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Abstract 

The present study aims to demonstrate the importance of digital data for investigating space-time 

dynamics of aggregated human activity in urban systems. Such dynamics can be monitored and 

modelled using data from mobile phone operators regarding mobile telephone usage. Using such 

an extensive dataset from the city of Amsterdam, this paper introduces space-time explanatory 

models of aggregated human activity patterns. Various modelling experiments and results are 

presented, which demonstrate that mobile telephone data are a good proxy of the space-time 

dynamics of aggregated human activity in the city. 
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1. Introduction  

The emergence of the ‘digital age’ has prompted over the years many scholarly and policy 

debates on its implications for cities and regions. Such debates are often centred on the question 

whether the seemingly footloose character of digital infrastructure would affect the material-

geographic foundation of human settlements. There is indeed an intriguing relationship between 

Information and Communication Technologies (ICTs) and the morphology of cities. Surprisingly, 

the wealth of theoretical debates and conceptualizations was not paralleled by solidly tested 

empirical studies. Examples of influential studies include the seminal work of Graham and Marvin 

(1996; 2001) on ‘Splintering Urbanism’, Batty’s (1997b) ideas on ‘Virtual Geography’ and 

Castells’ (1996) ‘Space of Flows’. Despite different starting points by various authors, the 

consensus on the above issues can be summarized in the following challenging proposition: “the 

city itself is turning into a constellation of computers” (Batty 1997a, p. 155). Indeed, it is widely 

accepted that more and more urban functions are heavily depending on ICTs nowadays. One of 

the outcomes of this transformation is that an intertwined constellation of computers – apart from 

supporting cities – can also generate an avalanche of data about cities that urban geographers and 

planners of the twentieth century have never dreamt of before. Such data, which is currently known 

as ‘big data’, can be used to model and monitor individual interactions in (almost) real time at a 

very detailed spatial resolution. Thus, this might be the turning point in orienting the discussion 

on cities and ICTs from a conceptual to a more empirical basis. The excess of new, detailed 

bottom-up data from digital sources enables the research community to study and model traditional 

geographic phenomena in an unprecedented fine-grained spatio-temporal resolution (for an 

extensive discussion see also Arribas-Bel 2014; Miller 2010; Tranos 2013; Tranos and Nijkamp 

2014).  

Clearly, the digital world comprises many types of data, such as GPS, Internet data and 

mobile telephony data. Nonetheless, the importance of urban analytics based on e.g. mobile phone 

data is not limited to revealing urban signatures at a very fine-grained scale. The usability of such 

data goes even further, as it can provide novel support tools to urban planning. At an aggregated 

level, the changes that mobile telephony introduced to cities can be illustrated as a new faster pace 

of urban life-style and, in general, as new and quicker urban systems metabolism. A real-time city 

acts and can be monitored instantaneously (Townsend 2000). This new characteristic of increased 

action in time and space from the urban user perspective and its response in terms of real-time 

monitoring creates a new exciting opportunity for urban planners and urban governance in general. 

In this context, Steve Graham (1997, p. 117) highlights this new real-time dimension as follows: 

“The traditional concepts of urban and regional planning are today outmoded. The harmonious 

development of areas towards equilibrium, the correct sharing out of resources, providing support 

to complementary developments within the city [...] these ideas have given way to the impression 
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that spaces are fragmented, atomised and strongly competitive [and] the insertion of 

telecommunications into the city makes the development of spaces more complex and introduces 

today a third dimension into urban and regional planning [after space and time]: this is the factor 

of real-time" (ADUML 1991, p. 4). 

The above mentioned evolution has also met severe criticism. Critical approaches on the 

merit of real-time urban analytics, such as these based on mobile phone data, can be found in the 

urban literature. The basis of such approaches is the often used argument that the pervasive 

character of ICTs across different economic sectors and urban environments supports the operation 

of the capitalist system at a global level (e.g. Sassen 1991). In such a framework, critical geography 

would argue that space has been de-humanized and objectified (Graham 1997). For example, Soja 

(1989) highlights how planning and geography have understood space as a dead, fixed, immobile 

and undialectic entity, which is based on passive measurements instead of actions and meanings. 

These ideas pass judgment on Newtonian-influenced approaches towards space and time. Massey 

(1992) has criticized the above strand of research by emphasizing that space and time are 

conceptualized in classical physics as independent objects. However, post-modern urban theory 

argues against the separation of space and time as in reality what exists in the joint effect of space-

time (Thrift 1996). Thus, similarly to the non-linearity and multiplicity of time, places are divert, 

overlapping, non-contiguous and dynamic (Graham and Healey 1997; see also Steenbruggen et al. 

2014). 

Urban analytics based on mobile phone or other big data sources can offer a new departure 

for an answer to the above criticism on positivistic approaches to urban theory. The use of mobile 

phone based urban analytics enables the research community to analyse and model the pulse of the 

city (Batty 2010). Such measures do not focus on the physical form per se, but on human activity 

and its projection on cities. The use of such pervasive digital infrastructural systems results to large 

pools of human behavioural data, which can then be used as a means to understand the structure 

of cities (Louail et al. 2014). And most importantly, the underlying assumption is not a static 

canvas of urban zones, but instead a dynamic understanding of urban environment as illustrated 

by numerous and diverse individual urban life-styles. Space is not separated by time, as the domain 

of such urban analytics is the space-time nexus from an (almost) real-time perspective. 

Despite the importance of the wealth of information generated by mobile telephony and other 

digital infrastructures, mobile phone based urban analytics is not an end in its own. The 

applicability of such analytics in supporting urban planning may reinforce the potential of the latter 

and provide new opportunities for urban management and development. For example, Ahas and 

Mark (2005) predict that geo-located data from mobile phone operators will be utilized in three 

areas in urban planning: (1) as a means to monitor the usage of transport infrastructure and 

especially that dedicated to commuting between city and suburban areas; (2) to study, understand 
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and quantify the temporal dimensions and the dynamics of urban space; (3) to model, plan and 

design transportation and transport infrastructure.  

Much of the discussion on the digital world is focused on top-down approaches. Nonetheless, 

due to the pervasiveness of mobile telephony, urban planning can also benefit from bottom-up 

initiatives. Bisker et al. (2010) suggest that apart from the benefits arising from top-down urban 

computing and sensing, which is mostly the responsibility of urban planners, citizen-based 

initiatives can further reinforce developments in urban planning. For instance, advances in 

emergency situations management can be made utilizing the wide spread of mobile phone data, 

volunteer participation and existing technology. An often utilized example in the literature is 

hurricane Katrina and the heavily affected city of New Orleans (Evans-Cowley 2010). Citizens 

using their mobile phones created a detailed photographic record of their properties before they 

were demolished, a task which could not have been undertaken by the overwhelmed city 

authorities (ibid.). In a different example, the collective contribution of data from mobile phone 

users can be used as the basis for average speed maps and other traffic information that can 

influence travel choices (Evans-Cowley 2010). Clearly, such data can lead to the coordination of 

transportation in real time (Townsend 2000). In general, the data-rich nature of digital information 

systems provides a great opportunity of spatial complexity analysis. This forms also the 

background of the present study. 

The present study aims to investigate the potential of the wealth of data generated from 

mobile phone usage in modelling the aggregated human activity in space and time, taking 

Amsterdam as the point of reference. This study is situated within a fast developing research 

domain which aims to utilise (big) data from mobile phone operators in space- time urban analysis. 

As Calabrese et al. (2014, p. 25:4) highlight, data from mobile phone operators offers “the 

possibility to study micro- and macro-behaviors and truly reflect human behavior given the fact 

that data is becoming more and more available”. In essence, such data reflect the collective 

behaviour of people (Calabrese et al. 2010). Examples include, among others, the work Ratti et al. 

(2006), who map the intensity of urban activities in Rome and Amsterdam, a paper from Reades, 

Calabrese and Ratti (2009), who identified a clear relationship between aggregated mobile phone 

usage and human activity using the city of Rome as a case study and the work of Sevtsuk and Ratti 

(2010), who used mobile phone usage as a proxy to model population distribution over time and 

space. More recently, Jacobs-Crisioni et al. (2014) employed data from a mobile phone operator 

to evaluate the impact of land-use density and mix on urban activity patterns and Calabrese et al. 

(2011) investigated the relationship between face to face and mobile phone based interactions. In 

a cognate research domain, data from mobile phone operators has been also utilized in mobility 

studies (e.g. Calabrese et al. 2013; Lambiotte et al. 2008; Licoppe et al. 2008). In complexity 
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science such data has been utilised in exploring the statistical mechanisms governing the formation 

of human communication networks (e.g. Candia et al. 2008; Song et al. 2010a; Song et al. 2010b).  

The point of departure here is the work of Toole et al. (2012), who analysed data from mobile 

phone operators using machine learning classification algorithms to identify land use types. In a 

similar vein, Reades, Calabrese and Ratti (2009, p. 835) highlighted the relationship between land 

use types and mobile phone usage, but they also stated that a “straightforward regression […] 

appears insufficient to account for the way that bandwidth usage changes in areas of intensive 

activity, such as the CBD [Central Business District].” Pei et al. (2014) employed aggregated 

mobile phone usage data to proxy resident activities and through them to define land use types. 

Based on the above developments in the literature, this paper aims to advance the urban analysis 

domain by: (a) providing a more in depth spatio-temporal analysis of mobile phone usage, which 

represents aggregated human activity; and (b) test the official delimitation of land use types against 

the aggregated human activity patterns depicted by mobile phone usage. We do the above by 

providing evidence derived from statistical modelling. Our analysis agrees with Reades, Calabrese 

and Ratti’s (2009) remark about the complex relationship between land use type and mobile phone 

usage, but at the same time our analysis demonstrates that regression techniques can result to a 

good approximation of this relationship even after considering its dynamic nature. 

The paper is organized as follows. Section 2, apart from presenting the data used in this 

paper, will be devoted to the description of space-time mobile phone usage patterns in Amsterdam, 

with particular emphasis on temporal variability. Next, Section 3 will analyse the centrality 

orientation of mobile phone usage, while land-use dimensions are modelled in Section 4. In 

Section 5 we will offer some concluding remarks. 

 

 

2. Mobile phone usage over time and space: an aggregated human activity measure  

This section aims to highlight the – largely unequal – distribution of mobile phone usage 

over time and space in Amsterdam. With the use of descriptive and spatial statistics, we will shed 

light on how mobile phone usage varies across space and time, and use this statistical knowledge 

in the next section to model such urban dynamics. Using as the main assumption the idea that 

mobile phone usage depicts human activity, the results of our analysis can be translated as an effort 

to project and model aggregated human activity at a very detailed spatial and temporal resolution 

within an urban environment. The underlying assumption is that mobile phone usage is a good 

proxy for population distribution at such resolution (e.g. Sevtsuk and Ratti 2010). Of course, this 

does not come without limitations. For instance, people who sleep do not use their phones and 

therefore their concentrations cannot be depicted by such data. Or, the whereabouts of people who 

have their phones turned off cannot be included in such data. Having said that, the size of the 
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sample (almost everybody owns a mobile phone) enables us to consider data from mobile phone 

operators as a fairly good approximation of aggregated human activity (Sevtsuk and Ratti 2010).  

Before developing our analysis, a short description of the main dataset will be presented. 

This dataset has been provided by a major mobile phone operator in The Netherlands. It includes 

aggregated telecommunication counts at the level of the GSM (Global System for Mobile 

Communications) cell on an hourly basis for 2010. In total, 815 such urban zones are included in 

the analysis (see also Figure 3). These irregular zones vary in size, in such a way that smaller GSM 

zones are designed for busier areas. Although various telecommunications counts were initially 

included in the data, such as the number of new calls that took place in a specific zone during the 

course of an hour, the number of SMS (short message service) texts sent from a specific zone and 

the average call length, the main variable of interest is the number of Erlangs. This is an 

aggregation of all telecommunication activity: if 30 phone calls take place within one hour at a 

specific GSM cell and each of these calls has a duration of 5 minutes, then the total number of 

Erlangs will be 2.5 (30*5 = 150 minutes = 2.5hours). Erlang has appeared to be a better proxy for 

the total telecommunication activity and therefore is the preferred variable of interest here.  

Figure 1 presents the first step in our effort to analyze the spatio-temporal variability of 

mobile phone usage within Amsterdam. This is a rank plot of all the GSM cells of the study area 

based on average Erlangs for each cell for the year 2010. The reader is reminded that the mobile 

phone usage is aggregated on an hourly basis, so that the average Erlangs for each cell is the 

average of 24(hours)*365(days)=8760 observations, except from any missing values. What 

becomes apparent from this plot is the inequality of the spatial distribution of mobile phone usage 

in the urban area of Amsterdam. Mobile phone usage drops exponentially indicating a form of 

spatial hierarchy of the GSM zones. The first five zones in terms of mobile phone usage represent 

in average 3 per cent of the total mobile phone traffic in the study area and only 0.23 per cent of 

the total area. This fairly unequal distribution results in a Gini coefficient of 0.37.  

Going a step further in analysing the temporal variability of the mobile phone usage, Figure 

2 presents the average hourly variation in terms of Erlangs across the study area. Not surprisingly, 

this figure presents the ‘pulse’ of the city of Amsterdam (Batty 2010), which reflects the daily life 

pattern, or, in other words, the aggregated human activity. Very limited mobile phone usage is 

observed during the night time, while this usage gradually increases from 7am onwards. After 9am 

it reaches a plateau, which peaks at 5pm when usually office work ends and then it gradually 

decreases. A potential caveat here is the observation that mobile phone usage during the morning 

peak is slightly lower than the one during the afternoon peak as this might be related with 

communication patterns instead of aggregated human behaviour (e.g. Becker et al. 2011; Caceres 

et al. 2008). However, motorway traffic in Amsterdam (see Appendix 1) during the same period 

also reveals a similar pattern according to which the evening peak car traffic in motorways is 
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higher than the equivalent morning one advocating towards the ability of mobile phone data to 

capture human behaviour. 

Although it is interesting to validate the human hourly patterns with mobile phone data, what 

is missing from Figure 2 is the spatiality of mobile phone usage and consequently the spatiality of 

the aggregated human activity within Amsterdam. In order to add this dimension in our analysis, 

Figure 3 presents the spatial distribution of mobile phone usage, in terms of average Erlangs, 

during different times of the day. The different maps are comparable, as Erlangs are expressed 

here as standard deviations from the average mobile phone usage at the reference time across the 

study area and in the year 2010. The highly polarized picture of 3am changes during the morning 

peak of 9am, when GSM zones with mobile phone usage higher than the average are more spread. 

Similar spatial distributions can be observed for the next two time slots (12pm and 5pm). The 

picture changes again to a more centralized distribution at 7pm and continues like this during the 

night. The above qualitative analysis is verified by the Gini coefficients, which are also presented 

in Figure 3. According to this measure, mobile phone activity is distributed more unequally in 

space during night, when mobile phone activity is concentrated in fewer GSM zones, while 

inequality decreases during the day. Although this comes as no surprise as most of the population 

sleeps during night, the Figure 3 depicts these areas in Amsterdam where human activity takes 

place during night hours from an aggregated perspective. 

Figure 3 provided a first picture of the change of aggregated mobile phone usage in time and 

space in Amsterdam. Given our main assumption that mobile phone usage reflects aggregated 

human activity and its dynamics, this analysis can provide valuable insights on where human 

activity is concentrated in Amsterdam and how this concentration changes over time. In order to 

do so, Local Indicators of Spatial Autocorrelation (LISA) are employed. The latter is a widely used 

spatial statistic which identifies hotspots and therefore, contributes significantly to our 

understanding of the global pattern of spatial autocorrelation (Anselin 1995). 

Figure 4 documents the temporal variability of the Amsterdam central areas using the 

different LISA indicators of average Erlangs at different times of the day. These maps only include 

the high-high clusters derived by the LISA indicators using rook contiguity to build the spatial 

weight matrix. Moreover, the analysis here distinguishes between working and non-working days 

(left and right panel of Figure 4 respectively). The latter category includes weekends and public 

holidays in The Netherlands. Although Figure 4 includes the LISA high-high clusters only for 3 

distinct time periods, the overall set of the 24 LISA maps for working and non-working days is 

available online as an animation1. Although most of the central cells are located around the 

geometric centre of the study area, central areas change over the course of the day depicting the 

                                                           
1 https://dl.dropboxusercontent.com/u/5198653/Amsterdam_LISA_mobile_maps.zip  

https://dl.dropboxusercontent.com/u/5198653/Amsterdam_LISA_mobile_maps.zip
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change of population presence and indicating the fast dynamics of the aggregated human activity. 

Moreover, changes can be observed between the same time periods between working and non-

working days.  

To better understand these changes, Figure 5 presents the spatial median of all the LISA 

high-high clusters at an hourly basis for working and non-working hours (Figure 5a and 5b 

respectively). For instance, the spatial medians of all the LISA high-high clusters fall outside the 

A10 motorway between 5.00-9.00am for working days. A10 is the ring road around Amsterdam’s 

central area and is represented with bold black line in Figure 5. On the contrary, during non-

working days the spatial medians of the LISA high-high clusters falls outside A10 only between 

6.00-8.00am. The spatial medians of high-high clusters during non-working days tend to 

concentrate in only two locations: the first one is the south tip of the central area of Amsterdam 

(the Nine Streets area) and the second is the Schiphol Airport. In general, a more dispersed pattern 

is observed during working days, indicating the higher spatio-temporal variation of the aggregated 

human activity during these days in comparison to the most clustered pattern of the non-working 

days. 

Finally, Figure 6 presents the distribution of the average distances of all the LISA high-high 

clusters from Amsterdam Central Station at an hourly basis. In order to construct this graph, we 

measured the distance between every LISA high-high cluster using the centroid of the relevant 

polygons and Amsterdam Central Station. This process was repeated 24 times for each hourly time 

period. Then, the mean of all the distances for every hour was calculated. The Amsterdam Central 

Station has been chosen as it represents a focal point of the structure and function of Amsterdam. 

The vertical axis of Figure 6 represents distance from Central station in meters and the horizontal 

the temporal dimension at an hourly basis. For instance, the average distance between all the LISA 

high-high clusters is maximised at 5am during working days and at 7am during non-working days. 

Again, we can observe that in average LISA high-high clusters are substantially further away from 

the city centre on working days (6151m) than on non-working (5006m). This finding validates that 

the aggregated human activity appears to be more spatially dispersed during working days. 

 

 

3. Central locations of aggregated human activity in Amsterdam: official vs. empirical 

delimitations 

The previous section explored the spatio-temporal variation of the aggregated human activity 

and based on this, identified the centres of human activity and mapped its dynamics. The next step, 

which is the focus of this section, is to juxtapose our bottom-up delimitations of Amsterdam’s 

central areas with the official definitions of Amsterdam’s centres using land-use data from CBS 

(2012). In order to test this research question, the below probit model is developed and estimated: 
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𝑝𝑟𝑜𝑏𝑖𝑡{𝑃𝑟(𝑙𝑖𝑠𝑎𝑖𝑡 = 1|𝑥𝑖𝑡)} =  𝑏1𝑐𝑖𝑡𝑦𝑐𝑒𝑛𝑡𝑒𝑟𝑖 + 𝑏2𝑜𝑢𝑡𝑒𝑟𝑐𝑖𝑡𝑦𝑐𝑒𝑛𝑡𝑒𝑟𝑖 + 𝑏3𝑙𝑜𝑐𝑎𝑙𝑐𝑒𝑛𝑡𝑒𝑟𝑖 +

𝑐1𝑐𝑖𝑡𝑦𝑐𝑒𝑛𝑡𝑒𝑟𝑖 ∗ 𝐻𝑡 + 𝑐2𝑜𝑢𝑡𝑒𝑟𝑐𝑖𝑡𝑦𝑐𝑒𝑛𝑡𝑒𝑟𝑖 ∗ 𝐻𝑡 + 𝑐3𝑙𝑜𝑐𝑎𝑙𝑐𝑒𝑛𝑡𝑒𝑟𝑖 ∗

𝐻𝑡 + 𝑎0 + 𝜀𝜄𝑡                     (1)  

The left hand-side variable of this model (lisait) is a binary variable indicating whether a 

GSM zone i is part of a high-high cluster according to the LISA indicator at time t. In order to 

distinguish between working and non-working hours, the model is estimated twice: the first time, 

lisait=1 only for working days while for second time lisait=1 for non-working days. The probability 

of a zone to be part of such a LISA cluster is regressed against three land-use types: city center 

locations (citycenteri), outer city centre locations (outercitycenteri) and local centre locations 

(localcenteri). These variables are based on the official Amsterdam land use delamination (CBS 

2012) and are illustrated in Figure 7. Moreover, in order to capture the temporal variability of the 

effect of the above land-use types on mobile phone usage, the three variables are interacted with 

dummies indicating the different hours of the day.  

Table 1 presents the estimation results of the probit model (1). City centre and outer city 

centre locations are positively related, while local centres are negatively related with the central 

areas delimitation based on mobile phone usage. In other words, the aggregated human activity is 

clustered in city centre and outer city centre locations and not in local centres. Moreover, what is 

interesting in the below analysis is the differences between working and non-working days. As 

indicated in columns (1) and (3), coefficients are higher for non-working days especially for city 

centre locations. This means that the chances that the official city centre locations correspond to 

the delimitation based on the aggregated human activity measured by mobile phone usage are 

higher for non-working days. Moreover, the fit of the model is better during non-working days.  

Columns (2) and (4) also include the interaction terms with dummy variables indicating the 

different hours of the day. Apart from the increase in model’s fit which is not surprising, we can 

also observe a significant increase in the outer city centres coefficients. It seems that after 

addressing the temporal variability of the central locations as reflected in the clustered aggregated 

human activity, the correspondence between official and the empirical delimitation of the outer 

city central location increases with only marginal differences being observed for the city central 

locations. 

In a nutshell, the correspondence between the official and the empirical delimitations of 

central locations is usually higher on non-working. This finding fits well with the outcome of the 

previous section, which indicated that central locations based on the mobile phone usage, are more 

concentrated on non-working days and are more dispersed on working ones. 
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Table 1: Mobile phone usage based central location delimitation against official 
central areas definitions 

  (1) (2) (3) (4) 
Dep. Var.: LISAi for working 

days 
LISAi for non-working 

days 

citycenter 0.672*** 0.599* 1.161*** 1.181*** 

 (0.0738) (0.323) (0.0640) (0.265) 

outercitycenter 1.497*** 2.144*** 1.715*** 2.099*** 

 (0.0549) (0.173) (0.0525) (0.173) 

localcenter -2.432*** -3.564 -2.775*** -3.570 

 (0.496) (3.032) (0.514) (3.018) 

hourly interactions NO YES NO YES 

constant -1.990*** -1.958*** -1.969*** -1.950*** 

 (0.0254) (0.0257) (0.0246) (0.0249) 

Observations 19,560 18,611 19,560 18,582 

Pseudo R-squared 0.117 0.166 0.151 0.181 

Standard errors in parentheses     

*** p<0.01, ** p<0.05, * p<0.1     
 

 

 

 

Finally, in order to better understand the characteristics of the areas where aggregated human 

activity, as reflected in mobile phone usage, is clustered, we create a new variable:  

𝑙𝑖𝑠𝑎_𝑠𝑢𝑚𝑖 = ∑ 𝑙𝑖𝑠𝑎𝑖𝑡
23
𝑡=0    (2) 

In plain English, this variable is simple summation of all the lisai dummy variables and indicates 

how many time each GSM cell i is part of LISA high-high cluster. This variable is calculated twice, 

once for working and once for non-working days. Then, the new variable lisa_sumi is regressed 

against the different land-use types for the city of Amsterdam (CBS 2012): (a) residential areas as 

depicted by the natural logarithm of the number of inhabitants per postal code2 (hab_pc_ln); rail 

networks as the share of a GSM zone’s area covered by rail network land-use type (rail); motorway 

networks as above (motorway); the share of retail land-use type (retail); the share of industrial 

land-use type (industrial); the share of business land-use type (business); the share of central 

location (citycenter); the share of outer city centre location (outercitycenter); and finally the 

variable localcenter illustrates local center locations. This model also controls for the natural 

logarithm of the area of the GSM cells (area_ln).The mathematical formation for this model, 

which is run separately for working and non-working days is presented below: 

 

𝑙𝑖𝑠𝑎_𝑠𝑢𝑚𝑖 = 𝑏1ℎ𝑎𝑏_𝑝𝑐_𝑙𝑛𝑖 + 𝑏2𝑟𝑎𝑖𝑙𝑖 + 𝑏3𝑚𝑜𝑡𝑜𝑟𝑤𝑎𝑦𝑖 + 𝑏4𝑟𝑒𝑡𝑎𝑖𝑙𝑖 + 𝑏5𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙𝑖 +

𝑏6𝑏𝑢𝑠𝑖𝑛𝑒𝑠𝑠𝑖 + 𝑏7𝑐𝑖𝑡𝑦𝑐𝑒𝑛𝑡𝑒𝑟𝑖 + 𝑏8𝑜𝑢𝑡𝑒𝑟𝑐𝑖𝑡𝑦𝑐𝑒𝑛𝑡𝑒𝑟𝑖 + 𝑏9𝑎𝑟𝑒𝑎_𝑙𝑛𝑖 + 𝑎0 + 𝜀𝜄   (3) 

 

                                                           
2 The initial data was provided at a 6-digit post code level (CBS 2012) and then aggregated to the GSM areas. 
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Table 2 presents the results of model (3). We observe that high-high LISA clusters are 

concentrated in GSM zones with high resident population on working days, while the opposite 

effect is observed on non-working days. The impact of commuting is reflected in the high 

coefficient for railways, as it is positive and significant on working days, but non-significant on 

non-working ones. In addition, clustered aggregated human activity does not take place on areas 

with high share of motorways on non-working days, while the same coefficient is non-significant 

on working days. On the contrary, the coefficient of retail becomes positive and significant during 

non-working days when people have more free time. The impact of industrial usage on the 

concentration of LISA high-high clusters is also the expected one as is positive during working 

days and negative during non-working reflecting the working cycle of that type of activities. GSM 

cells with high share of business related activities attract clusters of aggregated human activity 

both during working and non-working days, but, in quantitative terms, the effect of the former is 

almost double the effect of the latter. Finally, the effect of city and outer city central locations 

attract clusters of aggregated human activity as reflected in mobile phone usage. The coefficient 

for city centre location during non-working days is more than double the same coefficient for 

working days, while it is also significantly increased for outer city centre locations. Moreover, 

local centres do not attract LISA high-high clusters. Just like the results of model (1) presented in 

Table 1, the effect of outer city centre locations is higher that the effect of the city centre locations 

highlighting the importance of such locations in the function of Amsterdam. Finally, the negative 

sign of the area coefficients depicts the structure of the GSM zones, the size of which is smaller 

towards the city centre and larger outside Amsterdam in order to accommodate the increased 

mobile phone usage within the city.  

 

Table 2: Summation of LISA high-high clusters and land use types 

  (1) (2) 
Dep. Var.: lisa_sumi for 

working days 
lisa_sumi for non-

working days 

hab_pc_ln 0.0384*** -0.0176*** 

 (0.00535) (0.00675) 

rail 3.458*** 0.955 

 (0.467) (0.589) 

motorway -0.259 -2.789*** 

 (0.307) (0.387) 

retail 0.307 1.008*** 

 (0.210) (0.264) 

industrial 0.779*** -1.359*** 

 (0.146) (0.184) 

business 1.355*** 0.708** 

 (0.254) (0.321) 

citycenter 1.556*** 3.588*** 
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 (0.150) (0.189) 

outercitycenter 4.838*** 6.717*** 

 (0.126) (0.159) 

localcenter -1.034*** -0.847*** 

 (0.215) (0.271) 

area_ln -0.0278 -0.0360 

 (0.0222) (0.0279) 

Constant 0.536* 1.162*** 

 (0.311) (0.392) 

Observations 19,560 19,560 

R-squared 0.139 0.162 

Standard errors in parentheses     

*** p<0.01, ** p<0.05, * p<0.1   

 

 

4. Mobile phone usage and land-use types 

Building upon the results of the previous model, this section aims to advance this analysis 

and explore how mobile phone usage extends in time and space. In order to do so, we estimate the 

empirical model presented below.  

 

𝑒𝑟𝑙𝑖𝑡 = 𝐵1ℎ𝑎𝑏_𝑝𝑐_𝑙𝑛𝑖𝑤𝑑𝑡𝐻𝑡 + 𝐵2𝑟𝑎𝑖𝑙𝑖𝑤𝑑𝑡𝐻𝑡 + 𝐵3𝑚𝑜𝑡𝑜𝑟𝑤𝑎𝑦𝑖𝑤𝑑𝑡𝐻𝑡 + 𝐵4𝑟𝑒𝑡𝑎𝑖𝑙𝑖𝑤𝑑𝑡𝐻𝑡 +

𝐵5𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙𝑖𝑤𝑑𝑡𝐻𝑡 + 𝐵6𝑏𝑢𝑠𝑖𝑛𝑒𝑠𝑠𝑖𝑤𝑑𝑡𝐻𝑡 + 𝐵7𝑐𝑖𝑡𝑦𝑐𝑒𝑛𝑡𝑒𝑟𝑖𝑤𝑑𝑡𝐻𝑡 +

𝐵8𝑜𝑢𝑡𝑒𝑟𝑐𝑖𝑡𝑦𝑐𝑒𝑛𝑡𝑒𝑟𝑖𝑤𝑑𝑡𝐻𝑡 + 𝐵9𝑊𝐸𝐴𝑇𝐻𝐸𝑅𝑡 + 𝐵10𝑀𝑂𝑁𝑇𝐻𝑡 + 𝑎0 + 𝜀𝜄𝑡             (4) 

 

The left-hand side variable represents the total mobile phone activity in terms of Erlangs in 

a GSM zone i during time t. Instead of using the whole dataset with the 815 GSM cells, model (2) 

is estimated for those 258 GSM which are placed within the A10 ring motorway around 

Amsterdam. This choice enables us to focus on a more homogeneous core urban area. Regarding 

the temporal dimension, just like above, our data refer to hourly intervals for the year 2010. Mobile 

phone activity is regressed against the different land-use types for the city of Amsterdam which 

were presented in the previous section. The only difference is that the variable localcitylenteri is 

excluded as there are none local centres within A10. 

Instead of testing the impact of these land-use variables on mobile phone usage in a static 

way, we are interested here in exploring the temporal variability of such relationships. In order to 

do so, the variables representing the different land-use types are interacted with two other 

variables. Variable H is an array of dummy variables representing the different hours of the day. 

These interaction terms will enable to study how different land-use types are related with mobile 

phone usage during the different times of the day. In addition, in order to distinguish the effect of 

working and non-working days, a third interaction is introduced. Variable wd is a dummy variable 
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which takes the value 1 for working days and 0 for non-working days. The latter category includes 

weekends and official holidays. In total, each land use type variable interacts with 24 hourly 

dummies and 1 dummy indicating working days. 

On top of the land-use variables, more control variables are included in the model in order 

to better capture the spatio-temporal relation between mobile phone and usage and land-use types 

within the city of Amsterdam. Firstly, we introduce weather-related variables. The underlying 

assumption is that better weather conditions will increase people’s mobility and the time they 

spend outside buildings. The array WEATHER includes the relevant variables. A set of dummy 

variables with the prefix t indicates different temperature classes: t_sub0 indicates sub-zero 

temperatures; t_0_5 indicates temperatures between zero and 5 degree Celsius; respectively, 

t_5_10 indicates temperatures between five and 10; t_15_20 between fifteen and twenty; and 

t_above20 temperatures above twenty degree Celsius. In addition, r is a dummy variable which 

takes the value 1 when rain occurred during the observation period, while s indicates snow. The 

temporal resolution of these variables matches the mobile phone one as the data was collected on 

an hourly basis (KNMI 2012). However, because of the high spatial resolution of the analysis, 

these variables appeared to be space-invariant, as temperature, precipitation and snow data for 

Amsterdam are only collected from one weather station which covers all the study areas and is 

located in Schiphol airport.  

Secondly, MONTH is an array representing dummy variables for the different months. This 

captures the seasonality of our mobile phone communications. For instance, during summer 

months more mobility is expected and therefore, mobile phone usage is likely to be higher during 

these months. Finally, the variable area_ln controls for the area of the GSM zone and is expressed 

as a natural logarithm (m2).  

Because of the triple interaction terms, in total this model includes 402 variables: 8 land-use 

variables * 2 (working and non-working days) * 24 (hours of the day) + 7 weather variables + 10 

dummy variables for the months3 + 1 variable reflecting the natural logarithm of the GSM cell 

area. For presentation reasons, the overall regression table is placed in the Annex, while the 

significant coefficients of the interaction terms are presented in Figure 8.  

In total, Figure 8 decomposes the heartbeat of Amsterdam. Starting with Figure 8a, we see 

the temporal variation of mobile phone usage within residential areas. The variable hab_pc_ln 

represents the official residential population in each GSM cell. Mobile phone usage is higher 

during working days early in the morning (6am-9am) reflecting the morning rush of working days. 

After 9am and until 8pm, the mobile phone usage is higher on non-working days for residential 

areas. This is not surprising, as it reflects the more relaxed daily pattern of non-working days. 

                                                           
3 The data only includes mobile phone usage for eleven months for 2010 and one month is excluded due to co-linearity.   
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However, in total the elasticity of residential areas is rather low as it varies between -0.002 and 

0.112 and, in any case, is the lowest among the different land-use type variables included in this 

model. 

Not surprisingly, the highest sensitivities are observed for the transport related variables. 

Figure 8b and 8c indicate how mobile phone usage varies at an hourly basis on working and non-

working areas in rail and motorway land-use types. The pattern is similar for both land-use types, 

both in qualitative and quantitative terms. Between 6am-10am for rail networks and 6am-8am for 

motorways mobile phone usage increases dramatically and reaches the first peak of the day. Then, 

mobile phone usage reaches a ceiling and increases again to reach the highest peak of the working 

days between 4-5pm. Then, mobile phone usage drops continuously until night with a small 

plateau between 8-9pm. Mobile phone usage is only higher on non-working days after midnight 

and until 5am. In quantitative terms, motorway land-use types are related to higher mobile phone 

usage than railways at peak times (5.718 and 4.486 respectively). On the other hand, lower 

(negative) coefficients are related to motorways during night time than with railways. The latter 

might also be related to railway stations (such as Amsterdam Central Station) which always attract 

population. Regarding non-working days, mobile phone traffic follows a similar pattern with 

working days, but with substantially lower coefficients which depict considerably lower phone 

activity.  

The next variables studied here are industrial and business land-use activity types in Figure 

8d and 8e. Both of these land-use types reflect similar patterns regarding mobile phone usage. On 

working days positive coefficients, which are related with positive impact on mobile phone 

activity, which occur between 6am-10pm (7am for business areas). Then mobile phone activity 

peaks between 9am-3pm for industrial and 9am-5pm for business areas. Although the latter has a 

wider window of peak traffic, the former has a slightly higher peak. Before 6am (industrial) and 

7am (business), the coefficients are negative indicating very limited mobile phone activity in these 

areas. However, it is only at night time when working days’ coefficients are lower than non-

working ones. During day times, non-working day patterns are similar to those on working ones, 

but in quantitative terms mobile phone activity is much lower. At peak time (10am), one per cent 

increase in business related land-use cover in a GSM cell, will result in 280 per cent increase in 

mobile phone activity measured in Erlangs. However, the increase will only reach 84.8 per cent 

for a non-working day. 

The next three land-use variables appear to have a similar impact on mobile phone usage, as 

can be seen from Figures 6f, 6g and 6h. These are locations related to retail activities, city and 

outer city center functions. Main characteristic of these three variables is the rather small difference 

between working and non-working day coefficients, with the former being higher than the latter 

after 5am or 6am. Regarding peak times, retail and local centers have their peak between 4pm-
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5pm, at the end of the working day. However, although mobile phone activity drops after 5pm for 

retail areas, it remains rather high for local centres even until 8pm, indicating post-work activity 

at a neighbourhood level. On the other hand, city centre locations have a stable peak between 

10am-5pm, which gradually decreases after that time. Finally, another important element of retail 

and city centre locations is that coefficients remain positive and relatively high (at least for non-

working days) between midnight and 3am, reflecting night life leisure activities.   

Regarding the other control variables of the model (see Appendix for the coefficients), 

temperature has a rather linear effect on aggregated human activity as depicted by mobile phone 

usage. Dummies indicating temperatures below 10 degrees Celsius have a negative impact on the 

use of mobile phone usage, while for dummies depicting temperatures above 15 degrees the impact 

is positive. In quantitative terms, temperature has the highest effect for the sub-zero temperature 

dummy (-0.321) followed by the effect of temperatures above 20 degrees (0.186). The effect of 

temperature is not surprising, as hot weather can be related with higher personal mobility (e.g. 

leisure trips) and therefore higher mobile phone usage (Fridstrøm 1999; Koetse and Rietveld 

2009). After controlling for temperature, the effect of the different month dummies indicates the 

impact of temporal factors not related to weather conditions. Such factors might be related with 

school cycles and summer holidays as illustrated by the fact that the lowest impact is observed for 

months July and August (-0.267 and -0.277).  

In total, the above analysis provides a statistical representation of the heart-beat of 

Amsterdam. Mobile phone usage varies across space and time. While residential areas represent 

the lowest end of the spectrum, transport related land-use types are related with the highest mobile 

phone usage. The former could be related with the increased use of land line telephony and other 

communications means such as Voice over IP in residential areas instead of mobile phones. The 

latter highlights the impact of mobile phone telephony in urban places, as this trend has converted 

transport hubs and corridors from anchor points of the daily commuting patterns to 

telecommunication portals. Regarding the other land-use types included in the model, the gap 

between working and non-working days becomes evident in industrial and business locations, 

while retail and central areas have similar patterns. Finally, the difference between central and 

outer-city central locations is interesting, with the latter lagging behind the former by a coefficient 

difference of 0.5 during working days. 

 

 

5. Conclusions 

This study has demonstrated the unprecedented research potential of mobile phone data in 

mapping out the space-time dynamics of daily activities in cities. In particular, the popularity and 

near-to-100 percent penetration of mobile phones has generated a wealth of bottom-up, digitally 
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collected data of high spatio-temporal resolution that lend themselves for advanced applications 

in urban mobility and land-use management. This paper has provided statistical empirical evidence 

on how urban mobile phone usage varies across space and time. In addition, it has raised questions 

on the definition of central locations and how they are related to mobile usage, assuming that 

mobile phone usage represents human presence. 

The approach presented in this study has highlighted the importance of space-time models 

in post-modern urban studies. The high spatio-temporal resolution of the mobile phone data 

provides an in depth understanding of how land-use types are related with urban dynamics. This 

understanding moves beyond the Cartesian perception of urban spaces and instead provides 

insightful narratives of urban places. From a spatial perspective, transport related land-use types 

were always associated with commuting and mobility patterns. However, the high granularity of 

the mobile phone data reveals the different human perceptions of such places, according to which 

transport related land-use types promote the use of mobile phone telephone: from a phone call to 

indicate the end of the working day to other type of social or even professional calls. 

The analysis reveals the usability of mobile phone data to quantify fast urban dynamics. This 

knowledge can feed urban authorities and planning agencies with precious knowledge about 

population concentration and its dynamics. Such knowledge can be directly utilised in a planning 

framework as a supporting framework for urban policies related with issues such as public 

transportation and land use design. Moreover, such analysis can provide planning authorities with 

valuable input regarding fast urban dynamics. For instance, the popularity of urban areas might 

change much faster than census circles and therefore such changes cannot be depicted by official 

statistics. The use of data from mobile phone operators as well as other types of big data in urban 

modelling can provide urban authorities with the necessary signals in order to address such rapid 

changes.  

In regards to future research, the high spatial and temporal resolution of these data call for a 

more in depth modelling of the dynamics of central locations within cities. As this paper 

highlighted, a static approach of the core areas of human activity prevents us from fully 

understanding urban structure and cities because of their – hidden – dynamic nature. We are now 

able to adopt a dynamic perspective in urban analysis, because of the abundance of relevant data 

and also because of methodological advances, in order to understand cities and urban systems in a 

way that we were not able before. 
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Table 1: Central locations and mobile phone activity 

  (1) (2) (3) (4) 

 working days non-working days 

citycenter 0.672*** 0.599* 1.161*** 1.181*** 

 (0.0738) (0.323) (0.0640) (0.265) 

outercitycenter 1.497*** 2.144*** 1.715*** 2.099*** 

 (0.0549) (0.173) (0.0525) (0.173) 

localcenter 
-

2.432*** -3.564 
-

2.775*** -3.570 

 (0.496) (3.032) (0.514) (3.018) 

hourly interactions NO YES NO YES 

constant 
-

1.990*** 
-

1.958*** 
-

1.969*** 
-

1.950*** 

 (0.0254) (0.0257) (0.0246) (0.0249) 

Observations 19,560 18,611 19,560 18,582 

Pseudo R-squared 0.117 0.166 0.151 0.181 

Standard errors in parentheses     

*** p<0.01, ** p<0.05, * p<0.1     
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Table 2: Summation of LISA high-high clusters and land use 
types 

  (1) (2) 
Dep. Var.: lisa_sum for 

working 
days 

lisa_sum for 
non-working 

days 

hab_pc_ln 0.0384*** -0.0176*** 

 (0.00535) (0.00675) 

rail 3.458*** 0.955 

 (0.467) (0.589) 

motorway -0.259 -2.789*** 

 (0.307) (0.387) 

retail 0.307 1.008*** 

 (0.210) (0.264) 

industrial 0.779*** -1.359*** 

 (0.146) (0.184) 

business 1.355*** 0.708** 

 (0.254) (0.321) 

citycenter 1.556*** 3.588*** 

 (0.150) (0.189) 

outercitycenter 4.838*** 6.717*** 

 (0.126) (0.159) 

localcenter -1.034*** -0.847*** 

 (0.215) (0.271) 

area_ln -0.0278 -0.0360 

 (0.0222) (0.0279) 

Constant 0.536* 1.162*** 

 (0.311) (0.392) 

Observations 19,560 19,560 

R-squared 0.139 0.162 

Standard errors in parentheses     

*** p<0.01, ** p<0.05, * p<0.1   
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Figure 1: GSM cells rank plot based on average Erlangs for Amsterdam (2010) 
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Figure 2: The heartbeat of Amsterdam: the temporal variability of average Erlangs on an hourly 

basis 
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Figure 3: Mobile phone usage during the day in Amsterdam 

  

03:00 (Gini: 0.577) 09:00 (Gini: 0.350) 

  

12:00 (Gini: 0.370) 17:00 (Gini: 0.368) 

  

19:00 (Gini: 0.431) 23:00 (Gini: 0.534) 

Note: Mobile phone usage measured as Erlangs per hour at the level of the cell 
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Figure 4: Central GSM zones – LISA high-high clusters 

  

03:00 on working days 03:00 on non-working days 

  

12:00 on working days 12:00 on non-working days 

  

19:00 on working days 19:00 on non-working days 

Note: Mobile phone usage measured as Erlangs per hour at the level of the cell; LISA p<0.01 
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Figure 5: Spatial median of LISA high-high clusters at an hourly level 

  

Figure 5a: working days Figure 5b: non-working days 

Note: Bold line represent the A10 motorway and the numbers the different times of the spatial medians of the 

LISA high-high clusters 
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Figure 6: Mean distances in meters of the LISA high-high clusters from the Amsterdam Central 

Station at an hourly basis 
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Figure 7: Amsterdam’s central locations according to the official land use delimitation 
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Figure 8: Model (4) coefficients for different land use types at an hourly basis (B1-B8) 

  

(a) Residential (b) Rail 

  

(c) Motorway (d) Industrial 
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(e) Business (f) Retail 

  

(g) City center (h) Outer city center 

Note: vertical axis represent b coefficients, horizontal the different times of the days; the gap in the lines replresent 

non-significant coefficients 
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Appendix 1: Average car flow in Amsterdam motorways per hour in 2010 

 
Source: (NDW 2012)  
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Appendix 2: Estimation of (4) based on OLS 

time land use non-working days working days   land use non-working days working days 

00 

h
a

b
it

a
n

ts
 (

ln
) 

0.082*** 0.083***   

in
d

u
st

ri
a

l 
(s

h
a

re
) 

-1.037*** -1.246*** 

 (40.24) (60.56)  (-20.39) (36.44) 

01 0.080*** 0.070***  -1.746*** -2.282*** 

 (39.35) (50.78)  (-34.32) (66.35) 

02 0.066*** 0.045***  -2.523*** -3.394*** 

 (32.42) (32.87)  (-49.33) (99.17) 

03 0.059*** 0.024***  -3.376*** -4.388*** 

 (28.75) (17.81)  (-66.37) (128.27) 

04 0.053*** 0.007***  -3.716*** -4.491*** 

 (25.99) (4.78)  (-73.06) (131.32) 

05 0.038*** -0.002*  -3.794*** -3.248*** 

 (18.58) (-1.75)  (-74.6) (95) 

06 0.020*** 0.016***  -3.490*** -1.079*** 

 (9.97) (11.52)  (-68.62) (31.56) 

07 0.020*** 0.048***  -2.671*** 0.803*** 

 (9.88) (35.15)  (-52.52) (23.48) 

08 0.041*** 0.070***  -1.662*** 2.078*** 

 (19.89) (51.05)  (-32.48) (60.68) 

09 0.068*** 0.085***  -0.558*** 2.841*** 

 (33.1) (61.99)  (-10.91) (83.1) 

10 0.087*** 0.092***  0.134*** 3.103*** 

 (42.69) (67.14)  (2.63) (90.74) 

11 0.099*** 0.094***  0.501*** 3.191*** 

 (48.14) (69.03)  (9.8) (93.3) 

12 0.103*** 0.096***  0.677*** 3.120*** 

 (50.25) (70.17)  (13.25) (91.23) 

13 0.102*** 0.096***  0.652*** 3.181*** 

 (50.06) (70.25)  (12.75) (93.03) 

14 0.101*** 0.096***  0.541*** 3.173*** 

 (49.28) (70.45)  (10.58) (92.98) 

15 0.101*** 0.096***  0.518*** 3.096*** 

 (49.18) (70.26)  (10.13) (90.57) 

16 0.099*** 0.098***  0.432*** 2.929*** 

 (48.57) (72.09)  (8.44) (86.26) 

17 0.100*** 0.100***  0.379*** 2.549*** 

 (48.93) (73.48)  (7.42) (75.07) 

18 0.100*** 0.099***  0.307*** 1.887*** 

 (49) (73.07)  (6.01) (55.59) 

19 0.102*** 0.099***  0.282*** 1.415*** 

 (49.86) (73.02)  (5.51) (41.59) 

20 0.107*** 0.106***  0.354*** 1.167*** 
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 (52.15) (78.18)  (6.88) (34.3) 

21 0.109*** 0.112***  0.178*** 1.021*** 

 (53.46) (81.85)  (3.49) (29.93) 

22 0.102*** 0.105***  -0.121** 0.608*** 

 (49.89) (77.18)  (-2.37) (17.79) 

23 0.094*** 0.096***  -0.583*** -0.088** 

  (45.7) (70.41)   (-11.4) (2.57) 

00 

ra
il

w
a

y
s 

(s
h

a
re

) 

1.869*** 1.653***  

b
u

si
n

es
s 

(s
h

a
re

) 

-1.465*** -1.860*** 

 (14.04) (18.54)  (-26.08) (49.33) 

01 1.465*** 0.785***  -2.502*** -3.183*** 

 (11.01) (8.77)  (-44.41) (83.86) 

02 0.534*** -0.261***  -3.372*** -4.349*** 

 (3.99) (-2.93)  (-59.71) (115.12) 

03 -0.073 -1.269***  -3.815*** -5.132*** 

 (-0.55) (-14.24)  (-67.91) (135.84) 

04 -0.242* -1.242***  -4.529*** -5.526*** 

 (-1.82) (-13.94)  (-80.61) (146.2) 

05 -0.576*** -0.922***  -4.737*** -5.289*** 

 (-4.33) (-10.35)  (-84.33) (139.53) 

06 -0.287** -0.249***  -4.706*** -3.633*** 

 (-2.15) (-2.79)  (-83.59) (96.34) 

07 -0.253* 1.378***  -3.508*** -0.546*** 

 (-1.9) (15.44)  (-62.45) (14.47) 

08 0.092 2.773***  -2.015*** 1.480*** 

 (0.68) (31.09)  (-35.56) (39.17) 

09 0.850*** 3.574***  -0.739*** 2.431*** 

 (6.35) (40.11)  (-13.09) (64.46) 

10 1.747*** 3.866***  0.167*** 2.681*** 

 (13.06) (43.43)  (2.95) (71.13) 

11 2.297*** 4.077***  0.620*** 2.795*** 

 (17.16) (45.76)  (10.97) (74.11) 

12 2.550*** 4.097***  0.848*** 2.712*** 

 (19.06) (45.98)  (15.02) (71.88) 

13 2.689*** 4.202***  0.847*** 2.758*** 

 (20.1) (47.19)  (15) (73.18) 

14 2.725*** 4.178***  0.724*** 2.785*** 

 (20.36) (47.03)  (12.81) (73.98) 

15 2.719*** 4.239***  0.606*** 2.741*** 

 (20.32) (47.61)  (10.74) (72.75) 

16 2.732*** 4.307***  0.615*** 2.616*** 

 (20.42) (48.69)  (10.9) (69.86) 

17 2.786*** 4.486***  0.655*** 2.501*** 

 (20.82) (50.71)  (11.59) (66.77) 

18 2.739*** 4.211***  0.408*** 2.128*** 
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 (20.47) (47.6)  (7.23) (56.83) 

19 2.623*** 3.562***  0.210*** 1.522*** 

 (19.6) (40.17)  (3.72) (40.53) 

20 2.519*** 3.314***  -0.004 1.026*** 

 (18.73) (37.38)  (-0.06) (27.33) 

21 2.547*** 3.213***  0.042 0.893*** 

 (19.04) (36.13)  (0.74) (23.7) 

22 2.409*** 2.966***  -0.276*** 0.583*** 

 (18) (33.35)  (-4.89) (15.5) 

23 2.103*** 2.474***  -0.941*** -0.300*** 

 (15.72) (27.78)  (-16.66) (7.98) 

00 

m
o

to
rw

a
y

s 
(s

h
a

re
) 

-0.974*** -1.584***   

ci
ty

 c
en

te
r 

(s
h

a
re

) 

1.533*** 1.166*** 

 (-8.48) (-20.59)  (52.2) (58.84) 

01 -3.754*** -4.354***  0.888*** 0.231*** 

 (-32.68) (-56.19)  (30.21) (11.57) 

02 -4.893*** -6.067***  0.479*** -0.477*** 

 (-42.37) (-78.71)  (16.23) (24.04) 

03 -5.713*** -7.045***  0.184*** -0.890*** 

 (-49.73) (-91.43)  (6.28) (44.91) 

04 -6.086*** -7.468***  -0.134*** -1.200*** 

 (-52.99) (-96.96)  (4.55) (60.51) 

05 -6.078*** -6.590***  -0.490*** -1.683*** 

 (-52.91) (-85.56)  (16.68) (84.87) 

06 -5.678*** -2.110***  -1.039*** -0.890*** 

 (-49.43) (-27.4)  (35.39) (44.92) 

07 -4.058*** 1.100***  -0.773*** 0.607*** 

 (-35.33) (14.27)  (26.33) (30.58) 

08 -2.276*** 4.073***  0.163*** 1.825*** 

 (-19.69) (52.82)  (5.52) (91.98) 

09 -0.707*** 4.796***  1.099*** 2.518*** 

 (-6.12) (62.28)  (37.22) (127.03) 

10 0.453*** 4.814***  1.794*** 2.810*** 

 (3.92) (62.53)  (60.76) (141.79) 

11 1.162*** 4.938***  2.196*** 2.958*** 

 (10.06) (64.11)  (74.34) (149.16) 

12 1.515*** 4.991***  2.397*** 2.992*** 

 (13.12) (64.8)  (81.15) (150.91) 

13 1.580*** 5.048***  2.459*** 3.021*** 

 (13.68) (65.56)  (83.27) (152.5) 

14 1.543*** 5.086***  2.450*** 3.019*** 

 (13.36) (66.18)  (82.97) (152.63) 

15 1.450*** 5.231***  2.437*** 3.024*** 

 (12.56) (67.93)  (82.53) (152.65) 
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16 1.479*** 5.420***  2.445*** 3.022*** 

 (12.8) (70.88)  (82.8) (153.51) 

17 1.607*** 5.718***  2.440*** 3.047*** 

 (13.92) (74.77)  (82.62) (154.76) 

18 1.516*** 5.084***  2.369*** 2.974*** 

 (13.13) (66.48)  (80.24) (151.06) 

19 1.221*** 3.684***  2.229*** 2.759*** 

 (10.58) (48.07)  (75.48) (139.83) 

20 1.162*** 2.754***  2.166*** 2.632*** 

 (10.01) (35.93)  (72.97) (133.4) 

21 0.941*** 2.495***  2.138*** 2.599*** 

 (8.15) (32.48)  (72.41) (131.32) 

22 0.531*** 1.986***  1.983*** 2.436*** 

 (4.6) (25.83)  (67.16) (123.14) 

23 -0.224* 0.765***  1.684*** 2.004*** 

  (-1.94) (9.94)   (57.02) (101.21) 

00 

re
ta

il
 (

sh
a

re
) 

2.031*** 1.249***   

o
u

te
r 

ci
ty

 c
en

te
r 

(s
h

a
re

) 

1.351*** 1.310*** 

 (60.65) (54.87)  (43.52) (62.8) 

01 1.566*** 0.605***  0.809*** 0.533*** 

 (46.76) (26.47)  (26.05) (25.39) 

02 1.173*** -0.021  0.291*** -0.202*** 

 (34.85) (-0.94)  (9.33) (9.68) 

03 0.686*** -0.642***  -0.188*** -0.823*** 

 (20.49) (-28.27)  (6.05) (39.44) 

04 0.279*** -1.386***  -0.620*** -1.230*** 

 (8.32) (-61.01)  (19.97) (58.95) 

05 -0.306*** -2.617***  -0.942*** -1.342*** 

 (-9.13) (-115.19)  (30.34) (64.33) 

06 -1.408*** -2.153***  -1.029*** -0.696*** 

 (-42.03) (-94.76)  (33.16) (33.39) 

07 -1.346*** -0.238***  -0.549*** 0.467*** 

 (-40.21) (-10.48)  (17.69) (22.36) 

08 -0.639*** 0.990***  0.363*** 1.524*** 

 (-18.91) (43.49)  (11.63) (72.94) 

09 0.410*** 1.918***  1.222*** 2.064*** 

 (12.17) (84.39)  (39.15) (98.93) 

10 1.341*** 2.464***  1.805*** 2.294*** 

 (39.82) (108.45)  (57.87) (109.99) 

11 1.968*** 2.773***  2.131*** 2.403*** 

 (58.45) (122.02)  (68.29) (115.16) 

12 2.441*** 2.994***  2.263*** 2.427*** 

 (72.51) (131.68)  (72.52) (116.29) 

13 2.688*** 3.120***  2.252*** 2.415*** 
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 (79.82) (137.5)  (72.17) (115.81) 

14 2.826*** 3.174***  2.188*** 2.403*** 

 (83.94) (139.94)  (70.14) (115.42) 

15 2.949*** 3.238***  2.129*** 2.428*** 

 (87.61) (142.65)  (68.25) (116.43) 

16 2.994*** 3.279***  2.127*** 2.469*** 

 (88.93) (145.27)  (68.17) (119.19) 

17 2.953*** 3.320***  2.155*** 2.531*** 

 (87.73) (147.09)  (69.09) (122.17) 

18 2.762*** 3.157***  2.135*** 2.590*** 

 (82.04) (139.87)  (68.45) (125.05) 

19 2.519*** 2.857***  2.119*** 2.543*** 

 (74.83) (126.31)  (67.91) (122.48) 

20 2.401*** 2.677***  2.133*** 2.518*** 

 (70.93) (118.32)  (68) (121.28) 

21 2.279*** 2.540***  2.113*** 2.506*** 

 (67.7) (111.8)  (67.74) (120.38) 

22 2.148*** 2.363***  1.974*** 2.341*** 

 (63.81) (104.19)  (63.26) (112.42) 

23 1.950*** 2.046***  1.671*** 1.938*** 

    (57.92) (90.05)   (53.57) (92.99) 

  t_sub0 -0.321***   March 0.158*** 

   (-58.7)    -36.14 

  t_0_5 -0.185***   April 0.151*** 

   (-47.91)    -34.23 

  t_5_10 -0.132***   May 0.081*** 

   (-49.63)    -18.43 

  t_15_20 0.079***   June -0.019*** 

   (28.21)    -3.87 

  t_above20 0.186***   July -0.267*** 

   (44.03)    -51.22 

  r 0   August -0.277*** 

   (0.06)    -55.55 

  s 0.037***   September -0.096*** 

   (5.48)    -20.84 

  area_ln 0.648***   October -0.041*** 

   (573.58)    -9.4 

  January 0.284***   November Omitted 

   (45.35)   Constant -8.586*** 

  February 0.233***    -576.32 

   (46.86)   R-squared 0.7 

      N 1,874,207 

Note: t test in parentheses, variables starting with t indicate temperature dummies, r is rain, s is snow and area_ln is the 

natural logarithm of the area of the GSM cell; months indicate dummies for the different months 
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