a cookbook), it takes a significantly large amount of time for
POMDP−2 to revise (and recover from) the initial belief. PA, on the other hand, enables the robot
to revise initial defaults and encode exceptions to defaults.

In addition to the trials in simulated domains, we compared PA with POMDP-1 on a wheeled robot
on two floors of our department building. This domain includes places in addition to those included
in our illustrative example. For instance, Figure 5 shows a subset of the domain map of the third floor
of our department. Such domain maps are learned by the robot using laser range finder data, and
revised incrementally over time. For experimental trials on the third floor, we considered 15 rooms,
which includes faculty offices, research labs, common areas and a corridor. To make it feasible to
use POMDP-1 in such large domains, we incorporated a hierarchical decomposition based on our
prior work [26]. Over 15 trials (each), POMDP-1 takes 1.64 as much time as PA (on average) to
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Figure 5: Subset of map of second floor of our department; specific places are labeled as shown, and
used during planning to achieve the assigned goals.

move specific objects to specific places. For paired trials, this 39% reduction in execution time
provided by PA is statistically significant: p− value = 0.0023 at 95% significance level.

Consider a trial in which the robot’s objective is to bring a specific textbook to a specific place
named study corner. The robot uses default knowledge to create an HL plan that causes the robot
to move to and search for the textbook in the main library. When the robot does not find this
textbook in the main library after searching using a suitable LL policy, replanning in the HL causes
the robot to investigate the aux library. The robot finds the desired textbook in the aux library and
moves it to the target location. A video of this trial can be viewed online: http://youtu.be/
8zL4R8te6wg

5 Conclusions

This paper described a knowledge representation and reasoning architecture for robots that inte-
grates the strengths of declarative programming and probabilistic graphical models. The system
descriptions of the tightly coupled high-level (HL) and low-level(LL) domain representations are
provided using an action language, and the HL definition of recorded history is expanded to allow
prioritized defaults. Tentative plans created in the HL using defaults and commonsense reasoning
are implemented in the LL using probabilistic algorithms, generating observations that add to the
HL history. In the context of robots moving objects to specific places in indoor domains, experimen-
tal results indicate that the architecture supports knowledge representation, non-monotonic logical
inference and probabilistic planning, and scales well as the domain becomes more complex. Future
work will further explore the relationship between the two transition diagrams, and investigate a
tighter coupling of logic programming and probabilistic reasoning.
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