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Highlights:  



 Neutralization of endosomal pH increases presentation of Th2-biasing GC 

analogues, and their association with CD1d in cholesterol rich “lipid raft” 

microdomains 

 Pulsing the antigen presenting cells with GC Th2-agonist in the presence of 

chloroquine induces higher NK cell transactivation  

 

Abstract  

Invariant natural killer T (iNKT) cells recognize glycolipid antigens presented by CD1d, 

an antigen presenting protein structurally similar to MHC class I.  Stimulation of iNKT 

cells by glycolipid antigens can induce strong immune responses in vivo, with rapid 

production of a wide variety of cytokines including those classically associated with 

either T helper type 1 (Th1) or type 2 (Th2) responses.  Alterations in the lipid tails or 

other portions of CD1d-presented glycolipid ligands can bias the iNKT response 

towards production of predominantly Th1 or Th2 associated cytokines.  However, the 

mechanism accounting for this structure-activity relationship remains controversial.  The 

Th1-biasing glycolipids have been found to consistently form complexes with CD1d that 

preferentially localize to plasma membrane cholesterol rich microdomains (lipid rafts), 

whereas CD1d complexes formed with Th2-biasing ligands are excluded from these 

microdomains.  Here we show that neutralization of endosomal pH enhanced 

localization of CD1d complexes containing Th2-biasing glycolipids to plasma membrane 

lipid rafts of antigen presenting cells (APC).  Transfer of APCs presenting these 

“stabilized” CD1d/GC complexes into mice resulted in immune responses with a more 

prominent Th1-like bias, characterized by increased NK cell transactivation and 



interferon-γ production.  These findings support a model in which low endosomal pH 

controls stability and lipid raft localization of CD1d-glycolipid complexes to regulate the 

outcome of iNKT cell mediated responses. 

 

Keywords: CD1d, αGC, NKT cells, glycolipid, antigen presentation, NK activation, 
transactivation, IFNγ secretion, dendritic cells, endosomal presentation, endosomal pH, pH 
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Introduction 

Invariant natural killer T cells (iNKT cells) are a subset of T cells that also express 

various surface markers more typically associated with natural killer (NK) cells 1. They 

are referred to as “invariant” because of the unusual structure of their T cell antigen 

receptors (TCRs), which are comprised of an invariant TCR chain associated with 

TCRβ chains that also have limited diversity 2.  These cells recognize and respond to 

glycolipid antigens presented in the context of CD1d, an antigen presenting molecule 

similar in overall structure to major histocompatibility complex (MHC) encoded class I 

proteins 3.  Unlike classical T cells that initially exist in a naïve state that must undergo 

antigen induced activation and differentiation to become effector or memory cells, iNKT 

cells leave the thymus as a pre-programmed effector population 3a.  In addition, reporter 

mice developed to study IL-4 and IFNγ gene expression reveal that iNKT cells contain 

pre-formed mRNA transcripts for both of these cytokines, and start synthesizing and 

secreting cytokines within minutes of TCR engagement 4.  This capability to respond 

rapidly and without prior antigen immunization makes this subset of T cells an attractive 

target for various approaches to immunotherapy or immunomodulation 5.   



A large number of natural and synthetic glycolipid antigens that are presented by 

CD1d to iNKT cells have been described 6.  A common feature of most of these 

antigens is that they are composed of two lipid tails linked to a carbohydrate moiety or 

“head group” 7.  The best characterized of these antigens is a synthetic 

-galactosylceramide with a long (C26) saturated acyl chain, initially designated as 

KRN7000 and also commonly referred to GC C26:0 8.  Depending on the structure of 

the glycolipid antigen, iNKT cell stimulation may also be followed by the secondary 

stimulation or transactivation of bystander immune cells such as natural killer (NK) cells, 

B cells and additional subsets of T cells 9.  Agonists that fail to transactivate other types 

of leukocytes, especially NK cells, result in the secretion of higher amounts of serum IL-

4 compared to IFNγ, and are called Th2-biasing agonists 10.  In contrast, agonists that 

strongly transactivate NK cells greatly amplify and prolong the accumulation of serum 

IFNγ, and these are often referred to as Th1-biasing agonists. 

The mechanisms accounting for the different stimulatory activities of Th1- and 

Th2-biasing agonists are not completely understood, although several important 

correlations and potential mechanisms have been documented.  For example, most and 

possibly all Th2-biasing agonists contain features that are likely to increase their 

aqueous solubility compared to the prototypical -GC C26:0 compound.  Such features 

include truncation of the sphingoid or acyl chain moieties, or introduction of double 

bonds at one or multiple locations in the lipid chain or other polar groups 10c, 11.  

Conversely, Th1-biasing agonists are relatively more hydrophobic than -GC C26:0, 

and are generated by removal of polar groups.  This includes substitution of the O-



glycosidic linkage by a C-glycoside, removal of hydroxyl groups or replacement of the 

monosaccharide head group with a carba-sugar analog  6a, 11b, 12. 

 Several studies using the monoclonal antibody L363, which specifically 

recognizes mouse CD1d/GC complexes 10b, 13, have revealed major differences in the 

site of formation, trafficking and cell surface localization of these complexes 8a, 11b, 14.  In 

general, complexes containing Th1-biasing glycolipids are formed primarily in endocytic 

compartments in which the pH ranges from approximately 4.9 to 6.0 15, and require 

assistance from lipid exchange proteins such as saposins for formation of complexes 

with CD1d 16.  Following transport to the cell surface, these complexes localize 

predominantly to cholesterol rich microdomains, usually referred as lipid rafts, in the 

plasma membrane 8a, 11b.  These microdomains are enriched in GPI-linked and signal 

transduction proteins, and are believed to act as signaling platforms 17.   

In general, strong localization to lipid rafts of the complexes formed between 

CD1d and a particular glycolipid antigen is predictive of an increase in the Th1-bias 

resulting from iNKT cell stimulation.  Presentation by lipid raft-localized CD1d results in 

the upregulation of costimulatory molecules on the surface of CD8aPos dendritic cells, 

the principal professional antigen presenting cell (APC) for glycolipid antigens 8b.  The 

increase in costimulatory molecules correlates with higher transactivation of bystander 

cells such as NK cells, although the detailed mechanism remains unknown.  In marked 

contrast to Th1-biasing glycolipids, the binding of Th2-biasing glycolipids to CD1d 

occurs predominantly on the cell surface, and the complexes formed are not localized in 

lipid rafts.  Exclusion of these complexes from plasma membrane lipid rafts results in 

the upregulation of coinhibitory molecules on such as PD-L1 and PD-L2 on the surface 



of glycolipid APCs.  Of note, both of these co-inhibitory molecules are known to prohibit 

synapse formation between leukocytes 18 and probably limit transactivation of bystander 

cells including NK cells, thus  culminating in a “pure” iNKT responses characterized by a 

prominent Th2 cytokine bias.   

Complexes of CD1d bound with Th2-agonist glycolipids are not normally 

detectable in endosomal compartments.  However, neutralization of endosomal pH 

leads to their rapid accumulation in endosomes, consistent with an ability of low 

endosomal pH to destabilize these complexes 14a.  In the current work, we have 

investigated whether endosomal pH also has a direct influence on cell surface levels 

and lipid raft association of CD1d/glycolipid complexes.  Our findings confirm that 

neutralization of endosomal pH increases the cell surface levels of CD1d complexes 

containing Th2-biasing glycolipids, most likely by stabilizing these complexes in 

intracellular compartments to allow their transport to the plasma membrane.  

Interestingly, the stabilization of these complexes in endosomes led to their increased 

accumulation in plasma membrane lipid raft microdomains, and also resulted in 

enhanced NK transactivation.  These results support a model for CD1d-mediated 

glycolipid presentation in which stable binding of glycolipid antigens in the endosome is 

the main determinant of subsequent transport to plasma membrane lipid rafts, leading 

to stimulation of Th1-biased iNKT cell responses. 

 

Results 

Effect of endosomal pH on CD1d expression and glycolipid presentation 



The weak bases chloroquine (CQ) and ammonium chloride (NH4Cl) have been 

used extensively to neutralize the pH of intracellular compartments such as late 

endosomes and lysosomes 19.  Using a well-defined transformed mouse dendritic cell 

line (JAWS II) which highly expresses CD1d as a model 8a, 20, we investigated the 

effects of these agents on CD1d expression and antigen presentation.  We chose to use 

CQ and NH4Cl, which accumulate in endosomes to neutralize their pH, rather then 

specific inhibitors of the vacuolar proton ATPase (e.g., Baflomycin A and D, 

Concanamycin A and Concanolid A), since the latter can have additional effects on cells 

such as disruption of vesicular transport processes 21, 22. Both NH4Cl and CQ diffuse 

rapidly into the lumen of endocytic vesicles and become trapped there in their 

protonated form, resulting in elevation of endosomal pH, and this effect has been shown 

to persist for up to several hours after removal of the drug from the extracellular medium 

19, 23.   

Dendritic cells are highly susceptible to changes in cell culture conditions, raising 

the potential concern that disruption of endosomal processing could cause cell death or 

alteration in the level of CD1d.  We therefore tested CQ and NH4Cl for their effects on 

cell viability and CD1d expression.    We cultured JAWS II cells in media containing CQ 

or NH4Cl for 4 hours, and then analyzed the cells for viability based on propidium iodide 

exclusion, and for surface expression of CD1d by staining with a CD1d-specific 

antibody.  Treatment of these cells with either CQ or NH4Cl at the concentrations used 

did not result in alteration of CD1d expression (Figure 1), and led to only minor 

reductions in cell viability and no visible alteration in cell morphology (not shown).  



We focused on presentation of six well-characterized iNKT cell glycolipid 

antigens, which are illustrated in Figure 2.  The αGC C26:0 glycolipid is a potent inducer 

of both IFNγ and IL-4 in vivo, and is described as a mixed (Th1 + Th2) or Th0 agonist 8b.  

The C-glycoside analogue -C-GC C26:0, which stimulates much lower IL-4 and 

relatively higher and more prolonged IFNγ secretion, is the prototypical Th1-biasing 

agonist.  The other glycolipids illustrated in Figure 2 (αGC C20:2, αGC C20:1, αGC 

C18:3 and αGC C10:0) belong to the class of Th2-biasing agonists, which stimulate 

strong IL-4 secretion relative to IFNγ 8a, 10a, 11a.  Taken together, these agonists are 

representative of the three currently classified categories of iNKT cell activating 

glycolipids, which are defined mainly by the relative Th1 versus Th2 cytokine biases of 

the responses they induce in vivo in mice.  We included multiple Th2-biaising agonists 

in our analyses in order to identify general mechanisms that would apply to this class of 

agonists despite their marked structural dissimilarities.   

Endosomal acidification is crucial to many normal cellular processing, and 

extended treatment with agents that neutralize endosomal pH may be toxic or lethal. To 

reduce the time of exposure, we first incubated the cells with glycolipids under normal 

culture conditions to allow the formation of glycolipid/CD1d complexes, and then treated 

them for a limited time with lysosomotropic agents. Thus, JAWS II cells were cultured 

with each glycolipid agonist for 16 hours, followed by treatment with NH4Cl or CQ for an 

additional one or four hours, respectively.  The efficiency of glycolipid antigen loading 

under these conditions was estimated by surface staining of the cells with L363, a 

monoclonal antibody specific for complexes formed by the binding of GC glycolipids to 

mouse CD1d.  A significant increase in the fluorescence intensity of cells loaded with 



each of the four Th2-type glycolipid agonists was observed in response to treatment 

with either CQ or NH4Cl.  In contrast, the staining observed for the GC C26:0 or -C-

GC treated cells was markedly reduced (Figure 3), highlighting the requirement of low 

endosomal pH for the loading of Th0 and Th1-biaising glycolipid analogues.  In contrast, 

the increase in cell surface levels of CD1d bound with Th2-biasing glycolipids observed 

after NH4Cl or CQ treatment suggested that low pH is non-permissive for intracellular 

loading of Th2-biasing agonists onto CD1d in endosomes.  Another possibility would be 

that the binding of the Th2-biasing glycolipids to CD1d occurs on the cell surface, and is 

disrupted and lost during recycling through the acidic endosomal compartment under 

normal conditions.  In this scenario, alkalinization of endosomal pH would reduce the 

extent of unloading of Th2-biasing glycolipids from CD1d and result in an accumulation 

of complexes on the cell surface. 

 

Endosomal acidification and lipid raft localization of CD1d/glycolipid complexes 

Since the effects of NH4Cl and CQ on glycolipid presentation were similar in our 

initial experiments, we focused on NH4Cl for further experiments to examine the effect 

of inhibiting endosomal acidification on plasma membrane localization of CD1d/GC 

complexes.  Lipid rafts are enriched in cholesterol and contain tightly packed membrane 

lipids that make these microdomains resistant to extraction with low, sublytic detergent 

concentrations.  Based on these properties, we previously developed a fluorescence-

based method to estimate the lipid raft residency of cell surface CD1d/αGC complexes 

11b.  Since plasma membrane lipid rafts are detergent resistant, CD1d/glycolipid agonist 

complexes localized in lipid rafts are not extracted by exposure to 0.06% Triton X-100, 



and a minimal decrease in binding of fluorescent L363 antibody is observed over time.  

In contrast, for the CD1d/glycolipid complexes that are excluded from lipid rafts, the 

binding of fluorescent L363 decreases rapidly following the addition of detergent.  

Estimation of lipid raft residency can therefore be obtained based on the profile of 

decrease in L363 fluorescence after detergent exposure, with lower detergent sensitivity 

indicating a higher level of lipid raft occupancy. 

We used this method to analyze the effect of NH4Cl treatment of JAWS II cells on 

the lipid raft localization of CD1d/GC complexes formed by each of the six glycolipid 

antigens (Figure 4).  As expected based on previous studies 11b, both GC C26:0 (Th0) 

and -C-GC (Th1) loaded CD1d complexes showed high levels of lipid raft localization, 

and this was not significantly changed by NH4Cl treatment.  In contrast, all of the Th2-

biasing glycolipids showed much lower lipid raft residency.  Strikingly, this was 

substantially increased in all four cases by NH4Cl treatment (Figure 4a).  Analysis of the 

percent of detergent resistant CD1d/GC complexes formed in the presence and 

absence of NH4Cl was analyzed by two-way ANOVA, which confirmed the significant 

increase in lipid raft localization of CD1d complexes with Th2-biasing glycolipids in cells 

treated with NH4Cl (Figure 4b).  In addition, although there was a reduction in the 

number of CD1d/GC complexes formed with GC C26:0 and -C-GC C26:0 

analogues, there was no difference observed in the lipid raft localization of these 

complexes after NH4Cl treatment.  These results indicated that endosomal acidification, 

while not required for trafficking of CD1d/αGC complexes into lipid rafts for Th1-type 

glycolipids, has an inhibitory effect on the lipid raft localization of CD1d complexes 



containing Th2-biasing glycolipids.  This inhibitory effect can be at least partially 

overcome by inhibition of endosomal acidification by NH4Cl. 

 

Influence of endosomal acidification on NK cell transactivation 

Previous studies have demonstrated that increased lipid raft residency of CD1d 

molecules presenting glycolipid antigens correlates with enhanced transactivation of 

bystander NK cells to trigger their IFNγ secretion 8a.  Since it is not feasible to treat mice 

with sufficient amounts of lysosomotropic bases to neutralize endosomal pH in APCs in 

vivo, we developed an ex vivo approach to study the effect of neutralization of 

endosomal pH on in vivo CD1d-mediated immune responses.  For this, splenic dendritic 

cells (DCs) were isolated from Flt-3 melanoma bearing mice as previously described 8b.    

The purified DCs were pulsed with GC C20:2 in the presence or absence of CQ for 

four hours.  These cells were then transferred to naïve animals by intravenous injection, 

and the levels of NK cell transactivation were assessed 16 hours later by analyzing 

intracellular staining for IFNγ in splenic NK cells.  As a positive control, we also 

transferred -C-GC C26:0 pulsed DCs, which have been previously shown to induce 

NK transactivation in similar cell transfer experiments 8a.   

  The NK cell transactivation was measured using a multiparameter flow 

cytometry approach to identify NK cells staining for intracellular IFNγ as an index of 

transactivation, combined with a gating strategy to distinguish three different 

populations that express the cell surface marker NK1.1 (Figure 5a).  These include a 

population of NK1.1Pos TCRβPos cells corresponding to NKT cells (R4), as well as the 

NK1.1 positive cells that lack TCRβ (R5).  In addition, the R5 subset cells are further 



split into classic NK cells that express NKp46, and a minor fraction of cells that are 

NKp46 negative.  Induction of IFNγ production after injection of glycolipid loaded DCs 

was mainly observed in the NK1.1Pos NKp46Pos subset, and this showed the expected 

strong NK cell transactivation with -C-GC compared to the weak transactivation with 

GC C20:2 loaded DCs.  Most notably, the treatment of GC C20:2 loaded DCs with 

CQ prior to transfer to mice caused a significant increase in the number of IFNγ+ cells 

detected in the NKp46Pos subset, indicating increased NK cell transactivation in vivo 

(Figure 5b).  Thus, loading of APCs with a Th2-biasing form of GC in the presence of 

an inhibitor of endosomal acidification, which increases lipid raft localization of 

CD1d/glycolipid complexes, also correlated with increased transactivation of NK cells in 

vivo.  We also analyzed the levels of serum IFNγ at 2 hours or 12 hours post injection, 

but did not observe a siginificant difference in these between the animals receiving CQ 

treated DCs versus untreated DCs (data not shown).  Typically, the transactivation of 

NK cells following αGalCer administration results in a sustained elevation of serum IFNγ 

levels that peaks at 24 hours post glycolipid administration.  Although we did not assess 

serum cytokine levels later than 12 hours after DC injections, the increase in NK cell 

transactivation that we observed would likely result in more sustained circulating IFNγ at 

later time points in the mice receiving CQ treated DCs compared to untreated DC 

group.  

 

Discussion 

CD1d-restricted iNKT cells are an intriguing subset of T cells that function at the 

inferface between innate and adaptive immune responses.  They are important for 



mammalian immunity to microbial infections, and also are likely to contribute to 

autoimmune disorders and responses to cancers 1b, 3a.  The ability to activate these cells 

by a single administration of a glycolipid agonist makes them an attractive target for 

development of immunotherapeutic applications 5b.  The class of GC analogues 

identified as Th1-biasing glycolipid antigens are extremely potent because of their 

capability to activate bystander cells and work as potent adjuvants for enhancing T cell 

priming applications such as vaccines against microbial pathogens as well as cancers 

6a.  On the other hand, the class of Th2-biasing glycolipid antigens are of potential 

interest as immunomodulators for controlling acute or chronic inflammation, and as 

adjuvants for enhancing antibody responses.  It is therefore important to understand the 

detailed mechanisms that explain the structure-activity relationship for glycolipid 

activators of iNKT cells, which leads to their ability to mediate a wide range of different 

immunological outcomes.  

 We have previously demonstrated that Th1-biasing forms of GC load efficiently 

onto CD1d only in acidified endosomal compartments, which also contain a number of 

lipid transport proteins that are likely to be important for this process 8a, 24.  Furthermore, 

the association of glycolipids with CD1d in endosomes is strongly correlated with the 

trafficking of the resulting CD1d/glycolipid complexes to plasma membrane lipid rafts 

11b.  Although the mechanism accounting for the trafficking of these complexes into lipid 

rafts is not known, it is interesting to note that endosomal processing has also been 

associated with lipid raft localization of peptide-loaded MHC II complexes 25.  It is also 

noteworthy that a substantial fraction of CD1d resides in late endosomal or lysosomal 

compartments, which is another feature that is shared with MHC class II molecules.  We 



therefore postulate that the intracellular loading of CD1d with Th0- and Th1-biasing 

glycolipids directs the newly formed complexes into trafficking pathways that lead to 

their localization into lipid raft domains on the plasma membrane.  In contrast, the Th2-

agonists that load CD1d on the cell surface do not have access to this machinery and 

are thus mostly excluded from the lipid rafts.  

 Previous studies by Bai et al. demonstrated that the uptake of both Th1-biasing 

and Th2-biasing GC glycolipid antigens is very similar in dendritic cells, and that both 

classes of glycolipids are endocytosed and delivered to acidic endosomal 

compartments 14b.  However, their studies showed that Th2-biasing analogues were 

unable to form stable complexes with CD1d in endosomes.  Importantly, these studies 

also showed that neutralization of endosomal pH allows the detection of CD1d/Th2-

biasing GC complexes in late endosomal and lysosomal compartments.  This effect of 

inhibition of endosomal acidification could be a result of enhanced intracellular loading 

of CD1d, or reduced dissociation of the glycolipid from CD1d under these conditions.  In 

either case, this observation that neutralization of endosomal pH leads to the detection 

of CD1d with bound Th2-biasing glycolipids in endosomal compartments raised the 

issue of whether these complexes would be able to traffic into lipid rafts.  This is the 

central question that we undertook to answer in the current study.  

 Our studies showed that there is indeed an increase in the localization of 

CD1d/Th2-biasing glycolipid complexes in lipid rafts after neutralization of endosomal 

pH.  Localization in lipid rafts is linked with the transactivation of bystander cells such as 

B, T and especially NK cells.  This motivated us to test if neutralization of endosomal 

acidity would enhance NK cell transactivation with Th2-biaisng agonists under in vivo 



conditions.  However, administration of NH4Cl or CQ to rodents directly for neutralizing 

endosomal pH in vivo presents difficult challenges.  For example, NH4Cl treatment in 

rodents induces metabolic acidosis 26 and CQ administration has been shown to inhibit 

secretion of cytokines by T cells 27.  We therefore relied on the use of APCs pulsed with 

antigen ex vivo in the presence or absence of CQ to instigate the iNKT cell mediated 

responses following transfer into mice.  One caveat of this approach is that the 

endosomal alkalization is reversible, and may be maintained for only a few hours after 

transfer of these cells into animal hosts.  Nevertheless, our experiments using this 

method showed a modest but significant increase in NK cell transactivation when APCs 

were loaded in the presence of CQ with a representative Th2-biasing glycolipid.  

The observed increase in NK cell transactivation in response to a Th2-biasing 

form of αGalCer with CQ treated APCs is an important finding, given that such 

transactivation is a characteristic feature of Th1-biasing glycolipids.  We considered the 

possibility that the CQ treated DCs are more stable than the untreated DCs and are 

therefore able to activate NK cells for longer period of time.  This is unlikely given that 

the DCs untreated with CQ can survive at least up to 24 hours in recipient hosts 8b and 

the peak of NK activation occurs at 16 hrs post DC transfer (unpublished data). In 

addition, although we did not see any difference in cell viability during the ex vivo 

pulsing of DCs with and without CQ before transfer into recipient animals, we expect the 

stability of cells to be decreased rather than increased by CQ treatment since 

endosomal acidification is essential for normal cell survival.    Furthermore, the total 

number of cell surface CD1d/glycolipid complexes is generally higher on APCs exposed 

to Th2-biasing glycolipids compared to those exposed to similar concentrations of Th1-



biasing glycolipids, when measured by staining with the complex-specific L363 antibody 

8a, 11b, 14b.  This indicates that NK cell transactivation depends on a qualitatively different 

initial response of iNKT cells, and not merely a difference in the quantitative strength of 

TCR signalling.  Our previous studies have revealed that upregulation of costimulatory 

molecules that can directly activate NK cells is orchestrated by reciprocal interactions 

between APC and iNKT cells 8b. Therefore, even the small but significant increase in NK 

cell transactivation observed with GC pulsed DCs after treatment with CQ suggested 

that the quality of immune response initiated by the Th2-biasing glycolipid was altered to 

more closely resemble the response to a Th1-biasing glycolipid.   

It is interesting to note that activation of iNKT cells is observed in infection 

models with several pathogenic bacterial species, including species of Salmonella, 

Mycobacteria, Legionella and Chlamydia.  Most or all of these are intracellular bacteria 

that are known to block phagolysosomal fusion and reduce endosomal acidification 28  

Activation of iNKT cells has been demonstrated in response to infections with several of 

these bacteria, even though the identification of a direct iNKT activating agonist 

produced by them has been elusive 29.  Until recently, -linked sphingolipids were 

thought to be unique to bacterial and plant species, but recent studies have shown that 

these glycolipids are indeed synthesized at low levels by mammalian cells and can be 

stimulatory for iNKT cells 30.  Furthermore, infection of dendritic cells with mycobacteria 

results in the down regulation of fatty acid amide hydrolase (FAAH), an enzyme 

involved in the catabolism of sphingolipids that is active under low pH conditions 31.  

These observations suggest that the ability to enhance stable loading of endogenous 

glycolipids in the endosomal compartment may occur during infections with organisms 



that neutralize endosomal pH, leading to enhanced lipid raft localization of stimulatory 

CD1d/glycolipid complexes.  In this model, activation of NKT cells during infection may 

not depend on the presentation of bacterial glycolipid antigens, but could instead result 

from presentation of endogenous glycolipids in response to loss of endosomal 

acidificaion.  This hypothesis can also accommodate the common immune evasion 

strategies used by several viruses, such as herpes simplex and human 

immunodeficiency viruses, that interfere with CD1d recycling pathways 32. Experimental 

modifications that disrupt the endosomal localization and recycling of CD1d, such as the  

deletion of its cytoplasmic tail endosomal targeting motif 33, would also be predicted to 

exclude CD1d/GC Th2 complexes from lipid raft microdomains, although our studies 

have not yet assessed this experimentally. Such a mechanism for generating or evading 

enhanced bystander cell activation could play an important role in recruiting and 

activating other immune cells during intracellular pathogen infection.  

 In conclusion, we have provided further evidence that low endosomal pH serves 

as a quality control checkpoint in the CD1d-dependent glycolipid antigen presentation 

pathway.  In addition to confirming that neutralization of endosomal pH increases the 

intracellular association of Th2-biasing glycolipids to CD1d, we also show for the first 

time to our knowledge that this also enhances their presentation by lipid raft localized 

CD1d molecules.  These findings provide further support for a model that explains the 

mechanism by which relatively subtle variations in glycolipid structure can lead to 

substantially different functional outcomes following iNKT cell activation. 

 

 



Materials and Methods 

Cell lines, antibodies and cytokines 

The JAWS II cell line (derived from C57BL/6.p53–/– mice) was obtained from the 

American Type Culture Collection (ATCC), and was cultured in alpha-MEM  medium 

supplemented with 20% fetal calf serum (Atlanta Biologicals), 10 mM HEPES, 50 μM β-

mercaptoethanol, 50 µg/ml gentamicin, 100 ng/ml GM-CSF (Peprotech), 0.1 mM of 

nonessential amino acids (NEAA) and essential amino acids (EAA) (complete αMEM).  

The mouse hybridoma line producing monoclonal antibody 2.4G2 specific for CD16/32 

was also obtained from ATCC, and was cultured in RPMI-1640 medium supplemented 

with 10% FCS, 10 mM HEPES and 50 μM β-mercaptoethanol.  All media and additives 

were from Gibco-BRL unless otherwise indicated.  The mCD1d/αGalCer complex-

specific mAb L363 was produced in our laboratory (Yu et al., 2007).  Ammonium 

chloride (A9434) and chloroquine diphosphate (C 6628) were purchased from Sigma.  

 

Preparation and solubilization of glycolipids 

Synthesis and analysis of the analogues of GC used in this study have been described 

previously 8b, 11a, 34 . For in vitro assays, glycolipid stock solutions were prepared at 500 

μM in DMSO (Sigma).  Immediately before use, these stocks were heated to 70°C, 

sonicated for 5 minutes and then diluted to 500 nM  in pre-warmed (37°C) culture 

medium (complete αMEM).  This stock was further diluted with complete αMEM culture 

media immediately before adding to cell cultures to give a final glycolipid concentration 

of 200 nM and a final concentration of 0.04% DMSO. 

 



Estimation of CD1d/αGC complexes 

For all screening experiments, JAWS II cells were seeded at a density of 2.5 X 105 cells 

per well in 100 µl culture media in flat bottom 96 well plates.  Glycolipids were added to 

a final concentration of 200 nM.  As an inert vehicle control, the cells were cultured in 

medium containing only 0.02% DMSO.  After 16 hours of culture, the cells were 

detached using a cell scraper and washed 3 times with PBS containing 1% BSA and 

0.1% sodium azide (wash buffer).  After the final wash, the cells were resuspended in 

50 µl of FACS buffer (wash buffer with 1µg/ml of 2.4G2 mAB, which was added to block 

Fc receptors expressed on the surface of JAWS II cells).  After 10 minutes of incubation 

at room temperature, 50 µl of staining solution containing 5 µg/ml of Alexa Fluor 647 

conjugated mAb L363 in FACS buffer was added to the cells.  After a further 10 minutes 

of incubation, cells were washed thrice with wash buffer and then resuspended in 300 µl 

wash buffer. The cells were analyzed for L363 staining using an LSR II flow cytometer 

with FACS Diva software (BD Biosciences).   

 

Estimation of lipid raft localization of CD1d/αGC complexes 

For estimation of lipid raft residency, the FACS analysis was performed in a kinetic 

mode.  At the start of data acquisition, the initial fluorescence level was recorded for 

approximately 10 seconds.  Triton X-100 was then added to a final concentration of 

0.06% followed by brief (~1 sec) vortexing to mix the sample.  Data collection was then 

resumed and fluorescence intensities were monitored for another 30 seconds.  Data 

were collected as Flow Cytometry Standard (FCS) files and analyzed using FlowJo 

software vx10.07 (Treestar, Ashland, OR).  MFI values at time 0 (prior to addition of Tx-



100) were normalized to 100 and the relative decrease in MFI values for different 

agonists after addition of Tx-100 were compared.  

 

Isolation of splenic dendritic cells 

Splenic dendritic cells (DCs) were isolated using the Miltenyi CD11c-positive magnetic 

beads (130-152-001).  The frequency of these cells in naïve murine spleen is very low, 

so we used a model based on the expansion of these cells in mice implanted with Flt-3 

expressing melanoma cells as described previously 8b, 35.  

 

Adoptive transfer of glycolipid loaded dendritic cells 

Female C57BL/6 mice, 6-8 weeks of age, were injected intravenously with purified 

CD11c+ dendritic cells pulsed with vehicle or αGalCer analogues in the presence or 

absence of CQ.  For this, purified splenic DC were cultured in complete medium with 

200 nM of the indicated glycolipids for 1 hour, followed by incubation with 20 uM CQ for 

four hours in the groups as indicated.  After extensive washing, 1 X 106 cells/mouse 

were injected into naïve mice.  Animals were bled at 2 hours and 12 hours post DC 

transfer for measurement of serum IL-4 and IFNγ by ELISA, and then were sacrificed 

sixteen hours post DC transfer for analysis of activation of NK and NKT cells. 

 

Measurement of NK cell transactivation 

Single cell suspensions of splenocytes were generated as described previously . In 

brief, the tissue samples were cut in approximately10 mm2 pieces with a scalpel. The 

tissues pieces were digested with Liberase plus DNase, and passed through a 70 



micron filter.  For intracellular staining, the cells were first stained with antibodies to cell 

surface markers, washed three times with FACS buffer and stained with live/dead 

viability dye diluted in PBS, for 15 minutes at 20° C.  Excess dye was quenched by 

adding complete RPMI media containing 10% FCS.  After extensive washing, the cells 

were fixed with 2% paraformaldehyde.  Cells were then permeabilized with buffer 

containing 1% BSA, 0.1% sodium azide, 0.05% glycine and 0.05% Triton X-100 (Buffer 

P). Cells were blocked with 10% rat serum in buffer P, followed by staining for 

intracellular IFNγ.  After washing, samples were analyzed using an LSR II flow 

cytometer (BD BIosciences) and Flowjo software vx10.07 (Treestar, Ashland, OR).   

 

Statistical analysis.  One way ANOVA with Dunnet’s correction was used for 

comparing groups of three or more when there was only one independent variable.  

Two way ANOVA with Holm-Sidak correction was used to analyze the effect of CQ or 

NH4Cl treatment on the loading and localization of CD1d/GC complexes as two 

independent factors.  Statistical tests were performed using Prism 6 software 

(GraphPad). 
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Figure legends 

 

Figure 1: Effect of inhibitors of endosomal acidification on CD1d expression.  

JAWS II cells were incubated with either ammonium chloride (NH4Cl, 10 mM) for one 

hour, chloroquine diphosphate (CQ, 20 uM) for 4 hours or with medium only, following 

which cells were stained with anti-CD1d antibody (1B1) conjugated to FITC or a 

similarly labeled isotype control antibody.  Cells were then analyzed by flow cytometry.  

Histograms showing the fluorescence intensities corresponding to CD1d expression are 

shown in grey, with various treatments of the cells indicated on the right.  The white 

histogram at the bottom is the background fluorescence profile of JAWS II cells stained 

with the isotype control antibody.  (b) The bar graphs show the median fluorescent 

intensity as mean ± SD for triplicate samples. The data were analyzed by one-way 

ANOVA using Graphpad Prism (NS, not significant, P > 0.05).   

 

Figure 2:  Chemical structures of the glycolipids used in this study. 

All of these GC analogues have been previously characterized as iNKT cell activators 

(see text for references). 

 

Figure 3: Effect of neutralization of endosomal pH on CD1d loading with GC 

agonists.  (a) JAWS II cells were incubated with 200 nM of various GC agonists for 16 

hours.  After washing to remove unbound glycolipid, the cells were further incubated 

with CQ or NH4Cl as in Figure 2, and stained with monoclonal antibody L363 specific for 



CD1d/GC analogue complexes. The cells were then analyzed by flow cytometry.  

Fluorescence histograms show the effect of different treatments (as labeled on the right 

hand side) on L363 staining levels.  The bottom histogram shows the background 

staining with L363 (Bkgrd) of JAWS II cells cultured without GC or either of the 

inhibitors of endosomal acidification. (b) Median fluorescent intensities of L363 staining 

for CD1d/GC complexes observed with individual glycolipid agonists with or without 

treatment with CQ or NH4Cl. The black bars correspond to the standard culture 

conditions without inhibitors of endosomal acidification, while white and grey bars 

correspond to cells treated with CQ and NH4Cl respectively.  Data is mean ± SD for 

triplicate samples and was analyzed by two way ANOVA with the glycolipid agonists 

and endosomal acidification inhibitors as independent variables. Effect of CQ and 

NH4Cl treatment are highly significant for all the glycolipids tested (** P < 0.01 and ****P 

< 0.001). 

 

Figure 4: Effect of ammonium chloride on the lipid raft localization of CD1d and 

CD1d/GC complexes.  JAWS II cells were incubated with 200 nM of various GC 

agonists for 16 hours, and then harvested and washed to remove unbound glycolipid.  

The cells were then incubated at 37°C for 1 hour in culture media with or without 10 mM 

NH4Cl, and then stained with fluorescent L363 antibody.  Analysis of L363 binding and 

its detergent sensitivity was carried out by flow cytometry using the kinetic mode for 

data acquisition.  (a) Plots show the initial level of fluorescence at time 0 (mean 

fluorescence intensity (MFI) normalized to 100%), and the change in fluorescence 

relative to the starting level (expressed as percent of initial MFI) over time following 



addition of detergent (0.06% Triton X-100, addition indicated by the break in the X-axis). 

Solid symbols represent cells cultured in medium with 10 mM NH4Cl, and open symbols 

are medium without NH4Cl.  Symbols are mean values from three replicates, and error 

bars are 1 SD.   (b) Bar graph showing the residual detergent resistant L363 binding 

(percent of starting MFI) at 20 seconds after addition of detergent for cells incubated 

with (filled bars) or without (open bars) 10 mM NH4Cl.   Data shown are means of 3 

replicate values and error bars show 1 SD.  **** P < 0.001 (two way ANOVA). 

 

Figure 5: Effect of endosomal Alkanization on NK transactivation.  Splenic DCs 

were pulsed with medium containing inert vehicle (Veh) or with 200 nM of -C-GC 

C26:0, GC C20:2 or GC C20:2 plus 20 μM chloroquine for four hours.  These were 

then injected intravenously into mice, and the frequency of splenic NK1.1 positive cells 

producing IFN was analyzed by intracellular staining using flow cytometry.  (a) 

Representative plots show the gating strategy used to identify NK and NKT cells.  

Viable cells (R1) were gated to exclude B220Pos cells, and the B220Neg cells (R2) were 

gated for NK1.1Pos events (R3).  These were further gated for TCR, and gated for 

NK1.1 TCR double positive as NKT cells (R4).  The TCRNeg (R5) events were 

analyzed for expression of NKp46 and IFNγ.  (b) Scatter plots show mean  SD for 

frequencies of IFNγ positive cells for the various cell populations in groups of 5 mice 

(NS, not significant, ** P < 0.01, one way ANOVA).  
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