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Abstract (208/250 words) 17 

Epstein-Barr Virus (EBV) persists for the lifetime of the infected host despite eliciting 18 

strong immune responses. This persistence requires a fine balance between the host 19 

immune system and EBV immune evasion. Accumulating evidence suggests an 20 

important role for natural killer (NK) cells in this balance. NK cells can kill EBV infected 21 

cells undergoing lytic replication in-vitro and studies in both humans, and mice with 22 

reconstituted human immune systems have shown NK cells can limit EBV replication 23 

and prevent infectious mononucleosis. We now show that NK cells, via NKG2D and 24 

DNAM-1 interactions, recognize and kill EBV infected cells undergoing lytic replication, 25 

and that expression of a single EBV lytic gene, BZLF1, is sufficient to trigger 26 

sensitization to NK cell killing. We also present evidence suggesting the possibility of 27 

the existence of an as yet unidentified DNAM-1 ligand which may be particularly 28 

important for killing lytically infected normal B cells. Furthermore, whilst cells entering 29 

lytic cycle become sensitized to NK cell killing, we observed that cells in late lytic cycle 30 

are highly resistant. We identified expression of the vBcl-2 protein, BHRF1, as one 31 

effective mechanism by which EBV mediates this protection. Thus, contrary to the 32 

view expressed in some reports, EBV has evolved the ability to evade NK cell 33 

responses. 34 

Importance (98/150 words) 35 

This report extends our understanding of the interaction between EBV and host innate 36 

responses. It provides the first evidence that the susceptibility to NK cell lysis of EBV 37 

infected B cells undergoing lytic replication is dependent upon the phase of lytic cycle. 38 

Induction of lytic cycle is associated with acquired sensitization to NK cell killing, while 39 

progress through late lytic cycle is associated with acquired resistance to killing. We 40 
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provide mechanistic explanations for this novel observation, implicating important roles 41 

for the BZLF1 immediate-early transactivator, the BHRF1 vBcl-2 homologue, and a 42 

novel ligand for the DNAM-1 NK cell receptor. 43 

Introduction 44 

Epstein-Barr Virus (EBV), one of eight human herpesviruses, is carried by over 90% of 45 

the world’s adult population. Primary EBV infection occurs in the oropharynx, leading 46 

to infection of B lymphocytes (1, 2). These infected B cells can support lytic cycle, in 47 

which more than 80 viral genes are expressed to generate new infectious virus, but 48 

they more frequently host non-productive infections through expression of a limited 49 

number of so-called latent EBV genes (Latency III genes) that drive 50 

lymphoproliferation as an alternative mechanism of expanding the infected cell pool. 51 

In-vitro, this growth transformation is demonstrated by the ready establishment of 52 

lymphoblastoid cell lines (LCLs) following infection of resting B cells. Following initial 53 

infection in-vivo, EBV downregulates the expression of all viral proteins and enters a 54 

true latent phase (Latency 0) in the memory B-cell population where it establishes a 55 

lifelong infection (1). Periodically the virus reactivates and undergoes full lytic 56 

replication, which both aids the expansion of the virus within the host and enables 57 

transmission to new hosts (2). 58 

A major component of the immune control of EBV is considered to be the strong and 59 

persistent T cell responses both to the transformation-associated Latency III EBV 60 

gene products and to several lytic-cycle-associated EBV proteins (3). However, an 61 

increasing body of evidence suggests that natural killer (NK) cells have an important 62 

role to play in the virus host balance. NK cells expand following primary infection with 63 

EBV (4, 5), and patients with genetic defects leading to loss or impairment of NK cell 64 
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differentiation or function are prone to complications associated with EBV infection (6). 65 

Furthermore, mice with reconstituted human immune system components 66 

experimentally infected with EBV, experience enhanced symptoms resembling 67 

infectious mononucleosis and EBV-associated lymphomagenesis when depleted of 68 

NK cells; these pathogenic outcomes of NK cell-depletion were shown to be due to 69 

loss of control over EBV lytic replication (7). 70 

Successful persistence of viruses in the infected host requires some degree of evasion 71 

of the various potent immune responses. Like other herpesviruses, in addition to 72 

establishing antigenically silent latent infections, EBV has multiple mechanisms to 73 

evade both CD8+ and CD4+ T cell responses to viral proteins expressed following 74 

reactivation of lytic cycle or growth-transformation (8). However, the possible 75 

existence of EBV evasion mechanisms against NK cells is unclear. 76 

Other human herpesviruses, most notably Human cytomegalovirus (CMV) but also 77 

Kaposi’s Sarcoma-associated virus (KSHV), Herpes simplex virus 1 (HSV-1) and 2, 78 

Varicella Zoster Virus (VZV) and human-herpes virus 7 (HHV-7), all possess some NK 79 

cell evasion mechanism; most frequently, but not exclusively, involving modulation of 80 

NKG2D ligands (9-12). In one respect it could be argued that EBV evades NK cell 81 

responses through infecting B lymphocytes and, in growth-transformed cells, 82 

maintaining high levels of MHC class I molecules that ligate inhibitory receptors on NK 83 

cells. Certainly, EBV-transformed latently-infected LCLs are not killed unless they are 84 

experimentally defective for HLA expression (13). With regards to B cells lytically 85 

infected with EBV, however, there is only evidence that EBV sensitizes them to NK 86 

cell recognition and killing. This evidence was derived entirely from studies with 87 

malignant cell lines, principally the AKBM line derived from Burkitt’s lymphoma cells 88 
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engineered to express two selection markers, green fluorescent protein (GFP) and 89 

truncated CD2, when induced into lytic cycle through ligation of surface 90 

immunoglobulin (14). The switch from latent to lytic infection in AKBM cells triggers an 91 

upregulation of NKG2D ligands that is at least partly responsible for the sensitization 92 

to NK cell killing. However the mechanism of NKG2D ligand upregulation in lytic cycle 93 

was not determined and, due to technical limitations of these earlier experiments, the 94 

possibility of counteracting evasion mechanisms was not investigated. Importantly, the 95 

generality and relevance of the AKBM observations to normal B cell infection has not 96 

been demonstrated. 97 

In the present study we identified the immediate-early protein, BZLF1, as being able to 98 

sensitize cells to NK cell killing through upregulating the ULBP NKG2D ligands. We 99 

also identified the vBcl-2 homologue, BHRF1, as a potential NK evasion gene that 100 

could protect BZLF1-sensitized cells from NK cell killing. Consistent with these 101 

findings, we demonstrated that whereas AKBM cells in the early stages of lytic cycle 102 

were killed by NK cells, AKBM cells at the late stages of lytic cycle were resistant. 103 

Importantly, this phenomenon was also observed in lytically infected LCLs, even 104 

though these non-malignant cells were primarily killed through NK cell receptor/ligand 105 

combinations that differed from those utilized in NK cell killing of lytic AKBM cells.106 
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Materials and Methods  107 

Cell lines 108 

The NK cell line NKL (15) was maintained in RPMI 1640 supplemented with 10% 109 

foetal calf serum (FCS) and 200 IU/ml IL-2. The NK cell line NK-92 (16) was 110 

maintained in RPMI 1640 supplemented with 10% FCS, 10% horse serum, 5% human 111 

serum and 400 IU/ml IL-2. Both NKL and NK-92 were obtained from the American 112 

Tissue Culture Collection, and their activating receptor profiles were determined for 113 

this study (Figure 1). AKBM cells are a derivate of the Akata Burkitt lymphoma cell line 114 

engineered to carry a reporter plasmid that expresses GFP when the cells enter the 115 

lytic cycle. These cells were maintained in RPMI 1640 supplemented with 8% FCS, 116 

and were induced into lytic cycle by cross-linking surface IgG molecules as previously 117 

described (14). The EBV negative Burkitt lymphoma cell line DG75 (17) and EBV-118 

transformed LCLs (18) were maintained in RPMI 1640 supplemented with 8% FCS. 119 

DG75-control and DG75-BHRF1 were generated through transduction and NGFR-120 

sorting as described above and maintained in RPMI 1640 supplemented with 8% FCS. 121 

A doxycycline (DOX)-inducible BZLF1 expression vector, pRTS-CD2-BZLF1, or 122 

control vector with the reverse BZLF1 sequence (pRTS-CD2-control) (27) were 123 

introduced into DG75 by electroporation and rCD2 selection. BZLF1 expression was 124 

induced by addition of DOX, and the induced cells were positively selected by 125 

magnetic cell sorting with anti-NGFR Microbeads and LS columns (Miltenyi Biotech). 126 

Human embryonic kidney (HEK) 293 cells (19) were maintained in DMEM 127 

supplemented with 10% FCS.  128 

Plasmids 129 
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The BZLF1 and BRLF1 genes from the B95.8 prototype EBV (GenBank accession 130 

numbers CAA24861.1 and CAA24814.1) were subcloned into the pCDNA3-IRES-nls-131 

GFP plasmid vector (20), and were verified by restriction digest and sequence 132 

analysis. BHRF1, also from the B95.8 prototype EBV, was cloned into the pLZRS-133 

IRES-ΔNGFR vector (21) to generate retroviruses expressing BHRF1 and the 134 

truncated nerve growth factor receptor (ΔNGFR) for selection of infected cells. 135 

Transfection and electroporation 136 

Transient transfection of HEK 293 cells was performed using lipofectamine 2000 137 

(Invitrogen) according to manufacturer’s protocol. Plasmid DNA was transfected into 138 

DG75 cells by electroporating cells at 270V and 950µF in 4mm curvettes. Cells 139 

transduced with PLZRS-NGFR vectors were positively selected for the expression of 140 

NGFR using MACSelect NGFR-Transfected cell selection kit (Miltenyi Biotec) 141 

according to the manufacturer's instructions to establish stably transduced cell lines. 142 

Isolation of NK cells 143 

Blood was taken from healthy donors with ethical consent according to the human 144 

tissue act. Peripheral blood mononuclear cells (PBMCs) were isolated by density 145 

gradient centrifugation using Lympholyte cell separation media (Cedarlane Labs) and 146 

untouched NK cells were isolated from PBMCs using the NK cell isolation kit (Miltenyi 147 

Biotec) according to the manufacturer's protocol. 148 

Antibodies 149 

For flow cytometry experiments, FITC-conjugated, PE- conjugated and unconjugated 150 

antibodies to CD19 (HIB19), NGFR (ME20.4) and CD155 (TX24) were purchased 151 

from Biolegend. The FITC-conjugated anti-DNAM-1 (11A8), APC-conjugated anti-152 
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NKp30 (P30-15) and APC-conjugated anti-human IgG Fc (HP6017) were also 153 

purchased from Biolegend. The APC-conjugated anti-NKp46 (9E2) was purchased 154 

from Ebioscience. The APC-conjugated anti-NKG2D (1D11), anti-CD112 antibody 155 

(R2.525) and the Alx647-conjugated antibody to active-caspase-3 (C92-605) were 156 

purchased from BD Biosciences. APC-conjugated and PE- conjugated antibodies to 157 

ULBP2/5/6 (165903) and MICA/B (159207) were purchased from R&D biosystems. 158 

Recombinant Human DNAM-1/CD226 Fc Chimera Protein (666-DN-050) was also 159 

purchased from R&D biosystems. The BZLF1 (BZ.1) antibody (22) was generated by 160 

our investigators, and the BcLF1 (V3) antibody (23) was a kind gift from Dr Gary 161 

Pearson, previously of Georgetown University, Washington DC. To detect 162 

unconjugated antibodies PerCP-Cy5.5-conjugated or Alx647-conjugated secondary 163 

antibodies against mouse IgG1 (RMG1-1) or IgG2a (RMG2a-62) were purchased from 164 

Biolegend. For blocking experiments, antibodies to NKG2D (1D11), DNAM-1 (DX-11) 165 

and NKp46 (9E2) were purchased from BD biosciences. For western blotting the anti-166 

calregulin antibody was purchased from Santa Cruz Biotechnology, the BZLF1 167 

antibody (BZ.1) is described above, and the BHRF1 antibody was purified from 168 

cultures of the 5B11 hybridoma (24) obtained from Dr Elliott Kieff, Harvard. 169 

Flow cytometry analysis  170 

Stained cell samples were detected on BDbiosciences Accuri C6 Flow Cytometer. 171 

Data were analyzed using FlowJo software (TreeStar). 172 

Cytotoxicity assays 173 

NKL and NK92 cells and freshly isolated NK cells were used as effectors in 174 

cytotoxicity assays. AKBM cells were used as targets 24h post-induction with anti-IgG. 175 

DG75 cells were used as targets 24h post transfection with control-GFP, BZLF1-GFP, 176 
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or BRLF1-GFP expression plasmids. DG75 cells stably expressing control-NGFR or 177 

BHRF1-NGFR vectors were used as targets 24h post transfection with control- or 178 

BZLF1-GFP expression plasmids. LCLs were screened for levels of spontaneous lytic 179 

cycle, and those containing suitable proportions of BZ.1+ cells (≥1%) were selected for 180 

use as targets in NK cell assays. Effector and target cells were combined at different 181 

ratios and incubated for 4-16h. In 4h assays, cytotoxicity was determined by caspase-182 

3 staining by flow cytometry. Specific cytotoxicity was calculated as: % caspase-3 183 

positive target cells after co-incubating with NK cells for 4h – % caspase-3 positive 184 

target cells after 4h incubation alone. For blocking experiments NK cells were 185 

incubated with saturating amounts of blocking antibody (30μg/ml) for 1h at 37°C, then 186 

washed three times before use as effectors in cytotoxicity assays.  187 

In 16h cytotoxicity assays, killing was measured by determining the decline in 188 

numbers of target cells against a control population of target cells not killed by NK 189 

cells. Killing was calculated by the following the equation: Killing (%) = 100  – 190 

((experimental GFP% / control GFP%) x 100) 191 

In the degranulation assay, DG75 target cells and NKL cell line were co-cultured with 192 

FITC conjugated anti-CD107a antibody for 5 hours. Then the cells were washed and 193 

stained with combinations of APC conjugated anti-NKG2D with PE conjugated anti-194 

CD19 to separate the NKL population from DG75 population. Stained cells were 195 

analyzed by flow cytometry. 196 

Western blotting 197 

Total cell lysates were denatured in reducing sample buffer and then sonicated and 198 

heated to 100°C for 5 min. Solubilised proteins were separated by SDS-199 

polyacrylamide gel electrophoresis (SDS-PAGE) on to 4-12% acrylamide gradient bis-200 
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Tris NuPage minigels with morpholinepropanesulfonic acid running buffer (Invitrogen). 201 

Separated proteins were electroblotted to polyvinylidene difluoride membranes and 202 

probed with specific antibodies. Samples were then subjected to chemiluminescent 203 

detection using the Millipore ECL detection kit (Millipore). 204 

Q-PCR assay 205 

Total RNA isolated from cultured cell lines using the QIAGEN RNeasy kit, was treated 206 

with DNase I (Turbo DNA-free kit; Ambion) and then reverse transcribed using 207 

qScript™ cDNA SuperMix( Quanta Biosciences). Quantitative, reverse-transcription, 208 

polymerase chain reaction (qRT-PCR) assays for MICA, MICB, ULBP2, ULBP5, 209 

ULBP6, CD112 and CD155  were performed with TaqMan® Gene Expression Assays 210 

(Applied Biosystems), duplexed with b2m assays for normalization.  211 

Statistical analysis  212 

Where statistical analysis was performed, data were analysed with student t tests or 213 

one-way ANOVA as described in the figure legends. Analysis was performed using 214 

Prism 5 software (Graphpad Software).  215 
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Results 216 

The switch from latent to lytic infection sensitizes B cells to NK cell killing 217 

We previously reported that the switch from latent to lytic cycle in AKBM cells induced 218 

sensitivity to NK cell killing (14). Those experiments were conducted by sorting 219 

induced AKBM cells for the expression of rCD2/GFP to isolate homogeneous 220 

populations of cells in lytic cycle. Whilst that methodology provided valuable 221 

information, it was not suitable for the additional investigations planned in the present 222 

study. We therefore designed a novel method of measuring NK cell killing in mixed 223 

populations of target cells using flow cytometry.  224 

To validate this new assay, target AKBM cells were induced into lytic cycle by 225 

treatment for 1h with anti-IgG. At 24h post-induction cells were incubated with NKL 226 

effector cells at varying effector to target ratios. After 4h co-incubation, cells were 227 

harvested and stained for cell surface CD19 to differentiate effector and target cells, 228 

and for intracellular activated-caspase-3 as a marker of NK cell induced killing. Figure 229 

2A shows CD19 staining to differentiate NK cells from the target population, AKBM 230 

cells. Within the target population, cells undergoing latent or lytic cycle were 231 

differentiated by GFP expression (latent infection, GFP-; lytic infection, GFP+), and 232 

activated-caspase-3 was measured in each target population to determine levels of 233 

cytotoxicity. 234 

In healthy cells, caspase-3 exists as an inactive pro-enzyme; cleavage of this protein 235 

produces the active form of the enzyme activated-caspase-3 (hereafter referred to 236 

simply as caspase-3) that plays a central role in the execution phase of apoptosis (25). 237 

Cytotoxic lymphocytes such as NK cells and CD8+ T cells are able to kill target cells 238 

through two main mechanisms, Fas/FasL interaction and the release of cytotoxic 239 
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granules containing perforin and granzyme. Killing mediated through either 240 

mechanism will initiate a caspase cascade in target cells resulting in conversion of 241 

pre-caspase-3 to activated caspase-3 in a target cell; immunostaining and flow-242 

cytometry for activated caspase-3 can therefore be used an early marker of target cell 243 

killing by effector cells. 244 

As shown in Figure 2B, with increasing effector: target ratios, the levels of caspase-3 245 

increased in lytic cells but not in the latent cells; this reflects the increased cytotoxicity 246 

to lytic cells. At the highest effector to target ratio (4:1) levels of caspase-3 positive 247 

cells in the lytic population reached 23%, compared to just 3% in latent cells. This 248 

confirms the previous finding of our lab that AKBM cells in lytic cycle are susceptible to 249 

killing by NK cells and shows that caspase-3 induction can be used as a marker for 250 

NK cell killing in this setting. 251 

NK cells are a highly polymorphic population of cells controlled by different activating 252 

and inhibitory receptor ligand combinations. To show that the previous result is not 253 

unique to the NKL effectors, the experiment was repeated with two alternative sources 254 

of NK cells: the NK cell line NK-92, and polyclonal NK cells freshly isolated from 255 

peripheral blood. Figure 2C shows that NK-92 cells activated caspase-3 in 55% of lytic 256 

AKBM cells, compared to less than 1% of latent cells, at an effector:target ratio of 4:1. 257 

Similarly, figure 2D shows that freshly isolated blood NK cells activated caspase-3 in 258 

50% of lytic cells and just 2% of latent cells. Thus, the same observation was made 259 

with the three different sources of NK cells.  260 

NK cell killing of lytically infected AKBM cells was shown previously to be mediated 261 

through the activating receptor NKG2D, expressed on NK cells. This observation was 262 

confirmed in the present study by performing caspase-3 cytotoxicity assays in the 263 
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presence of blocking antibodies directed against activating receptors expressed on NK 264 

cells (Figure 2E). The inclusion of either a control antibody or a blocking antibody 265 

against the NKp46 natural cytotoxicity receptor (NCR) did not decrease the level of 266 

caspase-3 induced in target cells. A DNAM-1 blocking antibody showed a small 267 

decrease in caspase-3 induction, though this result did not reach significance. When a 268 

blocking antibody directed against NKG2D was added to cytotoxicity assays a 269 

significant decrease in caspase-3 induction was observed. These results exactly 270 

match those previously reported (14) with conventional 52Cr-release assays on purified 271 

lytic AKBM populations.  272 

EBV infected cells in late stage lytic cycle are protected from NK cell killing 273 

A major advantage of the flow cytometry based cytotoxicity assay is that it allows 274 

simultaneous in situ analysis of different target cell populations that might be refractory 275 

to physical separation methods. We therefore repeated the NKL cytotoxicity assays on 276 

AKBM target cells, which were then immunostained intracellularly for BZLF1 and 277 

BcLF1 expression as markers of early and late lytic cycle. Figure 3A shows that this 278 

staining protocol allowed us to differentiate three populations of cells; latently infected 279 

cells expressing neither BZLF1 nor BcLF1, early lytic cells expressing BZLF1 but not 280 

BcLF1, and late lytic cells expressing BZLF1 and BcLF1. Caspase-3 was measured in 281 

all three populations of cells and cytotoxicity calculated. The results in Figure 3B show 282 

that, as expected, latently infected AKBM cells were resistant to NK cell killing. 283 

However, the analysis of different lytic populations revealed a remarkable result; 284 

whereas cells in early lytic cycle were highly sensitive to NK cell killing, with activation 285 

of caspase-3 observed in around 40% of the BZLF1+/BcLF1- population at an effector 286 



14 
 

to target ratio of 4:1, the BZLF1+/BcLF1+ cells in late stage lytic cycle were completely 287 

protected from NK cell killing. 288 

This novel observation suggested to us that sensitization of AKBM cells to NK cells 289 

was a very early event following activation of the lytic cycle and that EBV may have 290 

active mechanisms for evading the NK cell response. 291 

BZLF1 can induce expression of NKG2D ligands and sensitize B cells to NK cell 292 

killing 293 

We hypothesized that the EBV immediate early genes BZLF1 or BRLF1 might cause 294 

the sensitization seen in previous experiments as sensitization appears to be an early 295 

event and because the HCMV counterpart of EBV BZLF1, IE-1, has been shown to 296 

activate transcription of NKG2D ligands (26). We therefore investigated the two 297 

immediate-early genes of EBV for their effect on the expression of NKG2D ligands in 298 

EBV-negative cells. In the first instance, BZLF1 and BRLF1 were transiently 299 

expressed in HEK 293 cells using bicistronic plasmid vectors that co-express the gene 300 

of interest along with GFP, which allows identification of transfected cells using flow 301 

cytometry. Using an antibody that detects ULBP 2, 5 and 6, the levels of the ULBP 302 

ligands of the NKG2D receptor were measured on GFP+ cells by flow cytometry at 24h 303 

post-transfection. Whilst cells transfected with BRLF1-GFP showed no significant 304 

change in ULBP expression compared to cells transfected with control-GFP (Figure 305 

4A), increased ULBP expression was detected in those cells transfected with BZLF1-306 

GFP (Figure 4B). 307 

As B cells are the natural reservoir for EBV, and the original NK cell sensitivity data 308 

were obtained in the Burkitt lymphoma cell line, AKBM, we next investigated the effect 309 

of BZLF1 on NK cell ligand expression in an EBV-negative Burkitt lymphoma cell line, 310 
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DG75. Following electroporation to introduce BZLF1-GFP or control-GFP vectors into 311 

DG75, the levels of NK cell ligands were measured by flow cytometry. Expression of 312 

BZLF1 in DG75 B cells, at levels comparable to but not exceeding BZLF1 levels in 313 

lytic cycle (27), had similar effects to that seen in 293 cells, in that ULBP expression 314 

significantly increased (Figure 4C). Expression of two additional NKG2D ligands, the 315 

MHC class I-chain related proteins, MICA and MICB, was unaffected by expression of 316 

BZLF1 (Figure 4D). As discussed previously, NK cells may be activated by many 317 

different receptors. With this in mind, the effect of BLZF1 on the two known DNAM-1 318 

ligands was also tested, but BZLF1 caused no increase in the expression of either 319 

CD155 (Figure 4E) or CD112 (data not shown) or binding of DNAM-1-Fc fusion protein 320 

(Figure 4F). 321 

To confirm the previous result and further investigate the effect of BZLF1 on the 322 

expression of NK cell activating ligands, mRNA expression levels were measured in 323 

the absence and presence of BZLF1 protein. As the antibody used in the previous 324 

experiment recognises ULBP2, 5 and 6 protein, the transcription levels of these three 325 

genes was measured. DG75 cells expressing inducible BZLF1 (27) were enriched and 326 

total RNA was then isolated and reverse transcribed to generate cDNA. The relative 327 

transcription level of each ULBP gene was then measured using Q-PCR. The level of 328 

ULBP2 transcript was increased two-fold in BZLF1 expressing DG75 cells when 329 

compared to control cells (P<0.05) (Figure 4G). No up-regulation of ULBP6 330 

transcription level was observed (Figure 4H) and no ULBP5 transcription was detected 331 

in either control DG75 or BZLF1 expressing DG75 (data not shown). Transcription 332 

levels of DNAM-1 ligand were also measured in the same assay but no CD112 or 333 

CD155 transcripts were detected in either DG75 or BZLF1 expressing DG75 (data not 334 

shown). 335 
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As BZLF1 clearly increases the expression of ULBPs in these cells, we next 336 

investigated whether BZLF1 expression alone is able to sensitize B cells to killing by 337 

NK cells. In order to test this DG75 cells were again transfected with BZFL1 338 

expression vector and used as targets in cytotoxicity assays. A high 339 

baseline expression of caspase-3 in viable electroporated DG75 cells precluded the 340 

use of the cytotoxicity assay used in Figures 2 and 3, so an alternative method of 341 

measuring NK cell killing by flow cytometry was used. Cells were incubated with NK 342 

cells for 16h and the percentage of GFP-tagged target B cells remaining after this time 343 

was measured at different effector:target ratios. Specific cytotoxicity was calculated by 344 

comparing the percentage of GFP positive cells after 16h incubation with NK cells with 345 

cultures of transfected cells alone. Figure 4I shows that cells expressing the control-346 

GFP vector were not depleted by NK cells, while expression of BZLF1 sensitized cells 347 

to NK cell killing as there was a significant depletion of BZLF1-GFP target cells at all 348 

effector: target ratios. 349 

BHRF1 protects B cells from BZLF1 induced NK killing 350 

As BZLF1 is the master transactivator of EBV lytic cycle, the data in figure 4 provide at 351 

least one explanation for why AKBM cells in early lytic cycle are susceptible to NK cell 352 

killing. We next sought to explain why AKBM cells in late lytic cycle became resistant 353 

to NK cell killing despite the levels of BZLF1 protein being maintained during late lytic 354 

cycle (Figure 5A). BHRF1 is an early lytic cycle protein whose maximal levels are not 355 

achieved until about 12h post-induction, coincident with the appearance of late lytic 356 

cycle antigens (Figures 5A, B). As BHRF1 is a vBcl-2 homologue with powerful anti-357 

apoptotic functions (28, 29), we hypothesised that it might be a contributor to the 358 

protection against NK cells.  359 
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To test this possibility, BHRF1 was co-expressed with BZLF1 in DG75 cells to 360 

determine if BHRF1 could counteract the sensitization caused by BZLF1. DG75 cells 361 

were transduced with either control or BHRF1 expressing retroviral vectors co-362 

expressing a truncated NGFR as a selectable marker. Following magnetic selection 363 

these cell lines were shown to be 100% NGFR positive (Figure 6A). The two cell lines 364 

were then electroporated with either control or BZLF1-GFP expression vectors, as in 365 

figure 4, and levels of BHRF1 and BZLF1 protein in these DG75 lines were monitored 366 

by immunoblotting (Figure 6B). Finally the four cell lines were used as targets in 367 

cytotoxicity assays to measure sensitivity to NK cell killing (Figure 6C). As expected, 368 

there was no significant NK cell killing of DG75-control and DG75-BHRF1 cells.  As 369 

seen before, expression of BZLF1 in control DG75 cells caused the cells to become 370 

sensitive to NK cell killing, but expression of BZLF1 in DG75 cells stably expressing 371 

BHRF1 resulted in no sensitization. Therefore, BHRF1 is able to completely 372 

antagonise BZLF1 and protect B cells from NK cells killing. 373 

From what is known about BHRF1, we anticipated that this vBcl-2 protects B cells 374 

from NK cell killing through its anti-apoptotic function rather than by directly reversing 375 

the effects of BZLF1 through downregulation of ULBPs. To rule out the latter 376 

possibility, we assayed the surface expression of ULBP (Figure 6D). As before, 377 

BZLF1-transfected DG75 cells revealed elevated expression of ULBP relative to 378 

control-transfected DG75 cells. BZLF1-expressing DG75-BHRF1 cells showed a 379 

similar elevated ULBP expression showing that BHRF1 has no effect on ULBP 380 

expression. 381 

Despite being resistant to NK cell killing, we hypothesised that due to increased ULBP 382 

expression BZLF1-expressing DG75-BHRF1 cells will still be recognised by NK cells 383 



18 
 

causing the NK cells to become activated and degranulate. To confirm this hypothesis, 384 

degranulation of NK cells was studied following co-culture with DG75 cells expressing 385 

BZLF1 and BHRF1. Figure 6E shows, as expected, an increased degranulation in 386 

NKL cells stimulated with BZLF1 expressing DG75 cells compared to control DG75 387 

cells. This increased degranulation was unchanged in NKL cells stimulated with 388 

BZLF1 expressing DG75-BHRF1 cells, despite BHRF1 protecting these cells from 389 

NKL cytotoxicity. This suggests that BHRF1 is able to protect cells from NK cell killing 390 

through its intrinsic anti-apoptotic function despite NK cells still recognising and 391 

degranulating in response to such cells.  392 

LCLs in late stage lytic cycle are also protected from NK cell killing  393 

Whilst the AKBM and DG75 cell lines were useful tools for establishing and 394 

characterising the phenomena of lytic cycle sensitization and protection from NK cell 395 

killing respectively in early and late phases of lytic cycle, it could be argued that they 396 

are malignant cell models and that the relevance to normal B cell infection is unclear. 397 

Indeed, due to the technical difficulties it has not previously been shown that lytically 398 

infected normal B cells can be killed by NK cells. Our new flow cytometry based 399 

cytotoxicity assay (Figures 2 and 3) provided an opportunity to address this question in 400 

the present study. 401 

EBV naturally infects and transforms B cells in-vitro, establishing a continuously 402 

growing but non-malignant LCL. EBV infection in LCLs is predominantly non-403 

productive, expressing only a limited number of growth-transforming latent viral genes, 404 

and showing resistance to NK cell killing. However, viral gene expression can be quite 405 

heterogeneous, and in many LCL cultures a small proportion of cells can 406 

spontaneously enter lytic cycle. We assayed a panel of different LCL cultures for the 407 
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presence of cells undergoing spontaneous lytic cycle and selected suitable lines (i.e. 408 

those with >1% BZ.1+ cells) as targets in NK cell cytotoxicity assays. Cell were co-409 

cultured with NKL cells for 4h, harvested and stained for the expression of CD19, 410 

BZLF1 and BcLF1 to distinguish CD19+ target cells in latent infection (expressing 411 

neither BZLF1 nor BcLF1), early lytic infection (expressing BZLF1 but not BcLF1), and 412 

late lytic infection (expressing both BZLF1 and BcLF1). Caspase-3 was measured in 413 

all three populations of cells and cytotoxicity calculated. The results obtained using 414 

multiple LCL cultures (Figure 7A) were remarkably similar to the earlier results using 415 

the AKBM model. Latently infected LCLs were resistant to killing by NK cells; cells in 416 

the early stages of lytic cycle were highly sensitive to NK cell killing, whilst cells in late 417 

lytic cycle were completely resistant to NK cell killing. 418 

Although NK cell recognition and killing of AKBM cells has been shown to be mediated 419 

by NKG2D/ULBP interactions, differing reports exist in the literature as to the 420 

expression of NKG2D ligands on LCLs (30-32). We therefore examined whether NK 421 

cell killing of LCLs undergoing lytic cycle is mediated through NKG2D, by performing 422 

cytotoxicity assays in the presence of blocking antibodies directed against different 423 

activating receptors (Figure 7B). In contrast to what we observed previously in 424 

experiments with the AKBM cells, blocking NKG2D or NKp46 had no effect on NK cell 425 

killing of LCLs expressing BZLF1, but including a blocking antibody against DNAM-1 426 

substantially ablated NK cell killing of target cells. Furthermore, staining of LCLs with 427 

antibodies to NKG2D ligands failed to detect expression of either MICA/B or ULBP 428 

(Figure 7C, 7D). These data suggest that NK killing of LCLs is predominantly mediated 429 

through DNAM-1, and that the precise mechanism(s) of sensitization of lytically-430 

infected B cells to NK cell killing may depend on the cellular origin or phenotype. 431 
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DNAM-1 has two known cellular ligands; CD155 and CD112 (33). As with NKG2D 432 

ligands, there is some disagreement in the literature as to the expression of DNAM-1 433 

ligands on LCLs. To ascertain if the sensitization of LCLs undergoing early lytic cycle 434 

was due to increased expression of known DNAM-1 ligands we stained LCLs from 435 

different donors with antibodies against CD155 and CD112. The results showed that 436 

neither latent nor lytically infected cells in LCL cultures expressed CD155 (Figure 7E) 437 

or CD112 (Figure 7F) despite clear staining on control cells (HeLa for CD155, and 438 

K562 for CD112). This experiment was repeated using multiple antibodies to both 439 

ligands and multiple LCLs from different donors and in all cases neither CD155 nor 440 

CD112 expression was detected. Interestingly, when CD155 or CD112 blocking 441 

antibodies were included in cytotoxicity assays, they had no effect on NK cell killing of 442 

lytic LCLs (data not shown). These data indicate that whilst NK cell killing of lytically 443 

infected LCLs is mediated through the DNAM-1 receptor on NK cells, the LCLs do not 444 

express detectable amounts of either of the two known DNAM-1 ligand proteins.  445 

Discussion 446 

In this study we have demonstrated that the acquisition of sensitivity to NK cell killing 447 

of EBV infected B cells upon entry into lytic cycle is not an artefact of the unusual 448 

malignant cell line model in which the observation was first made. This phenomenon 449 

of sensitization to NK cell killing is also observed in independently established, normal 450 

LCLs in which a small subpopulation of cells spontaneously enters lytic cycle. The 451 

cytotoxicity assay that we developed to be able to investigate NK killing of the minor 452 

population of lytically infected cells within LCL cultures has also allowed the discovery 453 

of another important finding; that during the late stages of EBV lytic cycle, EBV 454 

infected B cells acquire a profound resistance to NK cell killing. 455 
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In the AKBM cell model, sensitization of lytically infected cells appears to be 456 

predominantly mediated by upregulation of ULBPs, which are ligands for the NKG2D 457 

activating receptor on NK cells. Furthermore, we showed that expression of a single 458 

EBV gene, the lytic transactivator BZLF1, causes a significant upregulation of these 459 

NKG2D ligands in an EBV-negative B cell line and coincidentally sensitize the cells to 460 

killing by NK cells. This upregulation of surface ULBP expression correlates with 461 

increased transcript level of ULBP2 in BZLF1 transfected DG75 cells (Figure 4G). 462 

BZLF1 is a powerful transcription factor that not only initiates a cascade of EBV lytic 463 

cycle gene expression but also regulates more than 270 cellular genes in AKBM cells 464 

(34). The BZLF1-regulated cellular genes identified by ChIP analysis do not include 465 

known NK cell receptor ligands. However, our present analysis indicates that BZLF1 466 

expression leads to a 2-fold increase in ULBP-2 transcripts (Figure 4G). It is therefore 467 

likely that BZLF1 indirectly targets ULBP-2 gene transcription and/or that BZLF1 468 

indirectly targets ULBP-2 post-transcriptionally. It is known that BZLF1 binds to DNA 469 

damage response proteins, causing their mis-localization and, consequently, 470 

increased DNA damage in cells expressing BZLF1 (35). NKG2D ligands are known to 471 

be upregulated in response to a number of stress signals including DNA damage (36), 472 

raising the possibility that upregulation of NKG2D ligands by BZLF1 may be an indirect 473 

result of induced DNA damage.  474 

As mentioned above BZLF1 is the master regulator of EBV lytic virus replication and 475 

thus critical for the virus life cycle. The sensitization to NK cell killing initiated by 476 

BZLF1 expression and/or by other early lytic genes is therefore a price that the virus 477 

must pay. Though seemingly counterintuitive, EBV’s ability to initiate an NK cell 478 

response to control viral infection is an evolutionary advantage to the virus since NK 479 

cell control of EBV is an important factor in establishing a stable relationship between 480 
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host and virus thus allowing asymptomatic EBV persistence. An absence of effective 481 

NK cell responses in immunodeficiencies such as XLP and X-MEN syndrome is 482 

associated EBV-related pathogenic complications (6, 32). In addition, two reports have 483 

described patients with CD16 mutation who experienced prolonged EBV infections 484 

and complications such as EBV-associated Castleman’s disease (37, 38). As well as 485 

NK cell deficiencies, NK cell phenotype has been shown to correlate with outcome of 486 

EBV infection. Two reports have shown that certain polymorphisms in killer 487 

immunoglobulin like receptors (KIRs) can predispose people to infectious 488 

mononucleosis or hemophagocytic lymphohistiocytosis (39, 40). Equally, an 489 

alternative KIR polymorphism can actually protect from infectious mononucleosis (40). 490 

Whilst NK cell control, along with CD4+ and CD8+ immune T cell responses, is clearly 491 

important for limiting the pathogenic potential of EBV, the successful persistence of 492 

the virus for the life of the infected host implies some viral immune evasion 493 

mechanisms to evade elimination. For CD4+ and CD8+ responses, active mechanisms 494 

for evasion during lytic cycle are well-documented (3, 8, 41). However, evasion of NK 495 

cell responses in lytic cycle is poorly understood. It has been suggested that EBV 496 

micoRNAs, notably miR-BART2, may transcriptionally regulate NK cell ligands (42). 497 

However, expression of miR-BART2 is only weakly upregulated, by less than 2-fold, in 498 

AKBM cells upon induction of lytic cycle, which argues against a significant evasion 499 

function accounting for our observed resistance of late-lytic cycle cells to NK cell 500 

killing. A more recent study of a relatively complex experimental model of primary 501 

infection of PBMCs, indicated a clear role for the vIL-10 (BCRF1) in modulating NK 502 

cell activity (43). This effect appears to be due to vIL10 and huIL10 acting on the NK 503 

cells, rather than affecting the sensitivity of the EBV-infected cells. Whilst not 504 

devaluing the importance of the published data, it is unlikely that BCRF1 contributes to 505 
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our observed resistance of late lytic cells to NK cells since early lytic cells in the same 506 

culture are highly sensitive to the same NK cells.  507 

Against this background, our novel finding that BHRF1 can afford substantial 508 

protection to NK cell lysis is important as it offers a plausible mechanism for the 509 

resistance of late lytic cycle cells. However, the lessons from other herpesviruses 510 

would suggest that BHRF1 is unlikely to be the only mechanism that EBV has evolved 511 

to counteract NK cell responses and enable some virus replication to occur in-vivo. 512 

Human cytomegalovirus (HCMV) is the most well-studied in the context of NK cell 513 

evasion, and has multiple different mechanisms that act in synergy (44). CMV is able 514 

to reduce expression of multiple NKG2D ligands: UL16 reduces expression of ULBP1, 515 

ULBP2 and MICB; while US142, US18 and US20 reduce expression of MICA (45-48). 516 

UL141 blocks surface expression of DNAM-1 ligands, CD112 and CD155 (49, 50). 517 

CMV also ligates NK inhibitory receptors through expression of HLA homologues such 518 

as UL18 that binds LIR-1 or stabilising HLA-C through the action of UL40 (11, 51).  519 

The value of extending our work beyond the AKBM model to non-malignant LCLs 520 

extends beyond showing the generality of the basic observations that cells in early 521 

lytic cycle are sensitized to NK cell killing whilst cells in late lytic cycle acquire 522 

resistance. The results revealed another interesting point that the same end result 523 

might be achieved through slightly different mechanisms in different cells. Whereas 524 

NK cell recognition of lytic AKBM cells is predominantly through upregulation of 525 

NKG2D ligands, recognition of LCLs is mediated not through NKG2D but through 526 

DNAM-1. Paradoxically, in all the LCLs we tested neither of the two known DNAM-1 527 

ligands was detected, whether on latent or lytic infected cells. Interestingly, a small but 528 

significant increase in CD155 transcripts was observed in lytic LCLs (Figure 7G), but 529 
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the magnitude of the elevated transcripts was such that the biological significance is 530 

questionable. Preliminary attempts to identify the DNAM-1 ligand responsible for 531 

sensitization to NK cell killing were hampered by the inability to obtain significant 532 

binding of DNAM-1-Fc fusion protein to LCLs (Figure 7H); a result that we attribute to 533 

the insensitivity of the fusion protein reagent. We hypothesize that LCLs in lytic cycle 534 

express a third as yet undiscovered DNAM-1 ligand. This ligand may be cellular, as is 535 

the case with CD155 and CD112. Alternatively, this ligand may be of viral origin; a 536 

number of NK receptors recognise pathogenic proteins, so it is possible that EBV 537 

expresses an uncharacterised DNAM-1 ligand in lytic cycle.  538 

This study makes a significant contribution to the knowledge of the basic immunology 539 

of EBV infection by greatly extending our knowledge of the interaction of innate 540 

responses to virus-infected cells. The discovery of BHRF1 as a bona fide immune 541 

evasion gene capable of protecting cells from NK cell killing may also have wider 542 

implications. Although not examined, the mechanism of action implies that BHRF1 543 

might also afford significant protection against EBV-specific cytotoxic CD8+ and CD4+ 544 

T cells.    545 
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Figure Legends 754 

Figure 1. Activating receptors expression profile of NK cell lines and primary NK 755 

cells.  NKL, NK92, two enriched primary NK cells were stained for NKG2D, DNAM-1, 756 

NKp30 and NKp46 surface expression and analyzed using flow cytometry. Solid black 757 

lines represent each activating receptor staining and grey-filled histograms represent 758 

isotype control.  759 

 760 

Figure 2. EBV infected cells undergoing lytic infection are sensitive to NK cell 761 

killing. AKBM cells were induced into lytic cycle and used as targets in 4h cytotoxicity 762 

assays. (A) Cells were stained for CD19 to differentiate effector and target cells and 763 

AKBM cells undergoing lytic infection were identified by GFP expression. Cells were 764 

stained for caspase-3 as a marker of NK cell induced killing. NK cell killing was 765 

measured in latent and lytic populations at increasing effector target ratios. Effector 766 

cells used were: NKL cells (B), NK-92 cells (C) and freshly isolated NK cells (D). NKL 767 

cells were incubated with blocking antibodies prior to use in cytotoxicity assays and 768 

NK cell killing was measured in the lytic population of AKBM cells at an effector:target 769 

ratio of 4:1 (E). Data shown are mean values from three separate experiments, error 770 

bars represent standard errors and significance was determined using t tests. P < 771 

0.05(*) P < 0.01(**), P < 0.001 (***).  772 

 773 

Figure 3. EBV infected cells in late stage lytic cycle are protected from NK cell 774 

killing. AKBM cells were induced into lytic cycle and used as targets in 4h cytotoxicity 775 

assays using NKL cells. (A) Cells were stained for BZLF1 and BcLF1 to differentiate 776 

cells in latent (BZLF1- BcLF1-), early lytic (BZLF1+ BcLF1-) and late lytic cycle (BZLF1+ 777 

BcLF1+). (B) Caspase-3 positivity was assayed in each of the three populations as a 778 



36 
 

measure of NK cell killing. Data shown are mean values from three separate 779 

experiments and error bars represent standard errors. 780 

 781 

Figure 4. BZLF1 induces expression of NKG2D ligands and sensitizes B cells to 782 

NK cell killing. HEK 293 cells (A,B) or DG75 cells (C-F) transiently expressing 783 

control-GFP (solid black line), BRLF1-GFP (dashed black line) (A) or BZLF1-GFP 784 

(dashed black line) (B-F) were investigated for surface expression of NK cell activating 785 

receptor ligands using flow cytometry. Grey-filled histograms represent isotype control 786 

staining. Results shown are representative of three separate experiments. (G) (H) 787 

Total RNA was isolated from control DG75 and BZLF1 expressing DG75 and then 788 

reverse transcribed to cDNA. Relative transcription levels of ULBP2 and ULBP6 were 789 

measured by Q-PCR assay, normalized to measured B2m transcripts. Data shown are 790 

mean values from three separate experiments, error bars represent standard errors 791 

and significance was determined using t tests. P < 0.05(*) P < 0.01(**), P < 0.001 (***). 792 

(I) DG75 cells transfected with control or BZLF1 expression plasmids were used as 793 

targets in NK cell killing assays using NKL cells and specific cytotoxicity was 794 

calculated. 795 

 796 

Figure 5. Maximum expression levels of BHRF1 protein occur beyond 12h post-797 

induction of lytic cycle. AKBM cells were induced into lytic cycle by cross-linking of 798 

surface immunoglobulin. (A) Levels of BHRF1 (middle) and BZLF1 (upper) protein 799 

were measured at time points post-induction (as indicated) using western blot 800 

analysis. The level of Calregulin (lower) was detected as a loading control. (B) 801 

Relative expression of BHRF1 protein was calculated using Bio-rad Image Lab 802 

densitometry software and compared to the Calregulin control at each time point. 803 
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 804 

Figure 6. BHRF1 protects B cells from BZLF1 induced NK cell killing. DG75 cells 805 

were transduced with control- or BHRF1-NGFR expressing retroviral vectors. (A) 806 

Following magnetic enrichment cells were stained for expression of NGFR. Cells were 807 

then transfected with control- or BZLF1-GFP expression vectors. (B) Expression of 808 

BHRF1 (top) and BZLF1 (middle) protein in the four different cell lines was determined 809 

by western blot analysis. Calregulin expression (bottom) was measured as a loading 810 

control. The four cell lines were then used as targets in killing assays using NKL cells 811 

at increasing effector:target ratios (C), data shown are mean values from three 812 

separate experiments and error bars represent standard errors. (D) Surface 813 

expression of ULBP was measured on DG75-control cells (grey-filled histograms), 814 

DG75-control cells expressing BZLF1 (solid black line) and DG75-BHRF1 cells 815 

expressing BZLF1 (dashed black line), data shown is representative of three separate 816 

experiments. (E) The four DG75 cell lines mentioned above were co-cultured NKL 817 

cells and FITC conjugated anti-CD107a antibody for 5 hours. The surface CD107a 818 

expression of NKL cells from four cultures was analyzed by flow cytometry. Data 819 

shown are mean values from three separate experiments and error bars represent 820 

standard errors. The significance was determined using one way ANOVA tests. P < 821 

0.05(*) P < 0.01(**). 822 

Figure 7. LCLs are also protected from NK cell killing in late stage lytic cycle but 823 

killing of cells in early lytic cycle is mediated by DNAM-1. LCLs were screened for 824 

the presence of cells undergoing spontaneous lytic cycle and used as targets in 4h 825 

cytotoxicity assays using NKL cells. Cells were stained for BZLF1 and BcLF1 to 826 

differentiate latent, early lytic and late lytic cells and stained for caspase-3 as a marker 827 
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of NK cell induced killing. (A) NK cell killing was measured in the three populations at 828 

increasing effector target ratios. (B) NKL cells were incubated with blocking antibodies 829 

prior to use in cytotoxicity assays and NK cell killing measured in the early lytic 830 

population of LCLs at an effector:target ratio of 4:1. Data shown are mean values from 831 

three separate experiments using four different LCLs, error bars represent standard 832 

errors and significance was determined using t tests. P < 0.01(**). LCLs were stained 833 

for BZLF1 to detect cells undergoing spontaneous lytic cycle and levels of MICA/B (C), 834 

ULBP (D), CD155 (E) and CD112 (F) were measured by flow cytometry. Solid black 835 

lines represent BZLF- (latent cells), dashed black lines represent BZLF1+ (lytic cells) 836 

and grey-filled histograms represent isotype control staining of bulk LCLs. HeLa cells 837 

were used a positive control for CD155 expression (E) and K562 cells were used as a 838 

positive control for  MICA/B, ULBP and CD112 expression (C,D,F). Results shown are 839 

representative of multiple separate experiments using multiple antibodies to CD155 840 

and CD112. (G) Total RNA was isolated from LCLs lines and then reverse transcripted 841 

to cDNA. Relative transcription levels of CD112 and CD155 were measured by Q-PCR 842 

assay, normalized to measured B2m transcripts. The error bars represent standard 843 

errors of three different LCLs lines. Hela cells were served as a standard for relative 844 

transcription in this assay. (H) LCLs were stained for BZLF1 to detect cells undergoing 845 

spontaneous lytic cycle and levels of DNAM-1 ligands were measured using DNAM-1-846 

Fc fusion protein by flow cytometry. Solid black lines represent BZLF- (latent cells), 847 

dashed black lines represent BZLF1+ (lytic cells) and grey-filled histograms represent 848 

isotype control staining of bulk LCLs.  K562 cells were used as a positive control.  849 
















