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ABSTRACT

Understanding how the Earth’s first continental land masses were generated is important because

the processes responsible directly affected the evolution of the planet’s primordial silicate interior,

and also its atmosphere and hydrosphere. Archaean continental crust is dominated by rocks of the
trondhjemite–tonalite–granodiorite (TTG) suite. These can be divided into (1) a mid- to late

Archaean (�3�5–2�5 Ga) suite with low SiO2 and high MgO, Sr and transition element contents, and

(2) an Eoarchaean (>3�5 Ga) suite with higher SiO2 and lower MgO, Sr and transition element con-

centrations. Cenozoic adakites are considered to be compositionally similar to mid- to late

Archaean (�3�5–2�5 Ga) TTGs, but not the oldest TTG rocks. Conversely, a suite of Early Eocene

adakite-like rhyodacites (Jamaican-type adakites: JTA) from Jamaica are shown to be geochemi-
cally similar to the Eoarchaean TTGs. In contrast to newly discovered JTA-like rocks (Ryozen low

Sr/Y) in Japan, new trace element and Nd–Hf radiogenic isotope data in this study confirm that the

Jamaican JTA cannot be formed by complex mixing, assimilation and fractional crystallization

processes. New partial melt models here explore several different source compositions (mid-ocean

ridge basalt, ocean island basalt and oceanic plateau), mineral modes, melt modes and partition

coefficients. The results of these models clearly demonstrate that the JTA and the Eoarchaean TTG

can be generated by partial melting of plagioclase- and garnet-bearing amphibolite source regions
with oceanic plateau-like compositions. Further modelling shows that the JTA and Eoarchaean

TTG low MgO and transition element abundances can be derived from two dominant processes:

(1) relatively shallow partial melting of subducting oceanic crust (compositionally similar to

Mesozoic oceanic plateau basalt) whereby the slab melts ascend without interacting with a mantle

wedge; (2) partial melting of oceanic plateau-like subducting oceanic crust followed by interaction

of the slab melts with a thin and/or discontinuous (boudinage-like?) mantle wedge whereby the ex-
pected increase of MgO, Ni, and Cr in the slab melts is obliterated by fractional crystallization of

ferromagnesian minerals (mostly amphibole). Consequently, using the JTA as a modern analogue

for Eoarchaean TTG production, we propose the existence of subduction zones consuming oceanic

plateau-like oceanic crust in Eoarchaean times.

VC The Author 2015. Published by Oxford University Press.
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INTRODUCTION

The processes responsible for generating the continen-

tal crust have resulted in the modification of the Earth’s

mantle, hydrosphere and atmosphere throughout geo-

logical time. However, the generation and subsequent

evolution of the Earth’s oldest (>3�5 Ga) continental

crust are poorly understood and are currently hotly

debated (e.g. Hoffmann et al., 2010, 2011; Polat, 2012,

2013; van Hunen & Moyen, 2012; Bédard et al., 2013;

Ziaja et al., 2014; Rollinson, 2014; Turner et al., 2014).

The oldest surviving continental rocks are the Acasta

gneisses, Canada (�4�0 Ga) (Bowring et al., 1990) and,

although Archaean crust can have a varied lithology de-

pending on its age (e.g. Kusky & Polat, 1999), the major-

ity (estimates up to �90%) of the early continental crust

from 4�0 to 3�5 Ga is composed of variably deformed

Na-rich granitoids of the trondhjemite–tonalite–granodi-

orite (TTG) rock suite that are considered to be derived

from the partial melting of metabasic source regions

(e.g. Barker & Arth, 1976; Rapp et al., 1991; Rapp &

Watson, 1995; Martin, 1999; Clemens et al., 2006;

Moyen & Stevens, 2006; Nutman et al., 2009; Friend &

Nutman, 2011; Nagel et al., 2012; Polat, 2012).

Nevertheless, the composition and tectonic setting of

this basaltic source region remain controversial (Martin,

1999; Foley et al., 2002; Hoffmann et al., 2011; Adam

et al., 2012; Laurie & Stevens, 2012; Moyen & van

Hunen, 2012; Nagel et al., 2012; Polat, 2012; Zhang

et al., 2013; Ziaja et al., 2014).

Hastie et al. (2010a) described a suite of Early Eocene

rhyodacites from Jamaica (Fig. 1), called the Newcastle

Volcanics, which have very similar compositions to

Eoarchaean TTG suites. Data suggested that the
Newcastle Volcanics were generated by partial melting

of a subducting portion of an oceanic plateau. The

Newcastle Volcanics were subsequently used as a mod-

ern analogue of Eoarchaean TTG suites and Hastie et al.

(2010a) proposed that Early Archaean continental rocks

are derived from the subduction of oceanic plateau-like
subducting plates on the early Earth. However, recently,

other Newcastle Volcanics-like rocks have been

described from other parts of the world and their petro-

genesis has been explained by fractional crystallization

processes without the need for oceanic plateau-like

metabasic protoliths (Shuto et al., 2013). In addition, al-

though it is gaining support, the use of the Newcastle
rocks as modern analogues of Eoarchaean TTG has

proved controversial (e.g. Castillo, 2012; Moyen &

Martin, 2012). Consequently, the purpose of this contri-

bution is to (1) use new geochemical data to investigate

possible fractional crystallization, mixing and assimila-

tion processes for generating the Newcastle Volcanics,
surrounding arc rocks and high-Nb basalts on Jamaica

in a single geochemically coherent model, and (2) fur-

ther discuss the petrogenesis of the Newcastle samples

and the implications for the potential composition of

the Eoarchaean continental source protolith and tec-
tonic environment.

As a result of the controversy surrounding the

petrogenesis of the Newcastle rocks, we use a relatively

large number of geochemical models to study the latter

and make use of extensive Supplementary Data

(available for downloading at http://www.petrology.
oxfordjournals.org) to present all the modelling

parameters used, the rationale for their use, and to dis-

play the results of the calculations. Specifically, we

have used published experimental results to constrain

modelling parameters using standard mass-balance

procedures—similar to other studies (e.g. Moyen &

Stevens, 2006).

JAMAICAN GEOLOGY

The geology of Jamaica is dominated by Tertiary lime-

stones and recent alluvial deposits (Mitchell, 2004,

2013). In contrast, a third of the island exposes

Cretaceous inliers predominantly composed of island

arc rocks (Fig. 1a and b) (e.g. Mitchell, 2006). In the east,
there is the NW–SE-trending Wagwater Belt, which is

an inverted Paleogene extensional basin (Fig. 1c;

Supplementary Data Fig. A1, Appendix A) (Jackson &

Smith, 1978). The Wagwater Belt contains volcanic

rocks that include the Early Eocene Newcastle Volcanics

(the Jamaican-type adakites; JTA) and the Halberstadt

Volcanics (associated high-Nb basalts) (Jackson &
Smith, 1978; Jackson et al., 1989).

Here, new data are presented from the Newcastle

and Halberstadt Volcanics and island arc lavas in the

surrounding Cretaceous inliers (Fig. 1b; Supplementary

Data Tables B1–B4, Appendix B). The island arc rocks

studied consist of the following: (1) the tholeiitic to calc-
alkaline (Hauterivian–Aptian) Devils Racecourse

Formation (Benbow Inlier) (Hastie et al., 2009; Brown &

Mitchell, 2010); (2) the predominantly calc-alkaline igne-

ous rocks (early to mid-Campanian) of the Central Inlier

(Hastie et al., 2013; Mitchell, 2013); (3) a granodiorite

pluton (the Above Rocks Granodiorite) and associated

lava flows (the Mount Charles and Border Volcanics) in
the Above Rocks Inlier; (4) porphyritic, calc-alkaline

lavas of the Thornton Formation (early to mid-

Campanian) from the Sunning Hill Inlier; (5) porphyritic

island arc tholeiite lavas of the Bellevue

Formation (mid- to late Campanian) in the Blue

Mountains Inlier (Mitchell & Ramsook, 2009;
Hastie et al., 2010c) (Fig. 1b; Supplementary Data Figs

A2–A4, Appendix A).
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CLASSIFICATION AND PETROGENESIS OF TTGS
AND ADAKITES

Early Archaean (>3�5 Ga) versus Mid- to Late
Archaean (<3�5) TTGs
Archaean TTG plutons are commonly composed of

quartz, Na-rich plagioclase, amphibole, biotite, Fe–Ti
oxides, apatite, epidote, allanite, titanite and zircon (e.g.

Jahn et al., 1981; Drummond et al., 1996; Martin et al.,

2005; Moyen & Stevens, 2006; Hoffmann et al., 2011).

Only the high-Al (>15 wt % Al2O3) TTG group will be

considered here because it has compositions analo-

gous to the Newcastle Volcanics (Barker et al., 1976;

Barker & Arth, 1976; Hastie et al., 2010a, 2010b). These
TTG rocks have >64 wt % SiO2, Al2O3 (>15 wt %), high

Na2O of 3�0–7�0 wt %, low K2O/Na2O ratios (<0�6) and

low Y and Yb contents (<20 and <1�8 ppm respectively)

(e.g. Barker & Arth, 1976; Barker et al., 1976; Jahn et al.,

1981; Drummond et al., 1996; Smithies, 2000; Condie,

2005; Martin et al., 2005; Nutman et al., 2009; Hoffmann
et al., 2011). Importantly, in the literature TTG rocks can

be broadly divided into (1) a mid- to late Archaean

(�3�5–2�5 Ga) suite with lower SiO2 and higher MgO, Sr,

Ni, Cr, Co and V contents, and (2) an Eoarchaean (>3�5
Ga) suite with higher SiO2 and lower MgO, Sr, Ni, Cr, Co

and V concentrations (Table 1) (e.g. Smithies, 2000;

Martin & Moyen, 2002; Smithies et al., 2003; Martin
et al., 2005; Willbold et al., 2009; Rollinson, 2014).

Experimental petrology and trace element modelling

suggest that the Archaean TTG are derived from the fu-

sion of metabasic protoliths that have been transformed

into amphibolite, garnet amphibolite or eclogite (e.g.

Rapp et al., 1991, 2003; Sen & Dunn, 1994a; Rapp &

Watson, 1995; Moyen & Stevens, 2006; Zhang et al.,
2013).

Cenozoic adakites—a TTG analogue and an
Eoarchaean problem?
Modern adakites are intermediate–silicic volcanic and

intrusive rocks that contain plagioclase, amphibole, pyr-

oxene, biotite, quartz and several accessory phases

(e.g. Defant et al., 1992; Martin et al., 2005). Adakites

have SiO2 >56%, Al2O3> 15%, high Na2O 3�5–7�5 wt %,
MgO< 3%, low K2O/Na2O< 0�5, low Y and Yb (<18 and

<1�9 ppm respectively), high Ni, Cr and V abundances
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Fig. 1. (a) Location map for Jamaica and the Caribbean–North American plate boundary. BB, Baitiquiri Basin; CB, Chivirico Basin;
SDB, Santiago Deformed Belt; SI, Swan Islands; WPA, Windward Passage Area. (b) Location map showing the Cretaceous inliers
and the main volcanic island arc successions of Jamaica [modified from Lewis & Draper (1990)]. (c) Location of the Newcastle
and Halberstadt Volcanics in the Wagwater Basin, Eastern Jamaica. More detailed maps can be found in Supplementary Data
Appendix A.
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and high large ion lithophile element (LILE) contents

with Sr> 400 ppm (Table 1) (e.g. Defant et al., 1991,

1992; Drummond et al., 1996; Martin, 1999; Condie,

2005; Castillo, 2012). Martin et al. (2005) divided ada-

kites into (1) a high-SiO2 adakite (HSA) subgroup that
represents ‘type’ adakites and (2) a low-SiO2 adakite

(LSA) subgroup that represents high-Mg andesites

(Table 1). The HSA have lower MgO (0�5–4 wt %),

Fe2O3þMgOþMnOþTiO2 �7 wt %, CaOþNa2O con-

tents <11 wt % and La/Yb� 20 (Table 1).

There are several theories published to explain the

generation of Cenozoic adakites, such as melting of
lower crustal sources and fractional crystallization proc-

esses (e.g. Macpherson et al., 2006; Shuto et al., 2013).

However, the most widely accepted model for forming

Cenozoic adakites is the partial melting of subducting

basaltic crust that has been transformed into amphibo-

lite, garnet amphibolite or eclogite (e.g. Kay, 1978;
Kepezhinskas et al., 1995; Yogodzinski et al., 1995, 2001;

Drummond et al., 1996; Martin, 1999; Rapp et al., 1999;

Foley et al., 2002; Martin et al., 2005; Moyen & Stevens,

2006; Moyen, 2009; Ayabe et al., 2012; Sato et al., 2013).

Experimental studies and field evidence also suggest

that, when ascending adakitic slab melts pass through
the mantle wedge, the magma assimilates peridotite,

resulting in the hybridization of the slab melt (lower

SiO2 and higher MgO and transition element contents)

(e.g. Kepezhinskas et al., 1995; Rapp et al., 1999;

Tsuchiya et al., 2005; Sato et al., 2013).

High-SiO2 adakites (not LSA) are considered to be

compositionally similar to mid- to late Archaean (�3�5–
2�5 Ga) TTGs [e.g. high Al2O3, Na2O and Sr contents,

high La/Yb ratios and low heavy rare earth element

(HREE) concentrations] and both show evidence that

suggests that they interacted with a mantle wedge (e.g.

high MgO and transition element contents) (e.g. Martin

& Moyen, 2002; Moyen and Martin 2012; Smithies et al.,
2003; Moyen, 2009). Thus, although controversial (e.g.

Macpherson et al., 2006; Castillo, 2012), studies of pre-

sent-day adakites, in addition to experimental petrology

and numerical modelling of TTG suites (e.g. Clemens

et al., 2006; Laurie & Stevens, 2012), have led to the

commonly published proposal that mid- to late

Archaean TTGs are formed by partial melting of sub-
ducting Archaean oceanic plates (e.g. Smithies et al.,

2003; Martin et al., 2005). Nevertheless, it should be

noted that generating Archaean TTG magmas has also

been explained using non-subduction environments

(similar to alternative adakite models). These environ-

ments include the partial melting of lower oceanic plat-
eau crust, fusion of thickened mafic crust and/or

anatexis of delaminated mafic crust (e.g. Atherton &

Petford, 1993; van Thienen et al., 2004; Smithies et al.,

2009; Zhang et al., 2013).

In contrast to younger Archaean TTG suites,

Eoarchaean TTGs do not have compositions compar-

able with HSA because they generally have higher SiO2

and Zr contents and lower TiO2, Al, Sr, MgO, Ni, Cr and

V concentrations (Smithies, 2000; Martin & Moyen,

2002; Smithies et al., 2003; Martin et al., 2005; Nutman

et al., 2009) (Table 1). Therefore, how are the

Eoarchaean TTG suites generated? Although models to

explain the generation of HSA and the younger

Archaean TTG suites are controversial, it would be
beneficial to discover a modern adakite example that

has a composition similar to the Eoarchaean TTG to

help us determine if subduction [or subcretion, Bedard

et al. (2013)] is a viable process on the early Earth.

Newcastle Volcanics (Jamaican-type adakites)—
modern analogue of Eoarchaean TTG?
The Newcastle lavas are altered, have quartz, plagio-

clase and amphibole phenocrysts, and have 64�6–

72�2 wt % SiO2, 14�5–15�9 wt % Al2O3, low K2O of

0�1–1�1 wt % and a high average Na2O abundance of

5�8 wt % (anhydrous values of 67�9–73�4 wt % SiO2,
15�1–16�1 wt % Al2O3, K2O of 0�1–1�2 wt % and Na2O of

5�9 wt %) (Supplementary Data Fig. A5, Appendix A).

The lavas have moderately high abundances of LILE

and light REE (LREE) (e.g. average La and Th concentra-

tions are 13�87 and 2�89 ppm respectively) and corres-

pondingly low Yb and Y contents of 0�5–0�9 and 5�4–

12�8 ppm to give an average La/Yb ratio of �20 (Table
1). On a normal mid-ocean ridge basalt (N-MORB) nor-

malized multielement diagram the Newcastle samples

have negative Nb–Ta anomalies, positive Zr–Hf anoma-

lies and concave-up middle REE (MREE)–HREE patterns

(Fig. 2a).

Relative to andesite–dacite–rhyolite (ADR) suites the
Newcastle rhyodacites have high Na2O contents, ada-

kitic-like K2O/Na2O (<0�5) and much higher La/Yb ratios

(Table 1; Supplementary Data Appendix B). The

Newcastle Volcanics are compositionally similar, but

not identical, to HSA with their sodic character, high sil-

ica, CaOþNa2O ranging from 5�2 to 10�15, and

Fe2O3þMgOþMnOþTiO2 from 3�04 to 5�78 (anhyd-
rous ranges are 5�3–10�6 and 3�1–5�9 respectively). The

Newcastle lavas also have adakite- and TTG-like low

average Nb/Ta values and high Zr/Sm ratios of 12�2 and

85�7 correspondingly (Foley et al., 2002); although some

studies demonstrate a larger range in TTG Nb/Ta ratios

(e.g. Bédard, 2006).
The Newcastle rocks are not similar to continental K-

adakites (e.g. Wang et al., 2005) or sodic rhyolites

(Moyen, 2009) as their K contents and K2O/Na2O ratios

are too low. However, the Newcastle Volcanics are also

not analogues of HSA because they have a very low

average Sr content of 129 ppm and they mostly lack the

higher MgO and transition element contents of many
modern-day adakites (Table 1; Supplementary Data

Appendix B) (e.g. Ayabe et al., 2012; Sato et al., 2013).

Hastie et al. (2010b) termed the Newcastle Volcanics

Jamaican-type adakites (JTA) not only to highlight their

adakitic compositions, but to also emphasize the small

chemical differences between JTA and ‘true’ adakites.
We continue to argue for a JTA subgroup here, which

can be used alongside the geochemically distinct
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HSA and LSA of Martin et al. (2005). Furthermore, it is
striking how similar the JTA average composition is

to the average composition of Eoarchaean TTG rocks

(Table 1). For many elements (e.g. Ti and Zr) the JTA

are more TTG-like than the other adakite compil-
ations. Importantly, the JTA have the low Sr and tran-

sition element contents similar to early Archaean TTG

suites. Also, the JTA are compositionally similar to
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Fig. 2. (a) N-MORB normalized multi-element plot for the Newcastle rocks (Jamaican-type adakites: JTA) with a chondrite-normal-
ized (La/Yb)cn–(Yb)cn diagram inset. Grey field on the multi-element plot represents Late Archaean to Cenozoic adakites (see Hastie
et al., 2010a, for references). Normalizing values are from McDonough & Sun (1995) and Sun & McDonough (1989). (b) eNd52�74–
eHf52�74 plot showing the JTA and Halberstadt lavas relative to the surrounding Jamaican island arc lavas and intrusive rocks from
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Supplementary Data Table B4 for data and data sources.) Group 1 and 2 refer to subgroups of the Halberstadt Volcanics (see text
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the med-HREE TTG subgroup that has recently been

proposed by Moyen & Martin (2012).

DATA AND ANALYTICAL METHODS

The JTA, the Halberstadt Volcanics and island arc rocks

from the Cretaceous inliers that surround the Wagwater

Basin were analysed for major and trace element and

Nd–Hf isotope compositions at Cardiff University, the

University of Edinburgh, the NERC Isotope Geosciences
Laboratory and the Arthur Holmes Laboratory, Durham

University. All the data are given in Supplementary

Data Tables B1–B4, Appendix B, along with the analyt-

ical methods.

FORMING THE JTA WITH FRACTIONAL
CRYSTALLIZATION, MIXING AND ASSIMILATION
PROCESSES

Fractional crystallization of Halberstadt magmas
to form the JTA
The discovery of JTA-like (Ryozen low Sr/Y) adakites in

Japan (Shuto et al., 2013) that can be generated by frac-

tional crystallization processes suggests that the JTA in
Jamaica may have also formed by similar processes

and not by the fusion of oceanic plateau material.

However, in the following sections we use field evi-

dence and several geochemical models to argue that

the Jamaican data do not support a fractional crystal-

lization origin for the JTA.
Up to 80–90% fractional crystallization is required to

generate TTG-like or adakite-like liquids from a basic

melt (e.g. Drummond et al., 1996). Evidence for large ac-

cumulations of basic–intermediate plutonic or volcanic

rocks that could represent cumulates or parental bodies

to TTG liquids are not found in Archaean terranes (e.g.

Smithies, 2000; Condie, 2005; Moyen & Martin, 2012).
Similar accumulations are also not found near the JTA

despite the fact that they are located in an extensional

basin (Fig. 1c) (Jackson & Smith, 1978; Jackson et al.,

1989).
40Ar/39Ar data indicate that the JTA have an error

weighted average age of 52�74 Ma, which is consistent
with palaeontological data (Jiang & Robinson, 1987).

The only other lavas erupted at this time are the

Halberstadt high-Nb basalts (Jackson & Smith, 1978).

Consequently, if the JTA are derived from the fraction-

ation of a basic parental liquid, the Halberstadt lavas

represent the only viable parental magma. Previously,

Hastie et al. (2011) have shown that the JTA and the
Halberstadt lavas have similar age-corrected Nd and Sr

radiogenic isotope ratios, but different age-corrected Hf

isotope ratios. Thus, the different Hf-isotope ratios sug-

gested that the JTA cannot be directly generated from

the fractionation of a Halberstadt parental liquid.

However, new Nd–Hf data in Fig. 2b show that the JTA
and Halberstadt Volcanics overlap very slightly and that

further studies may well confirm a more extensive

isotopic similarity. Therefore, Nd–Hf isotope ratios

alone could potentially suggest that the JTA can frac-

tionate from Halberstadt magmas. Nevertheless, major

and trace element systematics do not support this

assumption.
Figure 3a is a SiO2–Sr variation diagram that sug-

gests that JTA did not fractionate from a Halberstadt

parent liquid because the two rock suites form separate

liquid lines of descent (different evolutionary trends

seen in numerous other variation diagrams; e.g. REE–

SiO2). In Fig. 3a the JTA have a positive trend implying

that a Sr-compatible mineral phase (plagioclase) was
not fractionating in any significant amount. Figure 3b is

a Dy/Yb–SiO2 diagram modified from Macpherson et al.

(2006) that implies that high Dy/Yb ratios in Philippine

adakites are formed by the fractionation of a garnet-

bearing assemblage from a basic arc parental magma.

The JTA do not attain the high Dy/Yb ratios seen in
adakitic rocks from the Philippines. Additionally,

garnet fractionation would produce a negative correl-

ation between decreasing Y and HREE abundances and

increasing SiO2 content on Harker variation diagrams.

Such correlations are seen in adakitic rocks in the

Philippines (Macpherson et al., 2006), but not in the JTA
(Fig. 3c).

Davidson et al. (2007) showed that basic arc lavas

that are dominated by amphibole fractionation generate

negative trends on a Dy/Yb–SiO2 plot. Figure 3b shows

the trend for amphibole fractionation of basic to silicic

island arc lavas in the Lesser Antilles. At the SiO2 con-

tents typical of the JTA the Lesser Antilles arc magmas
would eventually evolve to Dy/Yb ratios much lower

than those in the JTA. Therefore, the lack of amphibole

cumulates and trace element systematics do not

strongly suggest that the derivation of the JTA was the

result of extensive amphibole-dominated fractional

crystallization from a basic parent arc magma.
Thus, differing liquid lines of descent show that the

JTA and the Halberstadt lavas are not related to each

other by fractional crystallization processes. Also, there

is no evidence for substantial plagioclase and garnet

fractionation in the JTA data. However, we will show

below that the JTA have undergone relatively limited

amphibole fractionation, but not from a basic arc
parent.

Mixing and assimilation and fractional
crystallization (AFC): an isotope approach
In addition to pure fractional crystallization, the

Halberstadt magmas could have assimilated arc crust
from the surrounding Cretaceous inliers and subse-

quently fractionated to form a resultant magma with

JTA composition. This theory is tested using the 25 new

Nd–Hf isotope analyses reported in this study. All sam-

ples are age corrected to 52�74 Ma. Figure 2b shows

that several of the Jamaican arc units have variable iso-
topic compositions and it would be possible to con-

struct mixing trends between a large variety of different
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samples relative to the Halberstadt rocks. Nonetheless,

if a high-temperature alkaline Halberstadt magma were

to assimilate substantial proportions of a particular is-
land arc suite, it is likely that it would not simply

consume one sample type; it would probably consume

a cross-section of the whole suite. Hence, mixing trends

have been calculated between the average compos-
itions of the different arc suites and the Halberstadt
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Fig. 3. (a) Sr–SiO2 variation diagram illustrating the different liquid lines of descent for the JTA and Halberstadt lavas. (b) Dy/Yb–
SiO2 modified from Macpherson et al. (2006) and Davidson et al. (2007), showing the effects of amphibole and garnet fractionation
in generating adakitic rocks. The grey fields represent data trends from the aforementioned papers. (c) Lu–SiO2 variation diagram.
(d) Average eNd52�74–eHf52�74 compositions for the Jamaican island arc rocks. Mixing trends constructed using equation (1); the tick
marks represent 20% intervals. (e, f) Average eNd52�74–eHf52�74 AFC modelling trends assuming an assimilation/fractionation ratio of
0�7 between Halberstadt lavas and the Benbow and Central Inlier samples, respectively. Sample symbols as in Fig. 2.
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lavas in Figure 3d. Simple mixing curves are calculated

by

eCM ¼
eCACAX þ eCBCBð1� X Þ

CAX þ CBð1� X Þ (1)

where eCM is the epsilon isotope value of the mixture at

52�74 Ma, eCA and eCB are the epsilon isotope ratios in

components A and B respectively at 52�74 Ma, CA

and CB represent the corresponding Hf and Nd

concentrations of components A and B respectively,

and X is the mass fraction of component A in the mix-
ture (Faure, 1986) (see Supplementary Data Table C1,

Appendix C).

The mixing curves between the Halberstadt rocks

and the Central Inlier and Benbow Inlier lavas pass

close to the JTA. As such, the average eNd(55�74) and

eHf(55�74) value of the JTA can be theoretically explained

by a mixture of �58% Halberstadt and �42% Central

Inlier or �70% Halberstadt and �30% Benbow Inlier.

In addition, using variable assimilation rates isotopic

AFC curves can also intersect the JTA average

using Halberstadt, Benbow and Central end-

members (see Fig. 3e and f for examples). The equa-

tions for these calculations are from DePaolo (1981) and

include

eCl ¼
r

r�1
CW

z ð1� F�zÞeCW þ C0F�zeC0

r
r�1

CW

z ð1� F�zÞ þ C0F�z
(2)

z ¼ r þ D0 � 1

r � 1
(3)

where eCl is the epsilon isotope value of the magma,

eCW is the isotope ratio in the assimilated wall-rock, eC0

is the epsilon isotope value in the original magma, r is

the assimilation/fractionation ratio (set to 0�7 in Fig. 3e

and f), F is the fraction of melt remaining, C0 and CW

represent elemental concentrations in the initial magma

and the assimilated wall-rock respectively, and D0 is the

bulk partition coefficient. D0 is calculated using a stand-

ard fractionating assemblage from Woodhead (1988)

(5% olivine, 25% clinopyroxene, 60% plagioclase and

10% magnetite) and partition coefficients from

McKenzie & O’Nions (1991) and Bédard (2006). To con-

firm the validity of using the former mineral mode we

have performed simple crystallization computations

using the MELTS program of Ghiorso & Sack (1995)

that suggest that the Woodhead (1988) mode is an

excellent approximation. Input parameters and results

are given in Supplementary Data Tables C2 and C3,

Appendix C.

The composition of the JTA with regard to iso-

topic composition may be explained by mixing or

AFC processes whereby the Halberstadt magmas

have consumed part of the Jamaican arc crust rep-

resented by the Central or Benbow Inlier lavas.

These isotopic findings now need to be tested using

trace elements.

Benbow and Central inlier mixing and AFC
trends: a trace element approach
Mixing and AFC trends on the eNd(52�74) and eHf(52�74)

plot suggest that Halberstadt magmas could assimilate

arc material with similar compositions to the igneous

rocks in either the Benbow or Central Inlier to generate
JTA magmas. To confirm this model, the mixing trends

need to be assessed using trace element systematics.

Direct trace element mixing is investigated by applying

the equation

Cm ¼ CAX þ CBð1� X Þ (4)

where Cm is the concentration of an element in a mix-

ture, CA and CB are the abundances of that element in

components A and B respectively, and X is the propor-
tion of component A. For AFC processes it is assumed

that primary Halberstadt magmas would fractionate the

gabbroic mineral assemblage of Woodhead (1988) as

well as assimilating Jamaican arc crust. The trace elem-

ent AFC processes can be calculated using the following

equation from DePaolo (1981):

Cl ¼ C0 F�z þ r

r � 1

� � CW

zC0
ð1� F�zÞ

� �
(5)

where Cl is the concentration of an element in the re-
sultant magma and other variables are as in equation

(2). Input parameters and results are given in

Supplementary Data Tables C4–C7, Appendix C.

Figure 4a–h shows representative eHf(55�74)–trace

element ratio and trace element variation diagrams

showing mixing, AFC and fractional crystallization
trends between the Halberstadt lavas and samples from

the Benbow Inlier (Fig. 4a–d) and the Central Inlier

(Fig. 4e–h). It can be clearly seen that none of the mod-

elled trends intersect the JTA data on any of the dia-

grams. Therefore, although isotope systematics

suggest that the JTA can be formed by mixing or AFC
processes between Halberstadt magmas and Benbow

and Central Inlier contaminants, the trace element and

isotope-trace element systematics do not support this

view.

Can the Border Volcanic rocks explain the
generation of the JTA?
Now that the potential involvement of the Halberstadt

rocks in the formation of the JTA has been explored,

and discounted, we should point out that some of the

JTA have similar radiogenic Nd and Hf isotope ratios to

the Border Volcanic samples (Fig. 2b). The silicic Border

Volcanics (Fig. 1b) are older than the JTA and cannot
represent a viable parental magma sensu stricto.

However, it is possible that a parental arc magma with a

similar composition to the Border Volcanics could frac-

tionate to form the JTA. We now briefly explore this

idea. The Border Volcanics are a succession of calc-

alkaline and plagioclase- and clinopyroxene-phyric bas-
altic andesite to andesite lavas. They are of a similar

age, and are spatially close to the calc-alkaline and
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Fig. 4. (a–d) Representative eHf52�74 versus trace element ratio diagrams showing mixing and AFC trends between the
Halberstadt lavas and samples from the Benbow Inlier (a, b) and the Central Inlier (c, d). (e–h) Representative trace element
variation diagrams showing mixing, AFC and fractional crystallization trends between the Halberstadt lavas and samples from the
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(for clarity) of F or X, whereas in the trace element variation diagrams they represent 10% intervals of F or X. Sample symbols as
in Fig. 2.
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quartz- and plagioclase-phyric basaltic andesite to da-

citic rocks of the Mt. Charles and Sunning Hill (Thornton

Formation) Volcanics (Fig. 1b; Supplementary Data

Table B1 and Fig. A2, Appendices A and B). Figure 5a

and b shows that all of the lavas have negative Nb–Ta
anomalies on N-MORB normalized multielement dia-

grams and, in the absence of continental crust (e.g.

Draper 1986), these anomalies suggest that the rocks

are derived from a subduction zone. Figure 5c shows

that the lavas have high Th/Yb ratios and plot in the

calc-alkaline island arc field above the modified MORB

array of Pearce (1982).
The high field strength element (HFSE) and HREE

concentrations of the lavas are similar to MORB com-

positions except for a small Nb–Ta enrichment and

MREE–HREE depletion (Fig. 5a). The lavas have nega-

tive Ti anomalies and very slight concave-up MREE–

HREE patterns (from Gd to Lu) that are commonly
attributed to fractionating Fe–Ti oxides and amphibole

respectively. Davidson et al. (2013) recently presented a

Dy/Dy* [chondrite-normalized Dy/(La4/13�Yb9/13)] ver-

sus Dy/Ybcn diagram to quantify the curvature seen in

many chondrite-normalized REE patterns. Amphibole

fractionation should generate Dy/Dy* and Dy/Ybcn

ratios <1�0 from a chondritic parent or from a theoret-

ical N-MORB source (e.g. Sun & McDonough, 1989) that

has been contaminated with a slab flux. The Border

Volcanics have Dy/Dy* from 0�62 to 0�70, but have Dy/

Ybcn values >1. Ho/Lucn from 0�95 to 1�03 may suggest

very limited fractional crystallization of amphibole, but

the lack of amphibole phenocrysts and high Dy/Ybcn

probably rule out extensive amphibole fractionation.

The Thornton Formation lavas have similar ratios of Dy/

Dy* 0�58–0�71, Dy/Ybcn 1�17–1�35 and Ho/Lucn ratios

from 0�94 to1�04. Mt. Charles Volcanics have Dy/Dy*

from 0�49–0�69, Dy/Ybcn values 0�96–1�22 and Ho/Lucn

from 0�69 to 1�07. Therefore, as with other studies on is-
land arc successions (e.g. Woodhead, 1988; Jolly et al.,

1998; Davidson et al., 2007) the evolution of these

Jamaican basic to silicic arc lavas can be explained by

predominantly olivine, plagioclase, clinopyroxene and

magnetite fractionation 6 a small amount of amphibole.

Samples AHAR16 and AHSUN105 have fairly basic

compositions and have not undergone the large de-
grees of fractionation seen in the other samples

(Supplementary Data Table B1, Appendix B). These

samples plot on the boundary between Icelandic (man-

tle plume) basalt and N-MORB on the Nb/Y–Zr/Y dia-

gram of Fitton et al. (1997) (inset of Fig. 5a). This,

together with elevated Nb concentrations in Fig. 5a,
suggests derivation from a more enriched mantle

source than the majority of N-MORB. Additionally,

these basic lavas plot in the enriched (E)-MORB section

of the global MORB array on the Zr/Yb–Nb/Yb diagram

of Pearce & Peate (1995) (Fig. 5d). The remaining silicic

samples trend towards high Zr/Yb ratios and plot above

the MORB array. Similar high Zr/Yb ratios in other basic
island arc lavas have been previously explained by the

mobilization of Zr from the subducting slab via a partial

melt (e.g. Pearce & Peate, 1995; Neill et al., 2010).

Therefore, could these arc lavas be slab melts and rep-

resent precursors to the JTA? We model the potential

fractional crystallization of the Border Volcanics by

using a gabbroic modal mineral assemblage from

Woodhead (1988) (5% olivine, 25% clinopyroxene, 60%

plagioclase and 10% magnetite). The plagioclase modal

percentage should probably be a little lower to allow a

higher Sr content to be developed in the subsequent

melts. For example, fractionating �50% plagioclase,

�30% clinopyroxene and �15% magnetite generates

similar trends to those for the Woodhead mode, but with

higher Sr contents in the magmas. However, mineral

modal percentages and distribution coefficients are so

variable that it makes identifying the exact fractionating

assemblage extremely difficult. As such, we simply use

the Woodhead mode here as it represents a close ap-

proximation to the probable mineral mode required. The

starting compositions are represented by AHAR16 and

AHAR18 separately. AHAR18 is another relatively less

evolved sample used to bracket all of the potential com-

positions for the Border, Mt Charles and Sunning Hill

Volcanics. Additionally, because of the predominantly an-

desitic composition of the Jamaican arc lavas, partition

coefficients are taken from Fujimaki et al. (1984) and

Bacon & Druitt (1988), except for magnetite and Nb coeffi-

cients, which are from Bédard (2006) and McKenzie &

O’Nions (1991) respectively (Supplementary Data Table

C8, Appendix C). The equation used for our simple frac-

tional crystallization models is

Cl ¼ C0F ðD�1Þ (6)

where Cl is the concentration in the liquid, C0 is the

initial concentration prior to fractional crystallization,

D is the bulk partition coefficient of the fractionating

assemblage and F is the proportion of melt

remaining.

Fractional crystallization trends (AHAR16 and

AHAR18) for the gabbroic mineral assemblage using

the stated input parameters are shown in Fig. 5e. The

trends extend towards higher Zr/Yb and Nb/Yb ratios

and can explain the generation of the more silicic

Border Volcanics from a basic magma. This simple

model shows that higher Zr/Yb ratios, relative to N-

MORB, can be the result of fractional crystallization

processes and not a slab melt. Therefore, the Border

Volcanics are ‘normal’ island arc rocks that have been

derived from a slab-flux metasomatized enriched

MORB mantle wedge and subsequent fractional crystal-

lization of a gabbroic mineral assemblage with the pos-

sibility of small amounts of amphibole fractionation in

the lower arc crust to generate Ho/Lucn< 1�0.

However, can these fractionation models be ex-

panded to explain the generation of the JTA? The most

evolved Border Volcanic lava has 61�51 wt % SiO2 (an-

hydrous: 62�7 wt %) and is nearly as differentiated as

some of the JTA. Therefore, if the JTA are derived from

the fractional crystallization of Border Volcanic-like
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parental magmas it would be expected that the com-

position of the evolved Border Volcanic lavas would be

similar to the JTA composition, but this is not the case.

The N-MORB normalized multielement patterns of the
Border Volcanic and JTA samples are distinct, with the

former having higher concentrations of Sr, P and

the MREE–HREE than the latter (Figs 2a and 5a). The dif-

fering compositions are highlighted on a La/Sm–Zr/Yb

diagram where the ‘normal’ arc lavas plot in a field

separate from the JTA (Fig. 6a).
Fractional crystallization trends using AHAR18 as a

starting composition (this sample has the lowest

concentration of incompatible elements) are shown in

Nb, Sm and Yb variation diagrams in Fig. 6b–d

(Supplementary Data Table C8, Appendix C). These

trends clearly show that, although the JTA and Border

Volcanic lavas have similar radiogenic isotope ratios,
the former cannot be formed from the fractional

crystallization of a parent magma similar in compos-

ition to the Border Volcanic rocks. Even if AHAR16 is

used as the starting composition or the fractionating

mineral mode is changed to another mineral assem-

blage (e.g. the low-P amphibole assemblage of
Macpherson et al., 2006; 74�3% plagioclase, 21�5%

amphibole and 4�2% magnetite), the JTA compositions

cannot be replicated.

Summary
Major and trace element and trace element-radiogenic
isotope systematics show that in contrast to the JTA-

like rocks in Japan (Shuto et al., 2013), the Jamaican

JTA cannot be modelled with mixing, fractional crystal-

lization or assimilation processes from any viable

parental magma on Jamaica.

JTA AND POSSIBLE EOARCHAEAN TTG
PETROGENESIS

The JTA source region and modelling parameters
With the previous modelling in mind, we propose that

the JTA can be derived only by partial melting of a

metabasic source. We explore this option here with

updated partial melt models, with an emphasis on vary-

ing mineral and melt modes from published high

pressure–temperature experiments.
The geochemistry of the JTA [e.g. low Sr contents

(<400 ppm), concave-upwards REE patterns, and
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average N-MORB normalized (nmn) Gd/Yb �1�8] re-

quires plagioclase, amphibole and garnet, respectively,

to remain stable in the residue [see Hastie et al. (2010b)

for more information]. Such an assemblage will be sta-

ble from �1�0 to 1�6 GPa and will undergo fluid-absent
(vapour-absent) partial melting at �900�C (e.g.

Rushmer, 1991; Sen & Dunn, 1994a; Wolf & Wyllie,

1994; Patiño Douce & Beard, 1995; López & Castro,

2001; Zhang et al., 2013). Plagioclase is not stable in ex-

periments carried out at these temperatures and pres-

sures under water-saturated conditions (e.g. Peacock

et al., 1994).
Several experimental studies on metabasic or inter-

mediate material have documented the phase changes

during dehydration of amphibole at the required P–T

conditions to stabilize a plagioclase- and garnet-bearing

amphibolite residue (Sen & Dunn, 1994a; Wolf & Wyllie,

1994; Patiño Douce & Beard, 1995; Springer & Seck,
1997). Here we shall investigate these starting amphibo-

lite and garnet amphibolite sources to explain the deriv-

ation of the JTA. Our modelling will also investigate

compositionally different metabasic sources that in-

clude N-MORB, E-MORB, ocean island basalt (OIB) (Sun

& McDonough, 1989), average Caribbean Oceanic plat-
eau (COP) (Hastie et al., 2008), and average Ontong

Java Plateau (OJP) (Fitton & Godard, 2004; Tejada et al.,

2002). Partition coefficients for low-temperature fusion

of a metabasic protolith to generate TTG partial melts

are taken from Bédard (2006). However, there is a con-

cern related to the widely variable (and controversial)

Nb distribution coefficient for amphibole in intermedi-
ate to silicic melts (e.g. Ewart & Griffin, 1994; Klein

et al., 1997; Hilyard et al., 2000; Martin et al., 2005;

Bédard, 2006; Tiepolo et al., 2007; Laurent et al., 2013).

Full discussion on the choice of Nb partition coefficient

in amphibole is provided in Supplementary Data

Appendix C (p. 11 and the caption to Table C9).

Partial melt models
Garnet-free amphibolite
High (Gd/Yb)nmn ratios (JTA average �1�8) suggest that
small amounts of residual garnet remain in the JTA

source region, thus requiring the metabasic protolith to

be located at a depth of >30 km (>1�0 GPa) (e.g. Martin

et al., 2005; Hastie et al., 2010b). This is also the case for

Eoarchaean TTG suites [e.g. average (Gd/Yb)nmn �2�2;

Nutman et al., 2009]. To test this, a garnet-free am-

phibolite is modelled to determine if high (Gd/Yb)nmn

ratios can be achieved. This is important because gar-

net-free greenstones and amphibolites are regarded as

important constituents of island arc crust and are there-

fore a potential source for JTA and TTG magmas (e.g.

Beard & Lofgren, 1991; Médard et al., 2006; Davidson

et al., 2007).
We start by modelling partial melting of an average

garnet-free amphibolite based on data from Beard

& Lofgren (1991). Those researchers reported subsoli-

dus modes for five arc-derived amphibolites

(metamorphosed basalts and andesites) at 3 kbar and

850�C (Beard & Lofgren, 1991, table 5) and here we

average the modes to derive a mean starting mineral-

ogy. The melting mode is calculated from the changing

average mineral modes after �19% dehydration partial
melting at 900�C and 3 kbar (Beard & Lofgren, 1991,

table 3; Supplementary Data Table C9, Appendix C).

Additionally, because Zr and P concentrations are

buffered in the JTA (Fig. 7a and b), an estimated 0�01%

and 0�165% zircon and apatite, respectively, are added
to the mineral starting mode and are presumed to melt

modally. These zircon and apatite proportions are
chosen so that they account for approximately half to

two-thirds of the Zr and P concentrations in an N-
MORB, E-MORB and COP protolith. More information
on zircon and apatite is given in Supplementary Data

Appendix C (p. 11). Residual ilmenite has the potential
to buffer Ti contents, but there is no evidence for Ti buf-

fering in the JTA data (Fig. 7c). Therefore, modal vol-
umes of ilmenite are replaced with magnetite in the

original mineral and melt modes of Beard & Lofgren
(1991). Interestingly, it has been proposed in the litera-

ture that fusion of a source region with residual Ti-rich
phases (rutile or ilmenite) will generate melts with high

Nb/Ta ratios (>25) whereas residual amphibole forms
melts with low Nb/Ta (<<25) (e.g. Foley et al., 2002;

Hoffmann et al., 2011). Therefore, the low average Nb/
Ta ratios of the JTA (�10–16) and Eoarchaean TTG (e.g.

�9: Nutman et al., 2009; �14: Hoffmann et al., 2011)
may suggest amphibole control.

Figure 8 shows N-MORB-normalized multi-element

patterns generated by 1–18% partial melting of a shal-

low metabasic protolith with N-MORB, E-MORB, OIB

and COP starting compositions (Supplementary Data

Table C9, Appendix C). The non-modal partial melt

equation from Shaw (1970) is used for the calculation:

Cl ¼
C0

D0 þ Fð1� P Þ (7)

where Cl is the concentration in the resultant melt, C0 is

the concentration in the source region before partial

melting, F is the mass fraction of melt generated, D0 is

the bulk partition coefficient prior to partial melting and

P is the average of the partition coefficients weighted by

the proportion contributed by each phase to the melt.

None of the garnet-free partial melt models can repli-

cate the low MREE–HREE concentrations of the JTA and

the Eoarchaean TTG. Relative to the JTA, the fusion of

an N-MORB-like source also produces melts with incom-

patible element contents that are too low (apart from K,

Ce, Nb and Ta), and E-MORB and OIB sources generate
melts that are mostly too enriched in LILE and LREE for

both JTA and Eoarchaean rocks. A COP source can form

melts with incompatible element abundances similar to

the JTA and TTG, although the MREE–HREE contents are

still too enriched. Additionally, no amount of amphibole

fractionation can deplete the MREE–HREE to the concen-
trations found in the JTA. As an example, Fig. 8 shows
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the patterns generated by 30% amphibole fractionation
of 1% partial melts. Partial melting of garnet-free am-

phibolite generates (Gd/Yb)nmn ratios from �0�74 to 1�16

for N-MORB and COP protoliths, which is lower than the

JTA average of 1�8 and early TTG average of 2�2
(Nutman et al., 2009) and 2�8 (Hofmann et al., 2011).

Although we have used amphibole as the sole crys-

tallizing phase here, the porphyritic JTA contain quartz,
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plagioclase and amphibole phenocrysts. Consequently,

at least some amount of quartz and plagioclase should

have fractionated. Quartz will have D values of zero for

all of the investigated trace elements (e.g. Sen & Dunn,

1994a), and thus will not be considered further. Plots of

Sr and Al2O3 vs SiO2 (Figs 3a and 7d) have positive

slopes showing that any proportion of plagioclase in

the fractionating assemblage could not have been high

because of the high partition coefficient of Sr in plagio-
clase in equilibrium with a TTG-like melt and the fact

that plagioclase is a high-Al2O3 phase. Thus, plagio-

clase is required as a residual phase to buffer the JTA

melts at low Sr contents (<<400 ppm), but then Sr in-

creases during fractional crystallization because of a

lack of plagioclase removal.

Linear trends are not seen on LREE–HREE vs SiO2

variation diagrams (Fig. 7f and g). This cannot be due to

subsolidus silica mobility because of the linear trends

with other immobile elements (e.g. Th, Sr and Al2O3:

Figs 3a and 7d, e) and the LREE–HREE should be immo-

bile during secondary alteration processes. Therefore,

the lack of trends consistent with experimental liquid
lines of descent on MREE–HREE vs silica variation dia-

grams cannot be explained by multi-genetic source re-

gions or subsolidus element mobility (Fig. 7f and g).

The scattered MREE–HREE data may best be explained

by the variable compatibility of MREE–HREE in a fractio-

nating phase (i.e. amphibole; Bédard, 2006).
Consequently, although other phases (e.g. plagio-

clase, clinopyroxene, apatite and zircon) probably frac-

tionated at depth to some small degree (especially

plagioclase), we have no way of knowing the exact pro-

portions of these phases in the crystallizing assemblage

because of the absence of cognate xenoliths in the JTA.

Thus, we propose that the initial fractionation of the
JTA parental magmas at depth was predominantly

caused by amphibole. This conclusion is supported by

several recent studies presenting geochemical and

xenolith evidence for dominant amphibole fractionation

in hydrous arc magmas at low to intermediate depths in

the crust (e.g. Davidson et al., 2007; Rodrı́guez et al.,
2007; Dessimoz et al., 2012; Rollinson, 2012, 2014).

Garnet amphibolite (with plagioclase)
If a JTA-like lava and an early Archaean TTG-like rock

cannot be generated from a garnet-free amphibolite
source, can the JTA, including the high (Gd/Yb)nmn

ratios in the JTA and Eoarchaean TTG, be explained by

fusion of an amphibolite that leaves garnet in the resi-

due? The JTA and early TTG also have low (buffered) Sr

concentrations (<400 ppm) and low Al2O3 contents

(<19 wt %) that require plagioclase to remain in the resi-

due during dehydration partial melting (Figs 3a and 7d)
(e.g. Beard & Lofgren, 1991; Wolf & Wyllie, 1994;

Winther, 1996; Martin, 1999; Martin et al., 2005).

Plagioclase is not normally stable in metabasic source

regions at pressures above �1�6 GPa (e.g. Winther,

1996; Martin et al., 2005; Clemens et al., 2006; Moyen &

Stevens, 2006); therefore, plagioclase-free amphibolites
and eclogitic protoliths above �1�6 GPa are not

modelled.
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Experimental starting mineral modes and melt reac-

tions for partial melting of amphibolite metabasic or inter-

mediate protoliths that leave a residue of amphibole,

garnet and plagioclase have been given by Sen & Dunn

(1994a), Wolf & Wyllie (1994), Patiño Douce & Beard

(1995) and Springer & Seck (1997). Our partial melt results
using data from these studies generate similar results

and, therefore, only those based on Sen & Dunn (1994a)

are presented here. However, full details and results for

the three other studies can be found in Supplementary

Data Tables C10–C14, Figs C1–C5, Appendix C.

Results for N-MORB, E-MORB and COP sources are
presented in Fig. 9a–c; an OIB source is not shown be-

cause it generates melt compositions that are too en-

riched relative to the JTA and early TTG. Multi-element

plots display the full range of trace element concentra-

tions, but Nb/Sm–Gd/Yb, Nb/Yb–Yb and Sr–La diagrams

are also included to better illustrate the depletions and

enrichments of elements used for the definition of ada-
kites and TTG (e.g. Sr and Yb concentrations).

Sen & Dunn (1994a) carried out dehydration melting

experiments on an amphibolite that stabilizes garnet

and plagioclase in the residue at 1�5 GPa. Partial melt

models were constructed using the modal proportions

of the starting amphibolite and the melt mode at

1�5 GPa given by Sen & Dunn (1994a) (see their p. 406

for the starting mode). The N-MORB partial melt trace

element patterns in Fig. 9a do not generally match the

whole extent of the MREE–HREE depletion of the JTA,

although higher degree melts of E-MORB and COP

sources do form JTA-like MREE–HREE patterns.
Nonetheless, subsequent fractional crystallization of

amphibole from all the model melts can easily produce

JTA-like MREE–HREE concentrations for N-MORB, E-

MORB and COP starting compositions. The models also

replicate Eoarchaean TTG MREE–HREE contents. A Dy–

Yb variation diagram (Fig. 7h) shows the importance of
dominant amphibole fractional crystallization. The li-

quid line of descent for amphibole-dominated fractional

crystallization explains the JTA data and if plagioclase

is included in any large amount (e.g. 60% from

Woodhead, 1988) in the fractionating assemblage the

good fit between the fractionation trend and the JTA

data breaks down. Conversely, smaller proportions of
plagioclase do not cause the fit to substantially degrade

(approximately up to 15–20%).

Magmas derived from N-MORB and COP protoliths

using the data of Sen & Dunn (1994a) can have

(Gd/Yb)nmn ratios of �1�8 at �9–11% partial melting.

(Gd/Yb)nmn ratios of �1�8 can also be achieved if a 10%
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partial melt of a COP source undergoes �8% amphibole

fractionation. The LILE and LREE concentrations of the

JTA and Ba and Sr contents of Eoarchaean TTG are

generally not replicated by fusing an N-MORB starting

composition (Sr–La diagram in Fig. 9a). Even subse-
quent large degrees of amphibole fractionation do not

generate JTA or early TTG compositions. Partial melt

trends using an E-MORB protolith, with and without

amphibole fractionation, form trends that are too en-

riched relative to the JTA and Eoarchaean TTG (Fig. 9b).

However, an �10% partial melt from a COP source,

using data from Sen & Dunn (1994a), can generate simi-
lar incompatible element concentrations to the JTA and

Eoarchaean TTG (Fig. 9c). Moreover, 10–11% partial

melting, together with amphibole fractional crystalliza-

tion, can very closely replicate the whole range of trace

element abundances in the JTA.

Consequently, the JTA can be derived by fusing an
amphibolite source region with a COP-like composition

and residual plagioclase and garnet. In addition, many

of the trace element systematics of Eoarchaean contin-

ental crust can also be replicated. To further test an oce-

anic plateau link to the generation of the JTA and the

early continental crust, partial melt modelling is re-
peated in Supplementary Data Fig. C6, Appendix C,

using the average trace element composition of the

Ontong Java Plateau (OJP) for C0 values. We thought it

sensible to confirm the modelling outcomes by testing

another oceanic plateau even though the compositions

of oceanic plateau basalts are relatively uniform. As

with the COP results, the trace element composition of
the JTA and Eoarchaean TTG can be closely replicated

using an OJP starting composition.

Adakites are frequently classified based on Sr/Y–Y

and chondrite-normalized (La/Yb)cn–(Yb)cn systematics

(e.g. Martin et al., 2005). Several papers have been dedi-

cated to discussing the variability of these geochemical
parameters (e.g. Moyen, 2009) and so we shall not dis-

cuss this further. However, Supplementary Data Table

C15 and Fig. C7 in Appendix C present the Sr, Y, La and

Yb modelling results for the partial fusion of a garnet-

and plagioclase-bearing amphibolite COP-like source

region with subsequent amphibole fractional crystalliza-

tion. The results clearly show that these models can ex-
plain the Sr/Y–Y and (La/Yb)cn–(Yb)cn characteristics of

the JTA and Eoarchaean TTG.

Possible island arc protoliths for the JTA and
Eoarchaean TTG
The Border Volcanics and some of the JTA have similar
Nd–Hf age-corrected radiogenic isotope ratios (Fig. 2b),

which suggests that the Border Volcanics lavas could

also undergo partial melting to form the JTA. Figure

10a–c shows that melts formed from a garnet amphibo-

lite with the composition of the Border Volcanics have

enriched incompatible element patterns that are not
similar to the JTA (Supplementary Data Table C16,

Appendix C). In addition, small outcrops of latest

Cretaceous metamorphic rocks occur in the Blue

Mountains Inlier, eastern Jamaica, and include blue-

schists and greenschists of the Mount Hibernia Schists

and amphibolites of the Wesphalia Schists (Draper,

1986; Abbott et al., 1996; Abbott & Bandy, 2008; West
et al., 2014) (Fig. 1b and Supplementary Data Fig. A4,

Appendix A). The Mount Hibernia Schists are domi-

nated by metabasic igneous rocks, and recently West

et al. (2014) showed that they are compositionally simi-

lar to obducted oceanic plateau rocks found in Jamaica

(the Bath–Dunrobin Volcanics: Supplementary Data Fig.

A4, Appendix A).The Westphalia Schists were originally
thought to include sedimentary, pyroclastic and vol-

caniclastic components, but the effects of intense meta-

morphism make identifying pre-metamorphic rock

types very difficult (Draper, 1986; West et al., 2014).

However, West et al. (2014) reported the presence of

very limited exposures of metabasic garnet-bearing am-
phibolites that have island arc-like compositions. If we

take the only available analysis of a Westphalia garnet

amphibolite [sample 09-1 A of West et al. (2014)] as rep-

resentative of a source composition and use the same

modelling parameters as in Fig. 10a–c, the resultant

melts are too enriched in incompatible elements to ac-
count for the JTA (Fig. 10d–f).

Adam et al. (2012) and Nagel et al. (2012) have sug-

gested that Archaean TTGs can be derived from the par-

tial melting of island arc-like metabasic protoliths. We

test this hypothesis by carrying out partial melt calcula-

tions using average Eoarchaean island arc-like metaba-

salt and boninitic metabasalt compositions from
Nutman et al. (2009). The compilation of data is largely

from Nutman’s previous papers and Polat & Hofmann

(2003). The results (Fig. 11a–f; Supplementary Data Fig.

C8 and Table C17, Appendix C) show that a boninitic

source (Fig. 11a–c) generally forms melts that are too

depleted in the most incompatible elements relative to
Eoarchaean TTGs. In contrast, melts derived from an

average Eoarchaean island arc-like metabasaltic source

generate melts compositionally similar to Eoarchaean

TTG suites.

Some researchers consider Archaean metabasalts to

gain their arc-like compositions from crustal contamin-

ation processes and not from an Archaean subduction
environment. Regardless of the subduction versus non-

subduction nature of these rocks the models presented

here (and in other papers; e.g. Bédard, 2006) show that

Archaean metabasalts can potentially undergo partial

melting to generate TTG compositions. However, it is

unknown whether the relatively small volumes of
Eoarchaean island arc-like metabasic material (e.g.

Nutman et al., 2009) could have been the source for the

large volumes of Eoarchaean plutonic TTG rocks via

intracrustal partial melting.

Summary
The JTA and Eoarchaean TTG could have been derived

from the partial melting of metamorphosed oceanic
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plateau-like metabasic protoliths that leave a residue of

amphibole, garnet and plagioclase (and apatite and zir-
con for the JTA). Partial melt models for melting the

base of an oceanic plateau have also been computed by

Bédard (2006) and Zhang et al. (2013). Their results are

very similar to our findings and help support the idea of

generating Archaean TTG from oceanic plateau-like

source regions, whether this be in a subducting (or sub-
creting) environment or not.

HALBERSTADT (HIGH-Nb) BASALT GENESIS
AND EOARCHAEAN MAFIC ARC ROCKS

The Halberstadt Volcanics
To construct a realistic tectonic model for the gener-

ation of the JTA we cannot ignore the petrogenesis of
the small succession of Halberstadt high-Nb basalts

(HNB) that are of the same age as the JTA

(Supplementary Data Fig. A1, Appendix A). We have

previously discounted a direct petrogenetic link
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Fig. 10. (a–f) N-MORB normalized multi-element diagrams showing the results of non-modal partial melting calculations using data
from Sen & Dunn (1994a), Wolf & Wyllie (1994) and Patiño Douce & Beard (1995). Starting compositions are represented by the
average Border Volcanic samples (Supplementary Data Table C16, Appendix C) and Westphalia Schist garnet amphibolite sample
09-1A from West et al. (2014). Normalizing values are from Sun & McDonough (1989). Dark and light grey fields represent JTA and
Eoarchaean TTG, respectively [TTG data from Nutman et al. (2009)].
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between the HNB and the generation of the JTA, but we

now explore the petrogenesis of the HNB so that they
can also be integrated into a holistic tectonic model.

This may also help us to develop a better tectonic

model for Eoarchaean melt generation environments.

High-Nb basalts, with >20 ppm Nb, are associated

with adakites in subduction environments, but their

petrogenesis is controversial (e.g. Reagan & Gill, 1989;

Defant et al., 1992; Kepezhinskas et al., 1995; Sajona
et al., 1996; Wyman et al., 2000; Castillo, 2008). The two

main hypotheses for their derivation are (1) partial

melting of upper mantle that is composed of enriched

OIB-like and depleted MORB-like components (e.g.
Reagan & Gill, 1989; Castillo, 2008), and (2) partial melt-

ing of upper mantle peridotite that has been metasom-

atized with slab melt components (e.g. Defant et al.,

1992; Kepezhinskas et al., 1995, 1996).

The Halberstadt rocks are classified as HNB (Hastie

et al., 2011) and form two distinct subgroups with

Group 1 lavas having higher LILE, LREE and HFSE abun-
dances and slightly lower HREE contents than Group 2

lavas (Fig. 12a). Group 1 and 2 lavas have different
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Fig. 11. (a–f) N-MORB normalized multi-element diagrams showing the results of non-modal partial melting calculations using data
from Sen & Dunn (1994a), Wolf & Wyllie (1994) and Patiño Douce & Beard (1995). Starting compositions are represented by the
average trace element compositions of Eoarchaean (>3850–3700 Ma) metamorphosed boninitic and basaltic island arc-like rocks
from Nutman et al. (2009).
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eNd(55�74) values, which indicates that they are derived

from compositionally distinct source regions (Fig. 2b).

The Halberstadt rocks also form negative trends on Nb

and Zr vs (SiO2)8�0 diagrams that are commonly ex-

plained in terms of different degrees of partial melting
(Fig. 12b and c). Therefore, the petrogenesis of Groups

1 and 2 has been interpreted as reflecting derivation

from isotopically distinct sources undergoing variably

small degrees of fusion.

Hastie et al. (2011) argued for the Halberstadt lavas

to be derived from a mantle source metasomatized by

slab melts partly because most of the upper mantle be-
neath, and adjacent to, Jamaica at �55 Ma should have

been composed of depleted material formed by the

generation of the �90 Ma COP by 20–30% partial melt-

ing (e.g. Hauff et al., 1997; Révillon et al., 2000; Kerr

et al., 2002a, 2002b; Hastie & Kerr 2010). However, new

data of Neill et al. (2011) and Hastie et al. (2013) show
that undepleted oceanic plateau mantle sources were

present below Jamaica in the Tertiary and these sour-

ces could have given rise to the Halberstadt lavas.

Figure 13a–c shows small-degree partial melting

trends for spinel- and garnet-peridotite source regions

with oceanic plateau-like mantle starting compositions
(Supplementary Data Table C18, Appendix C). There is

a lack of data to determine confidently the composition

of the COP mantle source region at this time; thus, data

for the OJP are used to determine the composition of

the theoretical oceanic plateau source. HNB samples

plot between the spinel and garnet trends suggesting

that the HNB lavas could be formed from the partial
melting of a mantle source that extends across the gar-

net–spinel transition. Gurenko & Chaussidon (1995) pre-

sented mineral and melt modes for a garnet- and

spinel-bearing primitive mantle lherzolite. A partial melt

model (not shown) suggests that the original mineral

proportion of Gurenko & Chaussidon (1995) with
6% garnet generates a trend that cannot explain the

derivation of the HNB data. Therefore the original start-

ing mineralogy of Gurenko & Chaussidon (1995) was

modified slightly to reduce the garnet modal abundance

from 6 to 4%. The modified source region with 4%

garnet generates a partial melt trend that passes

through the HNB data (Fig. 13a). Primitive mantle-
normalized multielement diagrams confirm that Group

1 Halberstadt lavas can be explained by �0�5–1�0% fu-

sion of a spinel- and garnet-bearing OJP-like peridotite

source region (Fig. 13b–d; Supplementary Data Table

C19, Appendix C).

Figure 13a also suggests that Group 2 lavas can be
explained by slightly larger degrees of partial melting

(1�0–2�5%). However, the modelled partial melts cannot

replicate the Group 2 LREE–MREE depletion (Fig. 13d).

Group 2 samples have an average (Ce/Ce*)Nd of 0�9,

which may suggest a source region contaminated with

a slab-derived sedimentary component (e.g. Plank &

Langmuir, 1998). Thus, our data suggest that there is
evidence for JTA slab–melt interaction in the petrogen-

esis of the Group 2 lavas.

Slab melt–peridotite interaction?
Experiments show that partial melting of a basaltic

source commonly generates silicic melts with low MgO

concentrations (e.g. <1�4 wt %: Rapp et al., 1999).

Carroll & Wyllie (1989) and Rapp et al. (1999) showed

that if these silicic melts react with peridotite the result-

ant liquids will have much higher MgO contents (e.g.

2�4–3�9 wt %: Rapp et al., 1999). Most of the JTA have

low MgO contents and only two samples have

MgO> 2�0 wt % (AHWG18 and AHWG19). Therefore,

the JTA magmas may not have substantially interacted

with a peridotite source after anatexis. However, the

models we present suggest that �10–30% amphibole

fractionation is required to generate many (but not all)

of the JTA. This being so, can amphibole fractionation

obliterate a mantle signature?

We model the effects of separating an amphibole-

dominated cumulate assemblage from the JTA parental

magmas by taking several published analyses of

amphibole-rich xenoliths and then estimating the MgO
content of the JTA parental magmas by mass balance:

C0 ¼ CJTAð1� X Þ þ CCF : (8)

This equation is similar to equation (4), but here X is

the proportion of solid cumulate material removed,

CJTA is the average composition of the JTA lavas and

CC is the composition of the cumulate. Recent studies

have reported whole-rock compositions for amphibole-

rich lower arc cumulate xenoliths (Rodrı́guez et al.,

2007; Dessimoz et al., 2012). Using compositions from

these studies shows that correcting the average JTA

composition for the removal of 25% by mass of a typical

cumulate generates JTA parental melts with silicic com-

positions and MgO contents of �4�1–4�3 wt %

(Supplementary Data Table C20, Appendix C).

The Nb/Sm–Gd/Yb diagram in Fig. 9c can be used to

estimate the degree of amphibole fractional crystalliza-

tion for each JTA lava, and these values are used in

equation (8) to calculate the original magma compos-

itions of each of the JTA rocks (Supplementary Data

Table C21, Appendix C). Some of the JTA (e.g. AHWG14

and AHWG22) have a composition that can be ex-

plained without the need for extensive amphibole frac-

tionation. These samples have low calculated parental

MgO (<2�0 wt %) and have probably not interacted with

a mantle wedge. Also, studies show that silicic (on the

dacite–rhyolite boundary) experimental melts derived

from basaltic sources can have MgO abundances up to

�3 wt % (e.g. Wolf & Wyllie, 1994; Martin et al., 2005).

Thus, even if mass balance implies that a JTA magma

had 2–3 wt % MgO these magmas may still be derived

from a metabasic source region and ascend without

reacting with a mantle wedge. However, some theoret-

ically calculated parental JTA magmas have >3 wt %

MgO, which strongly indicates that some of them may

have variably interacted with a mantle wedge, and it is

possible that the Group 2 lavas are derived from a

source contaminated by slab melts.
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mantle partial melt trends to determine the petrogenesis of the Halberstadt HNB. (e–g) Nb/Dy–Lu plot and primitive mantle normal-
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Magma from a mantle source contaminated with
a slab melt
A silicic slab-derived melt ascending through a mantle
wedge will fractionate and react with the mantle,
thereby converting the peridotite mineralogy to an as-
semblage of Nb- and Ti-enriched amphibole (pargasite),
garnet, phlogopite, clinopyroxene, orthopyroxene and
plagioclase (e.g. Carroll & Wyllie, 1989; Johnston &
Wyllie, 1989; Sen & Dunn, 1994b; Kepezhinskas et al.,
1995; Rapp et al., 1999; Prouteau et al., 2001; Tsuchiya
et al., 2005). Modelling this interaction is extremely diffi-
cult because the petrological processes involved in the
multi-stage and polybaric reactions are complex and
not fully understood (e.g. Johnston & Wyllie, 1989;
Moyen, 2009; Ayabe et al., 2012; Rollinson, 2014). Thus,
the model we now present is a simplified version of
what in reality must be a highly complex system. The
modelling procedure is detailed in Supplementary Data
Appendix C (p. 44).

To derive JTA magmas from a subducting slab and

have them ascend to interact with the overlying mantle

wedge, a pressure range of 1�0–1�6 GPa is required to

stabilize residual amphibole, garnet and plagioclase in

the downgoing slab. Phlogopite is usually stable at

higher pressures (and lower temperatures) in peridotite
reaction zones (e.g. Adam et al., 1993; Kepezhinskas

et al., 1995; LaTourrette et al., 1995) and a mantle wedge

will already contain ortho- and clinopyroxene, so these

minerals will not be considered further. We therefore

consider a situation in which primary JTA magmas as-

cend and metasomatize an overlying mantle wedge at

pressures <1�6 GPa where they precipitate amphibole
and garnet. Garnet is stable at low pressures during

slab melt–peridotite reactions (e.g. Carroll & Wyllie,

1989; Sen & Dunn, 1994b). The JTA magmas are also

considered to be saturated in P and Zr so apatite and zir-

con may also fractionate from the JTA magma in a reac-

tion zone.
The JTA can be largely explained by amphibole frac-

tionation after melt generation; therefore, if we now

propose that all of the JTA magmas have fractionally

crystallized a garnet and amphibole assemblage the

conclusions of the previous JTA petrogenesis models

are not valid. However, only the initial JTA magmas

would metasomatize the overlying thin mantle wedge.
This would armour melt pathways into the Jamaican

crust whereby subsequent JTA magmas will predomin-

antly crystallize amphibole (e.g. Tsuchiya et al., 2005;

Moyen, 2009). It is also possible that less garnet is

required in the JTA crystallizing assemblage if amphi-

bole in the HNB source melts incongruently and forms
residual garnet (e.g. Francis & Ludden, 1995).

Furthermore, geochemical models (explained in further

detail below) involving much higher proportions of

amphibole relative to garnet can easily generate Group

2-like compositions; thus, a dominant garnet compo-

nent is not necessarily required. Large volumes of apa-

tite and zircon could not crystallize from most of the
JTA as this would result in negative P anomalies and

extreme HREE depletion (e.g. Rollinson, 2012).

However, if small volumes of apatite and zircon crystal-

lize from the ascending JTA melts, the fractional crystal-

lization trends for the Sen & Dunn (1994a) COP data in

Fig. 9 are not substantially changed.
In the proposed model, a 10% melt derived from the

melting models using the parameters from Sen & Dunn

(1994a) is fractionated. The modal assemblage that frac-

tionates is composed of amphibole, garnet, apatite and

zircon in the proportions 49�245:49�245:1�5:0�01 respec-

tively. The mantle wedge is considered to be a spinel

peridotite with a chemical composition required to gen-
erate the OJP (see Supplementary Data Table C18,

Appendix C). The trace element chemical composition

of the peridotite is modified by addition of the average

concentration of a trace element in the accumulated crys-

tal extract from the 10% theoretical melt. Subsequently

5–15% of the modal mineralogy of the spinel peridotite is
replaced with the amphibole-, garnet- and apatite-bear-

ing mineral assemblage in the proportions

49�25:49�25:1�5. Zircon is considered to be exhausted by

<0�1% partial melting and is, thus, not included in the

peridotite melting assemblage. This crudely simulates

the metasomatic replacement of peridotite minerals in
the reaction zone and the addition of a slab melt compo-

nent (Supplementary Data Tables C22–C24, Appendix C).

Figure 13e–g shows partial melt trends for a metasomat-

ized OJP-like mantle wedge source region.

Partial melt trends for 10–15% replacement intersect

the majority of the HNB data, but primitive mantle-nor-

malized multi-element diagrams show that only the
Group 2 depleted LREE–MREE compositions can be

replicated. Therefore, the models suggest that the

Group 2 rocks are derived from �1�0–2�5% partial melt-

ing of a slab-metasomatized mantle wedge source re-

gion. This may explain why Group 2 lavas slightly

overlap the JTA field on an eNd–eHf diagram (Fig. 2b),
but the Group 1 lavas do not. Figure 13e–g shows the

results for �50:50 amphibole and garnet, but similar re-

sults can be obtained by changing this ratio (additional

models are available from the corresponding author on

request). We conclude that Group 1 HNB lavas are

derived from an enriched oceanic plateau-like peridotite

source region. Group 2 HNB lavas are derived from a
similar source region that has been contaminated by as-

cending slab melts.

This conclusion helps explain the HFSE–(SiO2)8�0 and

trace element trends in the variation diagrams of

Fig. 12b–g. With regard to the HFSE–(SiO2)8�0 diagrams

the lower (SiO2)8�0 and higher HFSE contents in the
Group 1 lavas are the result of relatively low degrees of

partial melting (�0�5–1�0%) of a mantle source not con-

taminated by slab components. The slightly higher

(SiO2)8�0 and lower HFSE abundances in the Group 2

samples is the result of the mantle source being conta-

minated with silicic melts, and slightly higher degrees

of partial melting (�1�0–2�5%). Separate garnet- and spi-
nel-bearing OJP peridotite and 15% metasomatized

mantle wedge partial melt trends are shown in the REE–
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Nb variation diagrams for comparison (Fig. 12d–g). The

LREE and MREE systematics of the Group 1 and 2 sam-

ples can best be described in terms of derivation from

OJP-like peridotite and OJP-like mantle contaminated

by slab melts, respectively. As a consequence, the
elemental and isotopic trends observed in the

Halberstadt data represent compositional variability

arising from differing source regions and also slightly

different degrees of partial melting.

Eoarchaean HNB?
Alkali basalts are rare in Archaean greenstone–TTG

belts (e.g. Condie, 1994; Polat et al., 1999; Hollings,

2002). Nevertheless, Nb-enriched basalts (NEB) and

HNB are found in mid- to late (�2�7–3�12 Ga) Archaean

provinces (e.g. Wyman & Hollings, 1998; Polat et al.,

1999; Wyman et al., 2000, 2002; Hollings, 2002;
Smithies et al., 2005; Mil’kevich et al., 2007). Although

compositionally heterogeneous mafic rocks are present

in Eoarchaean greenstone–TTG belts (e.g. Komiya et al.,

2004; Nutman et al., 2009; Jenner et al., 2013), to the

best of our knowledge, NEB and HNB are absent.

However, the presence of mantle-derived arc-like ultra-

mafic dunites, island arc-like basalts and picrites and
boninitic rocks in Eoarchaean strata (e.g. Polat &

Hofmann, 2003; Jenner et al., 2009; Nutman et al., 2009;

Friend & Nutman, 2011; Kusky et al., 2013; Polat, 2013)

suggests not only that subduction was under way from

�4�0 to 3�5 Ga, but also that subduction was not always

at a low enough angle to exclude a mantle wedge.
The Halberstadt HNB are generated through small

degrees of partial melting. Higher upper mantle poten-

tial temperatures in the Eoarchaean suggest that

Eoarchaean upper mantle could undergo more exten-

sive partial melting to generate primitive magmas with-

out the incompatible element-enriched patterns seen in
HNB. Figure 13h shows a basic modal batch partial melt

model in which 5% of an OJP-like mantle source is con-

taminated with the average TTG composition from

Nutman et al. (2009) (Supplementary Data Table C25,

Appendix C). The results of 25–35% modal batch partial

melting of this TTG-contaminated source can generate

geochemical trends very similar to the Eoarchaean is-
land arc data from Nutman et al. (2009). Interestingly,

other studies present geochemical evidence that mantle

source regions in the Eoarchaean could have been con-

taminated by slab melts (e.g. Hoffmann et al., 2010).

Thus, the lack of HNBs in the Eoarchaean may be the re-

sult of higher mantle temperatures generating more ex-
tensive degrees of mantle partial melting.

TECTONIC MODEL FOR GENERATING THE JTA
AND HNB—AN EOARCHAEAN ANALOGUE?

The JTA and HNB model
In this section, numbers in parentheses refer to location
numbers in Fig. 14. At �55 Ma the COP is underthrust-

ing or subducting beneath Jamaica. It has been

suggested that oceanic plateaux could be resistant to

subduction (e.g. Cloos, 1993), but studies from the west-

ern Pacific and the southern Caribbean provide evi-

dence to the contrary (van der Hilst & Mann, 1994;

Mann & Taira, 2004; Taira et al., 2004). In the western
Pacific the OJP collided with a previously SW-dipping

subduction zone causing subduction to reverse its po-

larity. Subsequently, earthquake hypocentre transects

show that the lower portions of the OJP have also

begun to subduct to the SW (Mann & Taira, 2004; Taira

et al., 2004). Van der Hilst & Mann (1994) used seismic

tomography to image the COP underthrusting South
America at an angle of �17�.

Subduction of the COP explains the generation of the

Mount Hibernia and Westphalia Schists in an accretion-

ary wedge (e.g. Abbott & Bandy, 2008). The demonstra-

tion by West et al. (2014) that the Mount Hibernia

samples have an immobile element composition indis-
tinguishable from that of the COP-derived Bath–

Dunrobin Volcanics shows that COP material must have

begun to subduct in the latest Cretaceous. Slab roll-

back and/or foundering of the COP lithosphere would

also generate an extensional regime in the overriding

plate, which can explain the Wagwater Basin.
From 30 to 50 km depth the underthrusting COP

undergoes partial melting to generate JTA magmas (1).

The first of these magmas ascend and metasomatize

the overlying thin mantle wedge generating armoured

melt pathways into the Jamaican crust. Thereafter, oce-

anic plateau-derived JTA melts can ascend, have lim-

ited interaction with the overlying peridotite, and finally
undergo variable amphibole-dominated fractional crys-

tallization. Simultaneously, extension in the Wagwater

Basin (2) allows deeper mantle material to ascend and

undergo decompression partial melting. Group 1 HNB

magmas are derived from deeper melting of mantle

plume-like source regions (3). Group 2 lavas are derived
from decompression of metasomatized mantle wedge

material (4).

Can a subducting oceanic plateau undergo
partial melting?
Simple P–T paths for the subducting shear zone of the
underthrusting COP are shown in Fig. 15a–f; full details

and results are given in Supplementary Data Table C26,

Appendix C. Many studies in the literature have con-

sidered highly complex P–T paths for deeply subduct-

ing oceanic lithosphere with a well-developed overlying

mantle wedge (e.g. Van Keken et al., 2002; Syracuse

et al., 2010). However, our underthrusting model aims
to determine the temperature of a subducting oceanic

plateau shear zone down to relatively shallow depths

without a thick mature overlying mantle wedge. Below

�50–65 km depth the temperature of a subducting shear

zone can be, and frequently is, approximated using the

analytical expressions of Peacock (1992, 1996), which
are in turn derived from Molnar & England (1990).

Peacock (1996) demonstrated that at pressures below
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2�1 GPa these analytical expressions generate near-

identical results relative to P–T paths constructed using

more complex numerical solutions. Thus, we use the
same analytical expressions here so that our results can

be easily compared with published subduction P–T

paths at shallow depths [see Peacock (1992) for a full

range of additional shallow P–T paths].

Our COP P–T paths are constructed using the most

likely input parameters. These include an average con-

vergence rate of 7�5 cm a–1 (Kerr & Tarney, 2005), sub-
duction angle of 17� (Van der Hilst & Mann, 1994),

thermal diffusivity of 1� 10–6 m2 s–1 (Peacock, 1996),

thermal conductivity of 1�69 W m–1 K–1 (Coffin et al.,

2000; Frey et al., 2000) and a heat flow measurement of

0�062 W m–2 (Anderson et al., 1977). Shear stresses in-

crease proportionally with pressure and calculations as-
sume a density of 3000 kg m–3 and acceleration due to

gravity of 9�8 m s–2. Arguably, the two least well-known

variables are convergence rate and heat flow, and these

are varied in Fig. 15b–f. It should be noted that we have

included shear stresses in our models so that the P–T

paths attain higher temperatures at a given pressure

with higher convergence velocities. We also recognize
that estimates of shear stress vary greatly from near-

zero to >100 MPa (e.g. Peacock, 1996) and, as such, we

model a range of shear stresses in Fig. 15.

Figure 15a–c shows that a subducting COP shear

zone will intersect the amphibole dehydration partial

melt region at �1�0–1�6 GPa, for shear stresses from

just under 5% to a little over 10%, depending on conver-

gence rate. Similarly, with a higher heat flow and con-
vergence rates from 5–10 cm a–1, the top of the COP

slab will intersect the fluid-absent partial melt zone at

shear stresses from just under 3�5% to a little over 7�5%.

Therefore, a shallow subducting oceanic plateau can

theoretically undergo partial melting to generate the

JTA (and TTG-like magmas) from �1�0 to 1�6 GPa.

Derivation of early Archaean continents: an
Eoarchaean tectonic model
The upper mantle in the early Archaean (>3�5 Ga) was

hotter and more fertile than today (e.g. Herzberg et al.,

2010; Moyen & van Hunen, 2012) and if it underwent de-

compression partial melting in early spreading ridges,

thicker Archaean oceanic crust would be generated

(e.g. Abbott et al., 1994; Kerrich & Polat, 2006; Herzberg

et al., 2010). As a result, early Archaean oceanic crust
may have been compositionally and physically similar

to Mesozoic oceanic plateaux (Tarney & Jones, 1994;

Kusky & Polat, 1999; White et al., 1999; Smithies et al.,

2003, 2009; Kerrich & Polat, 2006).

Although not supported by all workers (e.g.

Hamilton, 1998), many studies have proposed that the
compositional and structural characteristics of rocks in

early to late Archaean (e.g. �3�8–2�5 Ga) greenstone

Intermediate/basic
Jamaican island arc
crust

Basic COP crust

Mantle plume
derived peridodite

Garnet-bearing
metabasic amphibolites
from ~30-50 km depth

JamaicaCOP

SE

Shallow
underthrusting/subduction

4

2

Wagwater
Basin

Northern Caribbean boundary (~55 Ma)

Heterogeneous mantle
plume peridotite

COP

Non-metasomatised
DMM

Slab-melt metasomatised
mantle wedge

3

Blue
Mountains

?
?

Partial melting

? ?

? ?

Bellevue
Fm?

0

50

100

30

65-80

?

Spinel-Garnet transition at ~1300-1500 Co

Theoretical base of ~40 Ma
COP lithosphere

1

Fig. 14. Tectonomagmatic model to explain the derivation of the JTA–HNB suite of rocks in Jamaica (see text for details). Thickness
of COP lithosphere at 40 Ma estimated to be �70 km. Spinel–garnet transition estimated from Klemme & O’Neill (2000) assuming
q¼3300 kg m–3; the transition will be deeper if a lower density or higher mantle temperature is used in the calculations. Location
numbers are discussed in the text. Mantle thickness at [1] and just to the right of [1] is exaggerated. In reality we propose that the
buoyant COP lithosphere underthrusts the Blue Mountains, but then begins to flatten after [1]. We do not show this flattening so
that we can better show the processes that occur between [1] and [4].
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Fig. 15. Calculated P–T paths for a subducting COP shear zone. (a) Geothermal gradients are constructed using the most likely input
parameters, which include Q0¼0�062 W m–2, k¼1�69 W m–1 K–1, V¼7�5 cm a–1, h¼17�, j¼1�10–6 m2 s–1, q¼3000 kg m–3,
g¼9�8 m s–2. (b) and (c) use the same parameters, but V is varied from 5 to 10 cm a–1. (d–f) V is varied again and Q0 is increased to
0�1 W m–2. Metamorphic facies and solidus information from Peacock et al. (1994). LB, lawsonite–blueschist facies; EB, epidote–
blueschist facies; GrS, greenschist facies; EC, eclogite facies; Amph, amphibolite facies; Grn, granulite facies; WS, wet basalt sol-
idus; AD, amphibole-dehydration partial melt zone. P–T paths are labelled as percentages of lithostatic pressure.
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belts can be explained in terms of subduction–accretion

processes (e.g. �2�7–3�0 Ga rocks, Superior Province:

Polat et al., 1999; Hollings, 2002; �2�7–2�9 Ga rocks,

Baltic Shield: Mil’kevich et al., 2007; 3�12 Ga rocks,

Pilbara Craton: Smithies et al., 2005; and �3�7–3�8 Ga
rocks of the Isua Belt, Greenland: Komiya et al., 2004;

Jenner et al., 2009, 2013; Friend & Nutman, 2011).

The JTA are compositionally a modern analogue of

Eoarchaean TTG. This suggests that, from a petrologi-

cal and geochemical perspective, subduction and par-

tial melting of oceanic plateaux (possible Eoarchaean

oceanic crust) is a viable process to form the first stable
continents. Therefore, we propose a model for the for-

mation of Eoarchaean continental crust similar to the

JTA–HNB subduction model shown in Fig. 14, but with

the overriding Jamaican arc replaced by thick

Eoarchaean mafic oceanic crust.

THE FIRST CONTINENTS AND CONCLUDING
REMARKS

Using the JTA as a modern analogue we propose that

Eoarchaean TTG suites can be derived by the following
processes.

1. Shallow subduction and partial melting of thick

Eoarchaean oceanic crust that has a similar compos-
ition to Mesozoic oceanic plateau basalt. Slab melts

ascend and variably fractionate in the crust without

interacting with a mantle wedge.

2. Partial melting of thick Eoarchaean subducting oce-

anic crust followed by interaction of the slab melts

with a thin or discontinuous mantle wedge.

Evidence for this interaction is obliterated by frac-
tional crystallization of ferromagnesian minerals

(mostly amphibole). Partial melting of the hot mantle

wedge can subsequently generate Eoarchaean is-

land arc basalts (seen as HNB in modern arcs).

3. Intracrustal partial melting of island arc-like and oce-

anic plateau-like Eoarchaean crust.

The generation of Eoarchaean TTGs and the first

continents probably involved all three processes, but

(3) is unlikely to be the dominant mechanism because
of the low volumes of Eoarchaean island arc-like bas-

alts. There is also a lack of oceanic plateau-like oceanic

crust in the Eoarchaean rock record. However, the ab-

sence of thick Eoarchaean crust may be attributed to

preservation problems because (1) the volume of pre-

sent-day surviving Eoarchaean crust is tiny compared

with the large continental cratons (Nutman et al., 2009),
and (2) early oceanic crust was subducted to generate

the Eoarchaean TTG and island arc-like rocks. Thus, we

propose a model for the formation of Eoarchaean con-

tinental crust similar to the model in Fig. 14, but with

the overriding Jamaican arc replaced by thick

Eoarchaean oceanic crust. This model is similar to those
proposed by Smithies et al. (2003) and Martin et al.

(2005), who suggested that Eoarchaean TTG magmas

are formed by shallow partial melting of subducting

slabs that underlie a very thin mantle wedge.

Melting of oceanic plateaux has also been proposed

in vertical growth–basal anatexis models that do not ad-

vocate subduction zones (e.g. Bédard et al., 2013;
Zhang et al., 2013) and our choice of mafic source re-

gion generates geochemical results similar to models

that propose non-subduction environments in the

Eoarchaean. Therefore, our computations can also be

used to support the various vertical tectonic and crustal

fusion models in the literature. However, because we

use the formation of the JTA as a modern analogue for
early TTG, our preferred model for generating

Eoarchaean TTG suites does involve the partial melting

of shallow subducting oceanic plateau-like crust.

Consequently, we tentatively suggest that Eoarchaean

continental generation requires potentially short-term

(see van Hunen & Moyen, 2012) subduction–accretion
processes.
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