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Climate constrains the evolutionary history
and biodiversity of crocodylians
Philip D. Mannion1,*, Roger B.J. Benson2,*, Matthew T. Carrano3, Jonathan P. Tennant1, Jack Judd1

& Richard J. Butler4

The fossil record of crocodylians and their relatives (pseudosuchians) reveals a rich

evolutionary history, prompting questions about causes of long-term decline to their

present-day low biodiversity. We analyse climatic drivers of subsampled pseudosuchian

biodiversity over their 250 million year history, using a comprehensive new data set.

Biodiversity and environmental changes correlate strongly, with long-term decline of

terrestrial taxa driven by decreasing temperatures in northern temperate regions, and

biodiversity decreases at lower latitudes matching patterns of increasing aridification.

However, there is no relationship between temperature and biodiversity for marine

pseudosuchians, with sea-level change and post-extinction opportunism demonstrated to be

more important drivers. A ‘modern-type’ latitudinal biodiversity gradient might have existed

throughout pseudosuchian history, and range expansion towards the poles occurred during

warm intervals. Although their fossil record suggests that current global warming might

promote long-term increases in crocodylian biodiversity and geographic range, the ’balancing

forces’ of anthropogenic environmental degradation complicate future predictions.
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O
ngoing climate change, with projected global warming
of 2.0–4.8�C over the next century1, could have
profound repercussions for crocodylian distributions

and biodiversity. As ectotherms, living crocodylians are
environmentally sensitive2, and 10 of the 23 extant species are
at high extinction risk (http://www.iucncsg.org/; 2015). Ecological
models can predict the responses of extant species distributions to
rising temperatures. However, only the fossil record provides
empirical evidence of the long-term interactions between climate
and biodiversity3, including during intervals of rapid climate
change that are potentially analogous with the present4.

Pseudosuchia is a major reptile clade that includes all
archosaurs closer to crocodylians than birds, and made its
first fossil appearance nearly 250 million years ago, at the time
of the crocodile–bird split5. Crocodylians, the only extant
pseudosuchians, are semi-aquatic predators with low
morphological diversity, and a tropically restricted geographic
range (a band of B35� either side of the Equator)6. Although
often regarded as ‘living fossils’, the pseudosuchian fossil record
reveals a much richer evolutionary history and high ancient
biodiversity. This poses a key question about the drivers of long-
term evolutionary decline in groups that were highly diverse in
the geological past, especially given the extraordinary high
biodiversity (B10,000 species) of the only other extant
group of archosaurs, birds7. Over 500 extinct pseudosuchian
species are known (this study), with a broader latitudinal
distribution6 and a wider array of terrestrial ecologies than
their living counterparts8,9. Several diverse lineages also
independently invaded marine environments10. Body plans and
feeding modes showed much higher diversity, including flippered
taxa and herbivorous forms10–13, and body sizes varied from
dwarfed species o1 m in length14, to giants such as Sarcosuchus,
which reached around 12 m in length and weighed up to 8 metric
tons15. Climate has often been proposed to have shaped
pseudosuchian biodiversity through time6,8,16, and the group’s
geographic distribution over the past 100 million years has been
used as evidence in palaeoclimatic reconstructions2.

Here we examine the effect of climate on spatiotemporal
patterns in pseudosuchian biodiversity over their 250 million year
history, using a comprehensive fossil occurrence data set. Our
study is the first to analyse climatic drivers of pseudosuchian
biodiversity through the group’s entire evolutionary history,
applying rigorous quantitative approaches to ameliorate for
uneven sampling across both time and space. Furthermore, this
is the only comprehensive, temporally continuous fossil occur-
rence dataset for a major extant vertebrate group: equivalent
datasets are not currently available for mammals, birds,
squamates, teleosts, or other groups with evolutionary histories
of similar durations.

Results and discussion
The fossil record at face value. An uncorrected global census of
pseudosuchian genera (Fig. 1; and species, Supplementary Fig. 1)
shows an apparent trend of increasing biodiversity through the
Mesozoic, punctuated by a latest Triassic crash, a severe decline
across the Jurassic/Cretaceous (J/K) boundary and the Cretaceous/
Paleogene (K/Pg) mass extinction, from which recovery only
started in the early Neogene. However, application of sampling
standardisation reveals a different and more nuanced story (Fig. 2).

Biodiversity in the early Mesozoic. Subsampled pseudosuchian
biodiversity reached a peak during the earliest intervals of the
group’s history and shows a long-term pattern of gradual decline
towards the present day (Fig. 2). Substantial short-term volatility
around this trend, indicated by a low coefficient of determination

(linear regression: N¼ 38, R2¼ 0.221; Fig. 2), suggests that this
overall pattern was punctuated by the extinctions and radiations
of individual clades (see below). Nevertheless, for much of the
Triassic, non-marine pseudosuchian biodiversity exceeded that of
nearly all later time intervals (Fig. 2a), indicating exceptionally
rapid early diversification19. We also find evidence for a strong
palaeotropical biodiversity peak during the Late Triassic
(Fig. 3a,b), similar to the modern-day latitudinal biodiversity
gradient20.

Only the crocodylomorph clade survived the Triassic/Jurassic
mass extinction (201 Myr ago)5. During the Jurassic, non-marine
crocodylomorph biodiversity remained depressed relative
to the Triassic pseudosuchian peak (Fig. 2a). However, the
group radiated into new morphospace21, and thalattosuchian
crocodylomorphs invaded the marine realm by the late Early
Jurassic10,12. Subsequently, marine crocodylomorph biodiversity
increased until at least the Late Jurassic16 (Fig. 2b), tracking a
general trend of rising eustatic sea levels22. The earliest
Cretaceous fossil record is considerably less informative than
those of many other intervals23. However, our subsampled
estimates are congruent with observations of phylogenetic lineage
survival16,24,25, and indicate that both marine and non-marine
crocodylomorph biodiversity declined across the J/K boundary
(Figs 2 and 3a), including the extinction of teleosauroid
thalattosuchians16,25.

Sampling of palaeotropical non-marine crocodylomorphs is
limited throughout the Jurassic–Cretaceous (Figs 3a and 4a).
However, good sampling of terrestrial early Late Cretaceous
North African crocodylomorphs inhabiting a low-latitude (18�N),
semi-arid biome8,14 (Fig. 4b) indicates subsampled biodiversity
levels comparable to those of palaeotemperate regions in other
Cretaceous time slices (Fig. 2a). Furthermore, sub-palaeotropical
(24–28�S) South American crocodylomorphs of the Late
Cretaceous Adamantina Formation were exceptionally
diverse8,26, raising the possibility that pseudosuchians in fact
reached their highest biodiversities in tropical environments
during the mid-Cretaceous greenhouse world. In contrast to
previous work6, this suggests that there was no palaeotropical
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trough in Cretaceous crocodylomorph biodiversity, differing
from the pattern recovered for contemporaneous dinosaurs27.
Previous work on both crocodylomorphs6 and dinosaurs27 found
low palaeotropical biodiversity by effectively ‘averaging’ global
biodiversity across palaeolatitudinal bands, applying sampling
standardization indiscriminately, regardless of the distribution
of data quality. In contrast, here we used an approach in
which regional biodiversities were estimated only when sufficient
data were available to do this reliably, using a coverage estimator
(see Methods). New and improved data, coupled with more
appropriate methods, likely explains the differences between our
results and that of previous work on crocodylomorphs6, but it
remains to be seen whether the difference with the dinosaurian
pattern27 is genuine.

Biodiversity across the K/Pg boundary. The Cretaceous
witnessed the non-marine radiations of notosuchians8,19,26 and
eusuchians, with crocodylians diversifying from within Eusuchia
during the Late Cretaceous (Santonian–Maastrichtian)9,28.
Despite this, subsampled non-marine biodiversity decreased

from the Campanian into the Maastrichtian in both Europe
and North America (Figs 2a and 3c), on the B9 million-year
timescale resolution of our study. This decrease in biodiversity
prior to the K/Pg mass extinction event (66 Myr ago) mirrors
the pattern seen in North American mammals29 and some
dinosaur groups30. However, rather than signalling that a
protracted global catastrophe caused the K/Pg mass extinction,
this latest Cretaceous decline of crocodylomorphs tracks a
long-term trend towards cooler temperatures through the Late
Cretaceous31,32. This is consistent with the ‘background’ coupling
between biodiversity and global climate observed throughout the
late Mesozoic and Cenozoic (see below), and likely characteristic
of the entire evolutionary history of Pseudosuchia.

The effect of the K/Pg mass extinction on crocodylomorphs has
previously been perceived as minor or non-existent19,28, with any
extinction temporally staggered33. However, several non-marine
groups with high biodiversity before the boundary became extinct
(most notably all non-sebecid notosuchians34), and only two clades
(the marine dyrosaurids and terrestrial sebecids) survived alongside
crocodylians28,35. Nevertheless, the extinctions of these groups, and
other non-marine crocodylomorph taxa were balanced by rapid
radiations of the three surviving clades in the early
Paleocene19,28,34,36, including substantial range expansions of
marine dyrosaurids36,37 and terrestrial alligatoroids28 into South
America. Range expansions and increases in regional taxon counts
among dyrosaurids35–37 and gavialoid crocodylians38 led to a
substantial increase in global marine crocodylomorph biodiversity
by the late Paleocene (Fig. 2c), with crocodylomorphs potentially
benefiting from the extinction of many other marine reptiles at the
K/Pg boundary36,39.

Non-marine biodiversity and palaeotemperature. Relative
changes in subsampled non-marine biodiversity in both North
America and Europe track each other and the d18O palaeo-
temperature proxy17,40 through the Cenozoic (Fig. 2a; Table 1).
The relationship between these variables is characterised by near-
zero, negative serial correlation for North American data, and
high, negative serial correlation for European data. The
occurrence of near-zero estimated serial correlation suggests
links between high amplitude, long-term patterns, with weaker
correspondence between low amplitude, short-term fluctuations.
Nevertheless, a similar relationship is still recovered when serial
correlation is assumed to equal zero, and for the European data
when it is assumed to equal one (Table 1), demonstrating
robustness of this result to statistical approach. Furthermore, the
recovery of near-identical patterns of relative standing
biodiversity from separate European and North American
occurrence datasets suggests that our subsampling approach is
effective in recovering a shared underlying biodiversity pattern.

Paleogene non-marine biodiversity. These North American and
European patterns indicate that non-marine crocodylomorphs
remained diverse at temperate palaeolatitudes (30–60�) during
the early Paleogene greenhouse world (66–41 Myr ago). There is
no evidence for transient biodiversity increases driven by the
short-term Paleocene–Eocene Thermal Maximum (56 Myr ago),
possibly because the timescale of species origination and
phenotypic divergence that would allow speciation to be
recognisable in the fossil record is longer than that of this rapid
climatic event (45 �C in o10,000 years4). Nevertheless, early
Eocene crocodylomorphs expanded their palaeogeographic range
to at least 75�N7 (Fig. 4a,c), coinciding with the sustained
high temperatures of the Early Eocene Climatic Optimum
(53–50 Myr ago)41. A major European and North American
biodiversity peak during the middle Eocene (48–41 Myr ago;
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Figure 2 | Subsampled pseudosuchian genus biodiversity. (a) Non-

marine biodiversity within continental regions for a subsampling quorum

level of 0.4, and palaeotemperature (d18O) curve for the last B70 Myr

ago17 (with weighted means (yellow circles)). (b) Global marine

biodiversity for a subsampling quorum level of 0.4 (blue circles) and sea

level curve18 (with weighted means (yellow circles)). Adamantina,

Adamantina Formation subsampled crocodylomorph biodiversity; EECO,

Early Eocene Climatic Optimum; MECO, Mid-Eocene Climatic Optimum;

MMCO, Mid-Miocene Climatic Optimum; PETM, Paleocene-Eocene

Thermal Maximum. Linear regression for pooled regional subsampling

results on geological age in millions of years: log10 subsampled

genera¼0.0015� ageþ0.244 (P¼0.002; N¼ 38; R2¼0.221).
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Fig. 2a) is composed primarily of crocodylians, with sebecids,
previously known only from South America34, also present
in Europe42. However, although this interval includes the short-
term hyperthermal Mid-Eocene Climatic Optimum, the overall
trend is one of cooling17, indicating a temporary decoupling of
temperature and biodiversity. At temperate palaeolatitudes, a
stark late Eocene–Oligocene (41–23 Myr ago) decline to
unprecedentedly low biodiversity (Figs 2a and 3d) coincides
with global cooling, the development of a strengthened latitudinal

temperature gradient43, and the onset of Antarctic glaciation17.
Unfortunately, southern hemisphere and palaeotropical (0–30�)
sampling (Fig. 3d) is inadequate to determine additional patterns
of Paleogene biodiversity, including the form of palaeolatitudinal
biodiversity gradients. This also means that we cannot determine
whether the correlation between palaeotemperature and
non-marine biodiversity was restricted to northern temperate
palaeolatitudes, or was a global pattern, during the Paleogene. If
the latter is shown to have been the case, then we should
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ultimately expect to find extremely high Paleogene biodiversity in
currently poorly sampled regions such as South America.
Alternatively, temperature change might drive pseudosuchian
biodiversity only at limiting, low–medium temperatures. At high,
non-limiting temperatures, other factors such as aridity might
become limiting, as suggested by low-latitude Cenozoic
biodiversity patterns described below.

Cenozoic marine biodiversity. Marine crocodylomorph biodi-
versity decreased in the early Eocene (Fig. 2b), with the loss of
basal gavialoids (‘thoracosaurs’) and decline in dyrosaurids, with
the latter group becoming extinct in the middle–late Eocene16,28,37.
This observation conflicts with the conclusions of a recent study
that did not use subsampling approaches16, the authors of which
proposed that marine crocodylomorphs generally diversified
during warm intervals. Furthermore, contrary to the findings of
those authors16, there is no statistical relationship between the
d18O palaeotemperature proxy and marine crocodylomorph

biodiversity in any of our analyses, whether or not subsampling
is applied (Table 2). This differs from the approach of Martin
et al.16, who found correlations between their palaeotemperature
proxy and marine crocodylomorph biodiversity, but only once
metriorhynchoid thalattosuchians were excluded. They used this
finding as evidence for an assertion that metriorhynchoids had a
distinct biology from other marine crocodylomorphs. However, a
more conservative reading of these results is that marine
crocodylomorph biodiversity was not consistently linked to
temperature over the studied interval.

Instead, our analyses find strong, significant relationships
between subsampled marine genus counts and eustatic sea level
estimates of Miller et al.18 when including a ‘phase’ variable
(see Methods) to distinguish the amplitude of thalattosuchian
biodiversity patterns from that of stratigraphically younger
marine radiations (Table 2). This regression model explains
more than 60% of the variance in subsampled marine
biodiversity. Directly counted marine genera have a marginally
significant relationship with sea level (Table 2). The negative
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Table 1 | Results of generalised least squares regression of log10 subsampled non-marine genus biodiversity (quorum¼0.4) on
the d18O palaeotemperature proxy of Zachos et al.17

Environment Region Palaeotemp. N GLS OLS (untransformed) OLS (fd)

Phi Interc. Slope Intercept Slope R2 Interc. Slope R2

Continental North
America

Zachos 9 �0.11 0.42 �0.13** (0.023) 0.41 �0.13** (0.041) 0.39 �0.03 0.03 (0.853) �0.16

Continental Europe Zachos 6 �0.86 1.14 �0.50** (o0.001) 1.09 �0.47** (0.003) 0.89 0.12 �0.83** (0.038) 0.75

‘Palaeotemp.’ gives the source of d18O data; ‘GLS’ denotes generalised least squares regression incorporating a first-order autoregressive covariance model; OLS denotes ordinary least squares regression;
‘fd’ indicates that first-differencing was applied to the input data series; phi is the serial correlation coefficient70; ‘Intercep.’ is the y-intercept; R2 is the adjusted R2 of ordinary least squares regression, and
comparable R2 values cannot be computed for generalise least squares. Notes: **significant at alpha¼0.05.
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slopes of the ‘phase’ variable in these regression models indicate
that thalattosuchians attained higher biodiversities relative to sea
level than did stratigraphically younger marine crocodylomorphs.
Our results support previous observations that continental
flooding, through eustatic sea level change, shaped the
evolution of marine shelf biodiversity44,45, including that of
near-shore marine reptiles22. Other extrinsic factors might also be
important; for example, it is likely that post-extinction
opportunism contributed to high biodiversity of early Paleogene
marine crocodylomorphs, which show a substantial post-
extinction biodiversity increase that was facilitated by inter-
continental range expansion36,39. Marine crocodylomorph
biodiversity remained low through the remainder of the
Paleogene and early Neogene (Fig. 2b), comprising a small
number of gavialoids46 and tomistomines28,47, before their
present day restriction to non-marine environments.

Neogene non-marine biodiversity. Temperate palaeolatitudinal
biodiversity remained low among Neogene non-marine croco-
dylomorphs, although a minor peak might be coincident with the
Mid-Miocene Climatic Optimum (15 Myr ago; Fig. 2a). There is
clear evidence for latitudinal range contraction through time
both on the continents (Fig. 4) and in the marine realm
(Supplementary Fig. 5). The most poleward crocodylomorph
occurrences declined to their approximate present day limits
(35� N and S) by the late Miocene (Fig. 4a,d), coincident with
the onset of Arctic glaciation17. This is despite the occurrence
of non-crocodylomorph-bearing fossil localities documenting
higher palaeolatitude tetrapod faunas, and indicates that
crocodylomorph range contraction is not a sampling artefact.

Neogene terrestrial biodiversity of crocodylians was substantially
higher in the palaeotropics than in temperate regions (Fig. 2a),
with sufficient data to demonstrate a palaeotropical peak from the
early Miocene (Fig. 3e–g). High palaeotropical biodiversity in
the middle–late Miocene is linked to the timing of the rapid
radiation and dispersal of Crocodylus48 and other crocodyloid
lineages49, and the presence of highly diverse sympatric
assemblages of crocodylians in the proto-Amazonian mega-
wetlands of South America50,51. Nevertheless, palaeotropical
crocodylomorph biodiversity declined in the late Miocene of

Africa (Figs 2a and 3e), coincident with the formation of the
Sahara Desert52 and sub-Saharan expansion of savannah
environments53. A similar decline ensued in the post-Miocene
palaeotropics of South America (Figs 2a and 3e), and has been
attributed to hydrographic changes and the disappearance of
the mega-wetlands52,53, driven by Andean uplift54. The overall
dwindling of crocodylomorph biodiversity towards the present day
tracks the late Cenozoic cooling trend17, increasing aridification52

and the rising predominance of grassland ecosystems during the
late Neogene53, the Quaternary Ice Ages17 and presumably the
more recent impact of human activity.

The future of crocodylians. Our findings show that the biodi-
versity of non-marine pseudosuchians has been strongly linked to
both spatial and temporal temperature variation, as well as the
spatial distribution of aridity, throughout the group’s evolutionary
history. This can be demonstrated most clearly during the
Cenozoic, where the long-term decline of crocodylomorphs at
temperate latitudes over the last 50 million years has been driven
by the descent into the modern-day icehouse world, and the
geographic pattern of decline among palaeotropical taxa in the
Neogene matches patterns of aridification in Africa and South
America. As the Earth continues to warm, perhaps heading
towards a greenhouse world comparable to that of the early
Paleogene4, we might therefore expect that higher temperatures
should promote long-term increases in crocodylian biodiversity
and the expansion of the group’s latitudinal range outside of the
tropics, as was the case for much of their Mesozoic and early
Cenozoic history. However, in contrast to these earlier times,
predictions of the distribution of their future biodiversity are
complicated by the impact of human activity on habitat loss and
fragmentation, which are likely to reduce the rate and magnitude
of crocodylian range expansion1, especially into populated regions.

Methods
Pseudosuchian occurrences data set. Following extensive work to ensure that
occurrences and taxonomic opinions were consistent and up-to-date with the
literature55, the Paleobiology Database (PaleoDB; http://paleobiodb.org) includes a
near-comprehensive dataset of all published pseudosuchian occurrences spanning
the Middle Triassic through to the Pleistocene, a period of nearly 250 million years.
Pseudosuchian body fossil occurrences that could be assigned to genera (including

Table 2 | Results of generalised least squares regression of log10 subsampled marine genus biodiversity (quorum¼0.4) on the
d18O palaeotemperature proxy of Prokoph et al.40 and estimated sea level18.

Environment Region Independent variable N GLS OLS (untransformed)

Phi Int. Slope Int. Slope R2

Subsampled.
Marine Global Prokoph d18O 12 0.68 0.26 �0.05 (0.227) 0.32 �0.03 (0.539) -0.06
Marine Global Prokoph d18O 12 0.88 0.25 �0.05 (0.188) 0.31 �0.03 (0.581) -0.17

þ phasew �0.09 (0.503) 0.003 (0.972)
Marine Global Sea level 12 0.47 0.32 0.001 (0.159) 0.33 0.002 (0.114) 0.15
Marine Global Sea level 12 �0.01 0.46 0.005** (0.002) 0.46 0.005** (0.002) 0.61

þ phasew �0.25** (0.006) �0.249** (0.006)

Counted.
Marine Global Prokoph d18O 18 0.57 0.64 0.047 (0.500) 0.67 0.067 (0.373) -0.01
Marine Global Prokoph d18O 18 0.52 0.87 0.066 (0.331) 0.91 0.093 (0.184) 0.19

þ phasew �0.302 (0.155) �0.311** (0.042)
Marine Global Sea level 18 0.72 0.60 0.004 (0.172) 0.62 o0.000 (0.978) -0.06
Marine Global Sea level 18 0.54 0.89 0.005* (0.068) 0.96 0.006** (0.047) 0.30

þ phasew �0.439* (0.050) �0.545** (0.008)

‘GLS’ denotes generalised least squares regression incorporating a first-order autoregressive covariance model; OLS denotes ordinary least squares regression; ‘fd’ indicates that first-differencing was
applied to the input data series; phi is the serial correlation coefficient70; ‘Int.’ is the y-intercept; R2 is the adjusted R2 of ordinary least squares regression, and comparable R2 values cannot be computed
for generalised least squares. ; **significant at alpha¼0.05 (significance).
wincluding a binary variable indicating the Jurassic–Early Cretaceous marine radiation as ‘‘1’’ and the Late Cretaceous–Cenozoic marine radiation as ‘2’
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qualifiers such as cf. and aff.) were downloaded from this database (comprising
2,767 fossil occurrences representing 386 genera), accessed via Fossilworks
(http://fossilworks.org), on 23 February 2015.

Genera were used so as to incorporate specifically indeterminate material,
enabling us to include more data points in our analyses, and also to avoid problems
with using species as a unit for estimating palaeobiodiversity56. This is especially
pertinent to analyses of the pseudosuchian fossil record, where certain parts of the
tree have been the focus of intensive taxonomic work at the species level (for
example, Thalattosuchia57), whereas other clades are composed primarily of
monospecific genera (for example, Notosuchia26), and some groups have received
relatively little attention (for example, Tomistominae47). Despite this issue,
fluctuations in the numbers of genera and species are near-identical in both the
marine and non-marine realms (Supplementary Fig. 1). The sole exception to this
pattern is that there is a continued increase in non-marine species numbers in our
most recent time bin (Supplementary Fig. 1), in contrast to the decline that occurs
in genera (Fig. 1; Supplementary Fig. 1). We also plotted ratios of non-marine
species to genera through time, which shows no significant trend (Supplementary
Fig. 2). However, the Neogene differs from earlier periods in pseudosuchian history
in having high species to genus ratios (Supplementary Fig. 2). We suggest that these
deviations in the Neogene reflect the relative ease of recognizing modern species in
the recent fossil record, with most living species belonging to just a small number
of genera, and is therefore best considered a ‘Pull of the Recent’ type effect.

Extant genera, especially Alligator and Crocodylus, have been used as
‘wastebasket taxa’ for indeterminate or non-referable fossil species. Therefore, we
modified occurrences of Crocodylus and Alligator before analysis, as explained in
the Supplementary Methods. We also reviewed Cretaceous thalattosuchian
occurrences, to help constrain marine crocodylomorph biodiversity over the J/K
boundary (Supplementary Methods).

The resultant pseudosuchian data set was subdivided into non-marine
(terrestrial plus freshwater; Supplementary Data 1) and marine taxa
(Supplementary Data 2) using an amended version of a list of the names of
Mesozoic–Ypresian tetrapod taxa presented in Benson et al. (in review).
Environmental assignment (marine versus non-marine) for post-Ypresian taxa was
based primarily on facies data recorded in the PaleoDB and information presented
in refs 16,28,46. Vélez-Juarbe et al.46 demonstrated the marine affinities of several
late Oligocene–Neogene gavialoids, including Aktiogavialis, Piscogavialis and
Siquisiquesuchus; these were omitted from the marine crocodylomorph data set
of Martin et al.16 without comment, but are incorporated as marine taxa here.
Although some stratigraphically older species currently included within Tomistoma
were probably marine47, most occurrences (including the extant species
T. schlegelii) are non-marine, or their environments are unknown; as such, here we
treat Tomistoma as non-marine.

Subsampling protocol. Pseudosuchian genera were assigned to approximately
equal-length (9 million years) stratigraphic time bins (Supplementary Table 1 and
Supplementary Data 3). Although there is variation in time bin duration, there is
no significant trend of interval duration through time (Supplementary Fig. 3). We
applied equal coverage or ‘shareholder quorum’ subsampling (SQS)58 to ameliorate
the effects of uneven sampling and to reconstruct temporal patterns in past
biodiversity. SQS tracks the ‘coverage’ of each subsampling pool represented by the
taxa that have been drawn58. Coverage is the sum of the proportional frequencies
of the taxa sampled in each time bin, and coverage of observed data is modified to
estimate the coverage of the real taxon distribution for each sample pool. This is
achieved by multiplying coverage of the observed data by Good’s u: the proportion
of occurrences representing non-singleton taxa58,59. Each interval can therefore
only be subsampled to a maximum quorum level (i.e. amount of coverage) equal to
Good’s u for that interval, meaning fewer time intervals/geographical regions can
be subsampled at higher quorum levels. We used a quorum level of 0.4 for reported
analyses, a level which recovers similar patterns to those at higher quorum levels
based on marine invertebrate data sets58,59, and unreported analyses of our
pseudosuchian data. The substantial advantage of SQS over other subsampling
methods, such as classical rarefaction, is that it is robust to the tendency of those
methods to ‘flatten out’ biodiversity curves58. It has been suggested that SQS can
remove genuine biodiversity signals when they are driven by environmental
variables that jointly drive geological sample availability45. This does not seem to be
the case in our data, as the correlations of environmental variables with subsampled
biodiversity estimates are stronger than those with face value biodiversity counts
(Tables 1 and 2). Furthermore, independent data on pseudosuchian biodiversity in
the northern temperate regions, from North America and from Europe, yield
highly congruent subsampled biodiversity curves. This is consistent with the
effective estimation of a shared underlying biodiversity pattern, although we
acknowledge that the adequacy of the SQS method would benefit from more
detailed investigation, building on simulation studies60.

In determining Good’s u, singleton taxa were defined based on occurrences
within collections61, rather than publications58,59. Entire fossil collections,
containing lists of species occurrences, were drawn62. Because poorly studied
spatiotemporal regions could appear well sampled for stochastic reasons, returning
spuriously low subsampled biodiversity estimates, time bins with fewer than
six publications were excluded from our analyses. Whenever a collection
corresponding to a new publication was drawn, subsequent collections were drawn
from that publication only until all or three collections from that publication had

been sampled61. Results are based on 1,000 subsampling trials. The PERL script
used for implementing SQS is provided in Supplementary Data 4, and was written
and provided by J. Alroy.

Patterns in non-marine and marine taxa were analysed separately, to avoid
problems with sampling from heterogeneous environments58,59. Marine
pseudosuchian genera, which have wide geographic distributions, were analysed as
a global data set. However, high levels of endemism are evident in non-marine
genera, which were therefore analysed across a set of continental regions (Africa,
Asia, Australasia, Europe, North America and South America) representing
regional biotas of approximately equal geographic spread. For each continental
region, we selected countries that were well-sampled and cohesive through
geological time, and therefore valid for deep time analyses. We also attempted to
make the geographic spread of data relatively even among continents by excluding
far-outlying countries (Supplementary Methods and Supplementary Table 2).

In addition to producing sub-sampled terrestrial and marine biodiversity curves
through time, we also analysed the palaeolatitudinal distribution of terrestrial
biodiversity. This was implemented through plots of subsampled regional
biodiversity against the regional palaeolatitudinal centroid, as well as plots of
subsampling curves within time bins (Fig. 3 and Supplementary Fig. 4). Plots of the
palaeolatitudinal spread of all pseudosuchian and all tetrapod occurrences through
time were also produced for non-marine (Fig. 4a) and marine taxa (Supplementary
Fig. 5). Collections in the Paleobiology Database are assigned present-day
coordinates and geological ages. These two pieces of information are combined with
palaeogeographic rotation models provided by C. Scotese (http://www.scotese.com)
to obtain reconstructed palaeogeographic positions for each occurrence.

Correlation of biodiversity with palaeotemperature and sea level. We com-
pared subsampled genus biodiversities at a quorum of 0.4 to d18O palaeo-
temperature proxies and sequence stratigraphic eustatic sea level estimates in two
sets of analyses: (1) terrestrial pseudosuchian biodiversity in North America and
Europe were each compared to the Zachos et al.17 compendium of benthic
foraminifera isotopic values (Supplementary Data 5), which spans the latest
Maastrichtian to Cenozoic; and (2) global marine pseudosuchian genus biodiversity
was compared to the eustatic sea level estimates of Miller et al.18 (Supplementary
Data 6) and d18O from the Prokoph et al.40 compendium (Supplementary Data 7),
which includes Jurassic–Recent temperate palaeolatitudinal sea surface isotopic
values from a range of marine organisms, adjusted for vital effects.

Although a contentious issue in crocodylomorph phylogeny, we follow the most
recent placement of Thalattosuchia as a basal clade outside of Crocodyliformes63,
rather than within Neosuchia (for example, ref. 26). Consequently, we consider
crocodylomorphs to have independently become adapted to marine life in the
Jurassic (Thalattosuchia) and Cretaceous (pholidosaurids, dyrosaurids and
eusuchians), representing separate temporal and evolutionary replicates that are
characterised by distinct groups with possible different biodiversity dynamics. We
therefore also analysed relationships between marine biodiversity and climatic
variables including a binary variable denoting ‘1’ for Jurassic–Hauterivian (mid-
Early Cretaceous) intervals and ‘2’ for stratigraphically younger intervals.
Supplementary Figure 6 shows the palaeotemperature and sea level curves with the
weighted means used in our time series regressions. Supplementary Fig. 7 shows
plots of subsampled marine biodiversity versus d18O and sea level, with and
without the application of first differencing.

The similarity of these independent isotopic databases17,40 for the overlapping
portion of geological time suggests that both capture broad patterns of
global climate change. Martin et al.16 compared Jurassic–late Eocene marine
crocodylomorph biodiversity with a sea surface temperature (SST) curve
established from d18O values of fish teeth from the Western Tethys. One potential
problem with this method is that the fish teeth are from a variety of different
species and genera, with Lécuyer et al.64 noting that species-specific differences in
fractionation of d18O can occur. In addition, there might be differences between the
isotopic fractionation that occurs between phosphate and water, and that which
takes place in the fish teeth64. Despite these potential issues, their SST curve
broadly follows the d18O curves of Prokoph et al.40 and Zachos et al.17, suggesting
that the overall pattern between them is congruent. However, the benthic d18O
dataset for deep sea palaeotemperatures of Zachos et al.17 is much better resolved
than that of the SST curve, and the Prokoph et al.40 data set spans a larger time
interval. Consequently, we consider these two datasets17,40 better suited to testing
for a correlation between palaeotemperature and biodiversity than the SST
curve16,64. Time-weighted mean values of each of these two data sets were
calculated and used in the regression analyses below.

Statistical comparison was made using time series approaches, specifically
generalised least squares (GLS) regression incorporating a first-order autoregressive
model (for example, refs 22,65,66), and implemented in the R package nlme, using
the gls() function67. This estimates the strength of serial correlation in the
relationship between variables using maximum likelihood during the regression
model-fitting process, correcting for the non-independence of adjacent points
within a time series. We compared the results to those of ordinary least squares
regression using untransformed data, which assumes serial correlation¼ 0. Because
intervals lacking marine pseudosuchians, and intervals that did not meet our
quorum level due to data deficiency were excluded, our regression analyses ask
whether pseudosuchian diversity was correlated to environmental variables when
pseudosuchians were present at all.
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All analyses were performed in R version 3.0.2 (ref. 68) and using a customized
PERL script provided by J. Alroy. Additional information is provided in the
Supplementary Methods.
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