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Abstract 

A transparent graphene oxide layer on a non-conductive poly (ethylene terephthalate) 

film was treated by a new active screen plasma technology at temperatures ranging 

from 100ºC to 200ºC in pure hydrogen and in a gas mixture of hydrogen and nitrogen. 

To study the thermal reducing effects of the active screen plasma, parallel thermal 

annealing treatments were also carried out at the same temperatures. UV-visible 

absorption spectra, X-ray diffraction, Raman spectroscopy, X-ray photoelectron 

spectroscopy (XPS) and electrical properties confirmed that the graphene oxide can be 

effectively reduced by the active screen plasma treatments. Detailed XPS quantitative 

analyses have revealed that the carboxylic groups are not stable, and their amount can 

be decreased effectively by the active screen plasma treatments. Only about one third of 

the carbonyl type C=O can be reduced at the same time. In addition to the reduction, 

simultaneous multi-element doping of GO with nitrogen from the gas supply and with 

Fe, Cr and Mo from the stainless steel active screen was also detected by XPS.  
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1. Introduction 

Graphene has received significant attentions in the past years due to its 

excellent charge carrier mobility, thermal conductivity, optical transparency 

and mechanical properties.[1, 2] Various synthesis methods [3-5] have been 

proposed to obtain high-quality graphene with large-size and/or large quantity. 

Among these methods, the chemical solution route through the precursor 

graphene oxide (GO) gained great successes as it enables the massive 

production and the chemical functionalization of graphene. 

GO has a similar sheet-like structure as graphene and each GO nano-sheet can 

be considered as a multifunctional network.[6, 7] It contains several oxygen 

functionalities including hydroxyls, epoxides, diols, ketones and carboxyls, 

which are attached to the carbon backbone. The reduced GO (rGO) can then be 

obtained by removing the oxygen functionalities to recover the physical 

properties of graphene. A diversity of reducing methods[8] have been 

developed such as chemical agent reaction,[9] thermal annealing,[10] 

microwave irradiation,[11] photocatalysis,[12] electrochemical reaction,[13] 

and solvothermal reduction.[14] The most widely used methods are the 

chemical agent reaction and the thermal annealing. 

Chemical reagent reduction, involving hydrazine,[9, 15-17] metal hydrides,[18] 

alkaline (NaOH),[19] ascorbic acid (Vitamin C)[20, 21] and hydroiodic acid 

(HI),[22] etc., is based on their chemical reactions with GO. Although large 

quantities of rGO can be obtained due to the facile solution-based reduction, 

these chemical agents are usually hazardous and sometimes harmful to the 

support for the graphene and the environment. On the other hand, thermal 

annealing is effective in reducing GO, [10, 15, 17, 23-26] and the reduction 

extent can be improved with the increase of the temperature. But its drawbacks 

are also obvious as heating requires large energy consumption and critical 

conditions.[8] Moreover, GO on the substrates with low-melting points, such as 

polymers for flexible electronic devices, cannot be effectively reduced without 

substrate degradation. 
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Plasma treatments provide one promising option to circumvent these problems, 

as an eco-friendly and energy-saving alternative to existing processes. 

Gomez-Navarro et al. [6] successfully reduced GO by hydrogen (H2) plasma,  

further investigated its atomic scale features. The plasma reduced GO layers 

were found to comprise of defect-free graphene areas with sizes of a few 

nanometres interspersed with defective areas dominated by clustered pentagons 

and heptagons. Wang et al. [27] realized reducing and nitrogen doping 

(N-doping) of GO by a plasma treatment. In another study, GO powders were 

simultaneously reduced and N-doped at near room temperature by employing a 

plasma-assisted microwave technology.[28] 

It is known that doping is a common strategy in tuning the properties of 

carbon-based nanomaterial. The doping methods for this two-dimension 

material are different from the conventional methods for bulk materials. Doping 

of graphene is a key issue to its future applications, [29] e.g., in field effect 

transistors, super-capacitors, and lithium batteries because it can confer new 

chemistry and physics to graphene. For example, N-doping can tune the 

chemically derived functionalized graphene from being a p-type to n-type 

semiconductor. Plasma treatments have proven its feasibility in doping 

graphene. Bertóti et al.[30] reported that 15 at.% nitrogen (N2) was implanted 

into the graphene surface using a radio frequency activated low pressure N2 

plasma. N-doped graphene was also obtained by exposing thermally reduced 

GO/glassy carbon to N2 plasma by Shao et al.[31] It was found that N-doped 

graphene exhibited a much higher electrocatalytic activity toward H2O2 

reduction than graphene, and a much higher durability and selectivity than the 

widely-used expensive Pt. Wang et al. [27] also obtained N-doped graphene 

with different percentage (from 0.11 to 1.35 at.%) of N in N2 plasma by 

controlling the exposure time. 

Notwithstanding the fact that these plasma treatments demonstrated their 

successes in doping and reducing, they required a conductive electrode such as 

glassy carbon,[27, 31] or pre-reducing to recover the conductivity,[32] which 

has eliminated or at least retarded the applications of graphene on 

non-conductive substrates such as for transparent and flexible graphene-based 
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electronic devices; in addition, all these plasma treatments can, to date, dope 

graphene only by nitrogen but multi-element doping is desirable for 

multi-functionalizing graphene. 

A new type of plasma activation, active screen (AS) plasma technology, has 

been developed in the past few years to overcome the drawbacks of traditional 

direct current (DC) glow discharge plasma treatments, such as arcing, hollow 

cathode and edge effects.[33-36] In an AS treatment, the worktable (or the 

sample) is not the cathode as used in DC treatments but a metallic mesh 

surrounding the samples and the worktable is serving as cathode. Glow 

discharge, therefore, does not take place on the surface of the samples and the 

worktable but on the metal mesh cylinder called as the active screen. The 

drawbacks of tradition DC plasma can be overcome, furthermore 

nonconductive materials, such as polymers,[33] biomaterials,[37] can be treated 

in the AS plasma. Currently, there is still argument on the mechanisms on the 

AS plasma due to various plasma surface interactions. It has been generally 

accepted that a mechanism of sputtering and redeposition is of fundamental 

importance.[38] This could allow for tailoring the surface chemical 

compositions and physical properties of carbon-based materials by changing 

two facile parameters, the plasma gas composition and the screen material.  

Therefore, it might be feasible to combine the reducing, N-doping and possibly 

the metallic atoms-doping (from the metallic mesh) of GO on a transparent 

nonconductive polymeric substrate in one process. In this study, the feasibility 

of reducing and multi-element doping the GO on a non-conductive 

poly(ethylene terephthalate) (PET) substrate has been investigated for the first 

time using the advanced active screen plasma technology. Parallel heat 

treatments were also carried out to differentiate the plasma effects from the 

thermal effects. Detailed chemical analysis was carried out using XPS and 

Raman to study the mechanisms involved in reducing and multi-element doping 

of graphene.  
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2. Experimental 

2.1 Preparation of GO and GO/PET films  

The graphene oxide was prepared at Southeast University using the modified 

Hummer’s method.[39] Natural graphite powder with an average size of 30 µm 

(1g), NaNO3 (1g) and KMnO4 (6g) were slowly added to H2SO4 (230ml) at 

0°C (ice bath). Then the mixture was stirred at 0°C for 2hrs and then at 36°C 

for 2hrs. The solution was then slowly dropped into icy distilled water (230ml) 

to obtain a graphite oxide suspension. It was further treated with H2O2 to reduce 

the residual permanganate and manganese dioxide, washed with deionized 

water and centrifuged to completely remove residual salts and acids. The 

dispersion was ultrasonically treated for 15 min to exfoliate the GO nanosheets. 

Finally, the GO/PET film samples were prepared by drop casting the dispersion 

(600 µl) with a GO concentration of 0.25 mg/ml on a rectangle PET substrate 

(Lumirror T60, Toray Industries, Inc., Japan) with a size of 20x20 mm, and a 

thickness of 188 µm. These film samples were then dried at 60 ºC. The 

thickness of the GO layer is measured to be about 20 µm. 

2.2 Active screen plasma treatment  

Active screen plasma treatments were carried out at University of Birmingham 

using a lab scale active-screen plasma device within a traditional plasma 

nitriding unit (40 kW Klöckner DC plasma unit). The plasma is formed on the 

screen made from a stainless steel mesh with the size of holes about 8 mm that 

acts as cathode and the wall of the chamber is the anode. As the table is isolated 

from the chamber, the GO/PET samples remain in a floating potential as shown 

in Figure 1. The sample-mesh distance (from the top of mesh to the table) is 

about 2.5 cm. 
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Figure 1. Schematics of active screen plasma treatments 

As listed in Table 1, two types of active screen plasma treatments were carried 

out: (i) in pure H2 (the ASP series) and (ii) in a gas mixture of 75%H2 and 25% 

N2 (the ASPN series). To differentiate plasma effects from temperature effects, 

some samples were also heat-treated in pure H2 using a vacuum furnace (the HT 

series). The treatments were carried out at temperatures ranging from 100ºC to 

200ºC (which is below the melting point of the PET substrate) for 1 hour at a 

pressure of 400Pa (4mbar). In the following text, these treated samples were 

named according to their code (Table 1). 

Table 1. Sample code and treatment conditions 

Sample Code Treatment Gas composition Temperature (°C) 

GO As-cast/untreated N/A N/A 

HT100 Thermal annealing 100%H2 100 

HT200 Thermal annealing 100%H2 200 

ASP100 AS plasma treatment 100%H2 100 

ASP150 AS plasma treatment 100%H2 150 

ASP200 AS plasma treatment 100%H2 200 

ASPN100 AS plasma treatment 25%N2+75%H2 100 

ASPN150 AS plasma treatment 25%N2+75%H2 150 

ASPN200 AS plasma treatment 25%N2+75%H2 200 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

8 

2.3 Characterisation 

The prepared GO dispersion was characterized using optical microscope (OM, 

MV5000, Jiangnan Noval Optical Co., China) and transmission electron 

microscope (Tecnai G2-T20, FEI Co., USA). The OM and TEM samples were 

prepared by dissolving a small amount of dispersion in ethanol, and then one 

droplet was spread over a silicon wafer and copper mesh with carbon film. 

After dried in the ambient condition, the samples were investigated.  

The transparency of as-cast and treated GO/PET samples was characterized 

using ultraviolet–visible spectroscopy (UV-vis, UV-6000, Shanghai metash 

instruments Co., China). X-ray diffraction (XRD) was conducted using a 

D8-Discover X-ray spectrometer (Bruker Co., German), with a Cu Kα radiation. 

Raman analysis was also carried out (LabRAM HR800, Horiba Jobin Yvon, 

Japan) using an excitation wavelength of 514.5 nm. Two edges of the 

graphene/PET samples were coated with silver with a distance about 13 mm, 

and the electrical conductivity was measured. 

Detailed chemical analysis was performed by X-ray photoelectron spectroscopy 

(XPS). Spectra were recorded on a Kratos XSAM 800 spectrometer, operated at 

fixed analyser transmission (FAT) mode using Mg Kα1,2 (1253.6 eV) excitation. 

The pressure of the analysis chamber was lower than 1·10-7 Pa. Wide scan 

spectra were recorded for all samples in the 100–1300 eV kinetic energy range 

using 80 eV pass-energy, with 0.5 eV step and 0.5 s dwell time. 

High-resolution spectra of photoelectron lines of the main constituent elements 

of the carbon-containing layers and contaminations were recorded at 40 eV 

pass-energy by 0.1 eV step and minimum 1 s dwell time. The 

charge-referencing was made setting the maximum of the C1s to 284.6±0.2 eV. 

At this referencing, the two types of C–C bonds usually found in graphene type 

carbon materials are at the most accepted energy. The position for aromatic 

C–Car (sp2) at 284.3±0.2 eV coincides with the most accepted literature data 

[40, 41], generally applied also by the authors [42, 43], for the undisturbed 

graphene and the GO. The ‘amorphous’ C–Ca (sp3) carbon is located at 

285.0±0.2 eV [40, 41, 44-47]. The chemical states of the constituent elements 
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were determined or assigned according to the available references.[44-47] 

Quantitative analysis, based on peak area intensities (after removal of the 

Shirley-type background), was performed by the Vision 2 and XPS MultiQuant 

programs [48, 49] applying experimentally determined photo-ionization 

cross-section data of Evans et al. [50] and asymmetry parameters of Reilman et 

al.[51] 

3. Results and Discussion 

3.1 Morphology of prepared GO 

For the OM assessments, the GO dispersion was spread over a silicon wafer 

and it was found that their sizes were similar, ~2 µm as indicated by arrows in 

Figure 2a. Further TEM analysis was carried out and the results are shown in 

Figure 2b. The deposited GO nanosheets showed a smooth and flat appearance 

and there were some wrinkles on the nanosheets since the 2D structure becomes 

more thermodynamically stable by bending and the functional groups and 

defects distort the flat graphene plane. The selected-area electron diffraction 

(SAED) of the GO flakes revealed the multi spot patterns implying that the GO 

flakes are not monolayered but multi-layered. [52] By measuring the thickness 

of the wrinkles, the number of the atomic monolayers was calculated to be 

around 4 for the majority of the GO flakes, assuming the thickness of GO 

monolayer is 0.8 nm. [53] 

 

Figure 2. (a) Optical analysis and (b) TEM image of as-deposited GO with insert of 

the selected area electron diffraction pattern 
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3.2 Transparency  

The as-received PET film (PET-AR) showed a high transparency as shown in 

Figure 3. The GO/PET sample showed a light brown color and good 

transparency, ~80% at wavelength 800nm. After ASP and ASPN treatments, 

the color of the GO/PET samples changed to light silver grey, suggesting that 

the samples were reduced and part of the graphene conductivity was recovered 

due to the mobility of electrons.[8] With the increase of the treating temperature, 

the transmission was decreased for both ASP and ASPN treatments, suggesting 

the higher temperature can reduce the GO more effectively. It is also noticed 

that that the transmission for ASP samples was less than that of ASPN samples.  

 

Figure 3. UV-vis results of the PET, GO/PET and the plasma treated samples 

 

3.3 Electrical properties  

The electrical resistance of the samples, as shown in Figure 4, significantly 

decreased with the increase of temperature of the different treatments. For the 

ASP/ASPN processes, the resistance decreased from 12.6 MΩ to 50 kΩ. It was 

also noticed that the ASP treated samples consistently showed lower resistance 

than the HT samples, and the ASPN treated samples exhibited the lowest 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

11 

resistance. These results indicated that the temperature is not the only dominant 

factor. The plasma and gas composition can effectively tune the reducing extent 

of GO materials. To clarify these, further detailed chemical analysis was carried 

out. 

 

Figure 4. Electrical resistances of the treated samples 

 

3.4 XRD results 

XRD patterns showed that the peaks for PET are at 17.7º, 23.0º, 26.0º and 29.4º 

which also appeared for all GO/PET samples in Figure 5a. However, there is a 

GO peak at 11.2º for the GO/PET film in Figure 5b. After the ASP100 

treatment, this peak shifted to the slightly higher angle and became broader. 

With the further increase of the temperature, this peak disappeared suggesting 

that the reduction was more efficient at the higher temperature. In comparison 

of the different processes at 200 ºC, the HT200, ASP200 and ASPN200 

samples showed the similar XRD patterns.  
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Figure 5. XRD spectra of the PET, GO/PET and the treated samples 

 

3.5 Raman results 

The Raman spectrum for as-cast GO in Figure 6 contains two broad G and D 

bands and two low intensity 2D and D+G bands, similar to the result reported 

in reference.[54] For the plasma treated samples, the G and D bands exhibit the 

similar characteristics to those of the as-cast GO, while the 2D and D+G bands 

are too weak to be identified. It is known [25, 55] that the G band is related to 

the vibration of sp2-hybridized carbon, and the prominent D band corresponds 

to the structural imperfections created partly by the attachment of oxygen, 

hydroxyl and epoxide groups to the carbon backbone. The area under the D 

band was integrated from 1250 to 1450 cm-1 and that under the G band was 

integrated from 1500 to 1650 cm-1 as demonstrated in Figure 6, and the area 

ratio of D/G is shown in the parenthesis for each spectrum. It can be seen that 

the ratio was increased after all plasma treatments, similar to references.[9, 25, 

56] This can be attributed to the formation of a number of defects at the surface 
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of GO during reduction. The G band for ASPN at 200 ºC even showed slightly 

blue shift which was attributed to a graphitic ‘self-healing’ by Kudin et al.[57] 

It suggested that GO was possibly reduced more effectively at the high 

temperature and the assistance of N in the plasma treatments. 

 

Figure 6. Normalized Raman spectra of the GO and the plasma treated samples with 

the area ratio D/G being provided in parenthesis  

 

3.6 Composition and chemical states determined by XPS  

The survey photoelectron spectra of the untreated and all treated GO layers on 

the PET substrates were recorded and are shown in Figure 7. In addition to the 

expected carbon and oxygen, the untreated and the heat treated samples show 

the presence of oxidized Si contamination. Si was also detected in all other 

treated samples and thus Si may be originated from the raw graphite powder. 

After the plasma treatments, elements such as N, Fe, Cr, Mo (and negligible 

amount of S) were identified on the surface of the samples. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

14 

 

Figure 7. Survey XP spectra of the GO, HT200, ASP150, ASPN150, ASP200 and 

ASPN200 samples 

High resolution spectra were recorded for the major O1s and C1s lines and the 

qualitative and quantitative evaluations were performed in order to determine 

the surface composition and rationalize the chemical environment of the main 

constituent elements. For illustrating the alterations, the changing shapes of the 

O1s and C1s spectra are shown for the untreated GO, HT200, ASP200, and 

ASP200 samples in Figure 8. 
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Figure 8. Comparison of high-resolution XP spectra of C1s and O1s lines of the 

as-cast GO and treated (HT200, ASP200, ASPN200) samples, showing complete 

coincidence of the sum of the component peaks with the experimental data. See 

details of chemical state assignation in the text 
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The high resolution spectra were decomposed into Gaussian-Lorenzian (70/30 

ratio) components after Shirley type background removal. When synthesising 

the recorded line-shape with components, the principal guideline is to apply the 

minimum number of components. 

Photoelectron lines of the main constituent elements, i.e., the O1s and C1s, 

were recorded by 0.1 eV steps, using non-monochromatic Mg Kα1,2 

(1253.6 eV) excitation and FAT analyser mode with 40 eV pass energy. At 

these settings the full width at half maximum (FWHM) of the Ag 3d5/2 peak is 

1.54 eV. This value can be considered as the resolution for a single 

well-defined chemical state of a clean (metallic, i.e., conducting) sample. In our 

practice, this resolution has been rarely achieved for the components of oxide, 

nitride, carbide, DLC and CNx samples. Due to the several slightly different 

bonding states caused predominantly by various “second neighbour” 

heteroatoms, somewhat larger FWHM was selected for the C1s (1.7±0.1 eV) 

and O1s (1.8±0.1 eV) components synthesising the measured peak envelope. 

As seen in Fig. 8, both the carbon and oxygen can be found on the surface in 

various chemical states, represented by the synthetic component peaks. 

Assignment of these component peaks was made based on the large number of 

reliable literature data, compiled and published by us recently in [30] and their 

supplement. 

Bonding of oxygen to carbon includes two O1s components: the high energy 

component at 533.0 eV is assigned to the single bonded oxygen in carboxylic 

group, nominated as O–O=C; the lower energy component at 531.1 eV marked 

as O–C, can be assigned equally to C–OH, epoxy type C–O–C or carbonyl 

C=O. The amount and position of O–Si (532.0 eV) and O–Me (529.7 eV) 

bonds were also determined. In the latter case, the metals (Me) are Fe, Cr and 

Mo. 

Chemical states in the carbon network are represented by two C1s components, 

by the aromatic, graphene-like C–Car at 284.3 eV and by the amorphous 

(destroyed structure) C–Cam at 285.0 eV. The various carbon-oxygen bonds are 

the following: at 286.1 eV the C–O in C–OH, epoxy type C–O–C, at 287.3 eV 
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the carbonyl C=O and at 288.4 eV the carboxylic type C=OO. Nitrogen atoms 

are bonded to the carbon network as a broad peak centred at about 400 eV. 

N–O bonds were not detected. 

The chemical composition of the elements C, O, N, Fe, Cr, Mo and Si, and of 

the O1s peak components and their assignment to different bonding states are 

given in Table 2. Regarding the oxygen, its total content was reduced 

appreciably already after heat treatment at 200 ºC from 20.8 to 17.4 atomic %. 

The reducing effect of the plasma treatments, however, could be judged neither 

by the change of the total oxygen content (column 1 in Table 2), nor by the 

expected increase of the total carbon content (column 2 of Table 2), because of 

the simultaneous build-up of the Fe, Cr, Mo doping elements, being in partially 

oxidized state. However, the amount of oxygen species bonded to carbon show 

a significant decrease: i.e., the O–C content from 9.0 in the untreated GO to 

1–1.5 atomic % after plasma treatment. The O=C content also decreased from 

9.2  to 6.6 atomic %. These oxygen losses (and their sum, OC), can be the 

measure of the reduction of the GO samples together with the OC/C ratios 

derived from those data (see last column in Table 2). After heat treatment at 

200 ºC, the OC/C ratio decreased already from 0.235 to 0.154, and it was further 

decreased by ASP and ASPN treatments. 

Table 2. The overall chemical composition (atomic %) of the untreated and treated GO 

samples, the proportion of the oxygen chemical states and the OC/C ratio  

Sample O C N Si Fe Cr Mo 
O components 

OC/C 
O–Si O–Me O–C=O O–C 

GO 20.8 77.2 0.0 2.0 0.0 0.0 0.0 2.6 0.0 9.2 9.0 0.235 

HT200 17.4 79.3 1.0 2.2 0.0 0.0 0.0 4.3 0.0 7.4 5.7 0.154 

ASP150 20.7 69.1 2.2 5.2 1.5 1.0 0.3 5.6 6.7 6.9 1.5 0.122 

ASPN150 21.0 70.1 3.4 1.5 2.4 1.3 0.3 2.1 10.2 7.4 1.3 0.125 

ASP200 19.6 71.4 2.3 1.3 2.9 2.0 0.3 1.7 10.6 6.2 1.1 0.102 

ASPN200 21.1 69.0 2.1 2.1 3.3 2.0 0.3 2.4 10.8 6.8 1.1 0.115 
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Figure 9. Change of the composition of the various oxygen (a) and carbon (b) 

chemical states for the untreated and treated samples as measured by XPS  

The quantified data, calculated from the peak components in Fig. 8, are shown 

in Table 2 and in Fig. 9. The oxygen bonded to metals (O–Me, including O–Si) 

appeared in every plasma treated sample. Its quantity is proportional, to some 

extent, to the metallic components. 

The changes in oxygen concentrations are different for the two chemical states 

(Fig. 9a). Data show that the single bonded carboxylic oxygen, O–C=O, is not 

stable, and its amount decreased most significantly due to the plasma treatments 

but partially also during the heat treatment. The other oxygen bonds, O–C 

(representing also C–OH, epoxy C–O–C, carbonyl C=O), seem to be more 
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stable than the carboxylic ones.  

The quantity of carbon differently bonded to oxygen shows also major changes. 

The carboxylic carbon decreased most significantly, parallel to its O–C=O 

neighbours. The carbon bonded to oxygen as C–O, is relatively more stable 

than the previous one, as less altered in these treatments. A new chemical state 

of carbon, carbonyl type C=O, is developed due to all kind of treatments, most 

probably by the disruption of the carboxylic groups (Fig. 9b). 

N was found in small quantity after different treatments, suggesting moderate 

doping through thermal annealing or AS plasma treatments. The residual N in 

the HT and ASP treated samples were believed to come from the residual air 

and from the chamber wall, contaminated during previous nitriding processes. 

The ASPN150 sample showed the higher N content than that of ASP150 

sample, while the N contents were similar for the treatments at 200 ºC. This 

suggested that N-doping can be affected by not only the gas atmosphere but 

also the temperature. As mentioned above, the plasma surface interactions in 

active screen plasma treatments include combined mechanisms of sputtering 

and redeposition. The increased treating temperature can enhance the kinetic 

energy of particles in plasma, thus more nitrogen particles could be sputtered 

rather than deposited on the surface.  

Metallic species such as Fe, Cr and Mo were found only in ASP and ASPN 

treated samples, as these originated from the plasma sputtering of the stainless 

steel mesh. The amount of Cr and Fe increased with the treating temperature 

(from 150 to 200 ºC) but the Mo content is constant. For example, after ASP 

and ASPN treatments Fe contents were increased from 1.5 to 2.9 atomic %, and 

from 2.4 to 3.3 atomic %, respectively. Meanwhile, the nitrogen-involved 

ASPN process is more effective than the nitrogen-free ASP process in 

increasing the content of Fe and Cr. For instance, the content of Fe was 

increased from 1.5 to 2.4 atomic %, and from 2.9 to 3.3 atomic %, respectively, 
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for the 150 ºC and 200 ºC processes. The deposition process of the metallic 

components involves the sputtering which can be intensified by increasing both 

the energy and the mass of the particles.[38] This finding inspired that different 

elements can be doped by properly selecting the material of the active screen, 

and their contents may be tuneable by altering the plasma energy and process 

conditions, such as the temperature, bias, time, distance between the mesh and 

samples. 

3.7 Relationship between property and chemical changes 

As have been reported in Sections 3.2 and 3.3, active screen plasma treatments 

including ASP and ASPN can effectively reduce GO as evidenced by the 

decreased electrical conductivity (Fig. 4) and transmission of UV-visible light 

(Fig. 3). The change of such macroscopic physical properties by active screen 

plasma treatments could be explained by the atomic scale chemical changes 

detected by XPS. As shown in Table 2, the Oc/C ratio- the measure of the 

reduction GO samples can be decreased from 0.235 for the untreated GO to 

0.154 by thermal annealing at 200 °C (HT200) and active screen plasma 

treatment at the same temperature can further reduce it to 0.115 and 0.102 by 

ASPN200 and ASP200, respectively. 

 

It is of scientific interest to note that ASP is more effective than ASPN in 

reducing GO as evidenced by the lower Oc/C ratio (Table 2) and transmission 

(Fig. 3) of ASP treated GO than ASPN treated one. However, the electrical 

resistance results in Figure 4 show that although both ASPN and ASP 

treatments can dramatically reduce the electrical resistance of GO, the former 

(ASPN) is much more effective than the latter (ASP) especially when treated at 

a relatively low temperature of 150 °C. Obviously, this observation could not 

be explained by the Oc/C ratio alone since the Oc/C ratio of ASP is lower than 

that for ASPN (Table 2). 
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This seemingly contradicting observation could be interpreted by the fact that 

ASPN is more effective than ASP in multi-element doping of GO. As shown in 

Table 2, when treated at the same temperature of 150°C, more Fe and Cr were 

detected from the ASPN150 treated GO surface than from the ASP150 treated 

one. It is known that the sputtering of metals can be intensified by increasing 

the mass of the particles.[38] Nitrogen is much heavier than hydrogen and 

hence more metallic atoms will be sputtered out from the austenitic stainless 

steel screen and deposited on the surface of GO. Consequently, a GO surface 

with a lower electrical resistance can be generated by ASPN150 than by 

ASP150, which shows one of the advantages of multi-element doping.  

4. Conclusions 

In summary, a transparent GO layer on a nonconductive PET substrate has been 

successfully reduced by active screen plasma treatments in H2 (ASP) and in a 

gas mixture of H2 and N2 (ASPN) at moderately high temperatures 

(100-200 ºC). The plasma treatments have led to a greater extent of reduction of 

GO as compared to the thermal annealing at the same temperature. The active 

screen plasma treatments in H2 (ASP) can reduce the GO more effectively than 

the active screen plasma treatments in a gas mixture of 25%N2 + 75%H2 

(ASPN).  

Detailed XPS analyses have revealed that the carboxylic O–C is not stable, and 

its amount can be reduced by thermal annealing and more effectively by active 

screen plasma treatments. A new chemical state of carbon, carbonyl type C=O, 

is developed most probably from the decomposed carboxyl groups due to the 

treatments. 

XPS results have proved that simultaneous doping of graphene oxide both with 

N from the gas supply and with metallic species of Fe, Cr and Mo from the 

active screen can be performed at the same time. It has been demonstrated that 

the ASPN treatment (using both N2 and H2) is more effective than the ASP 

treatment (using H2 along) in increasing the electrical conductivity of graphene 
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oxide. This is mainly because nitrogen is much heavier than hydrogen and 

hence more metallic atoms will be sputtered out from the steel screen and then 

deposited on the surface of GO.  

The extent of doping can be tuned by applying different process conditions, 

such as the gas composition, temperature, bias, time, distance between the 

sample surface and the mesh. This can open a door for doping graphene related 

materials, such as non-conductive graphene oxide, conductive graphene and 

reduced graphene oxide, etc. in various applications such as biosensors.  
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