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Abstract 

Differences in molecular organisation of two sides of a chemically symmetric, planar bilayer 

supported on a Au(111) substrate have been monitored with charge density measurements 

and in situ Polarisation Modulation Infrared Reflection Absorption Spectroscopy (PM-

IRRAS). Isotopic substitution of the hydrogen atoms in the hydrocarbon chains with 

deuterium atoms in one monolayer was employed to allow the monitoring of C-H vibrations 

from that monolayer alone. Charge density measurements of bilayers formed from di-

myristoyl phosphatidyl ethanolamine (DMPE) showed that the effect of placing the 

deuterated layer next to the substrate or electrolyte had little impact on the electrical barrier 

properties. In situ PM-IRRAS studies revealed that the structure of the two monolayers was 

the same at negative potentials, where the bilayer is separated from the Au substrate, but 

different at more positive potentials or small charge densities, where the bilayer is expected 

to be directly adsorbed on the Au surface. Thus the differences observed for the related 

molecule di-myristoyl phosphatidyl choline (DMPC) persist in planar structures, although to 

a lesser extent. A small but observable variation in the tilt angle was also apparent in the 

spectra of both isotopically asymmetric DMPE bilayers during the electrochemical phase 
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transition. The fact that this effect was not previously observed for hydrogenous bilayers 

means that the dynamic behaviour of deuterated DMPE and/or of bilayers composed of 

different monolayers is different from that of hydrogenous DMPE bilayers. These results 

have implications for future studies in which isotopic substitution is used to extract 

selectively information from one layer or component of lipid bilayers in spectroscopic or 

neutron measurements. 

Introduction 

Phospholipids are amphiphilic molecules that self-organise in the presence of water to 

form a range of aggregate structures, the exact natures of which depend on the shape and 

charge of the constituent molecules.
1
  One of these aggregate structures is a bilayer, in which 

the hydrophilic phospholipid headgroups face outwards to the aqueous phases and the 

hydrophobic tail groups face the interior of the bilayer, to avoid unfavourable interactions 

with water.  This type of structure forms the basis of biological cell membranes: a 

phospholipid bilayer matrix, which forms a barrier to ions and polar molecules.
2
  Functional 

molecules, such as ion channel proteins and receptors, are embedded within the lipid matrix 

and allow the cell to control passage of species through the membrane.
2
  Supported lipid 

bilayers have thus been seen as an attractive model of a biological cell membrane and allow 

the study of both the mode of interaction of functional proteins and the exploitation of 

membrane-based receptors as sensors.
3-6

   

More recently, the ability to control the electric field across the bilayer whilst 

simultaneously monitoring changes in bilayer structure have offered a new opportunity to 

examine membrane processes in detail because it is now possible to study the effects of the 

electric fields experienced by natural cell membranes.
7-9

  Structure and organisation, 

mechanical properties and solvent content can now all be investigated using in situ infrared 
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spectroscopy,
8,10-15

  scanning tunnelling microscopy,
16,17

 atomic force microscopy
18,19

 and 

neutron reflectivity.
9,20 

 To control the electric field, the lipid bilayer must be supported on an 

electrode surface.  Au(111) is the substrate of choice for in situ structural investigations 

because it has a wide potential window within which to study non-faradaic processes and is 

relatively smooth, reducing the amount of defects induced in the lipid bilayer by the 

substrate.
7,8

  Bilayers may be deposited through the fusion of vesicles
8-11, 16, 17-23

 or Langmuir-

Blodgett techniques,
12-15, 18,19, 24-26

 the latter generally resulting in more even distribution of 

lipids across the substrate and fewer defects in the film.  Langmuir-Blodgett (LB) deposition 

involves the quantitative transfer of a monolayer from the air|liquid interface onto a solid 

support via the controlled withdrawal of the support through the interface.  For the transfer of 

phospholipid monolayers from water onto Au, this normally results in a monolayer of lipids 

on Au with their headgroups facing the surface and tailgroups facing out.  A second layer, 

with the new tail groups facing the first layer tail groups, can, in principle, be deposited by 

lowering the coated substrate back through the monolayer-coated air|water interface, to 

produce a Y-type bilayer.  However this transfer can result in removal of lipids from the first 

monolayer and so the Langmuir-Schaeffer (LS) method, in which the substrate, now 

horizontal, is brought into contact with the monolayer, is often preferred. 

LB-LS methodology allows for the preparation of asymmetric films, which makes it 

attractive for studying cell membrane mimics.  Real biological cell membranes are 

asymmetric.  The outer monolayer is rich in phosphatidyl cholines (PC), whereas the inner 

monolayer is rich in phosphatidyl ethanolamines (PE), with a proportion of anionic lipids 

such as phosphatidyl serines (PS) (see Figure 1).
2,27

  The segregation of these lipids across the 

bilayer is thought to be partly a result of the size of the headgroups, as PE and PS headgroups 

are smaller than PC headgroups.
 2, 27

  In this way, curvature of the bilayer is possible.  There 

are also specific interactions between lipid headgroups and other molecules, which may play 



4 
 

a role in their distribution across the bilayer.  To obtain a complete picture of the function of 

a natural cell membrane, it is thus important to understand the physicochemical properties of 

a range of lipids, organised in different ways.
14,15,20 

 It is also important to determine the 

effect of the underlying substrate on the structure of the lipid bilayer.
12

  A study of di-

myristoyl phosphatidyl choline (DMPC) supported on Au(111) surfaces showed that 

hydrocarbon chains in the Au-facing leaflet of the bilayer had different tilt angle from the 

water-facing leaflet of the bilayer. 
12

 This result was interpreted in terms of an interaction 

between the headgroup and Au, the headgroup of the Au-facing layer having flatter 

orientation of the P-N dipole. DMPC, a wedge-shaped molecule, has a natural tendency to 

curvature, which has an impact on the structure of supported monolayers and bilayers.
16-19

  

The purpose of the present study was to determine whether differences in molecular 

orientation across the bilayer persist in planar structures.  Di-myristoyl phosphatidyl 

ethanolamine (DMPE) was selected for investigation because its shape is approximately 

cylindrical, with the cross-sectional area of two hydrocarbon chains approximately equal in 

area to its headgroup. DMPE is thus expected to form more easily a planar structure. We 

measured, under potential control, PM-IRRA spectra of bilayers in which one monolayer 

comprised per-deuterated DMPE (d-DMPE) and the other monolayer comprised hydrogenous 

DMPE (h-DMPE), in order to monitor separately the signals from each monolayer. We 

compared bilayers in which the deuterated monolayer was deposited first (so adjacent to the 

Au substrate) with those in which it was deposited second (so adjacent to the electrolyte). We 

show that the tilt angles of the chains in the two monolayers are practically the same at 

negative potentials but that there is a slight difference in tilt angle between the two 

monolayers at potentials positive of the electrochemical phase transition. The small change in 

tilt angle was not observed for bilayers consisting only of hydrogenous DMPE.
14

 Taken 

together, these results suggest that use of deuterated molecules has a small impact on the 
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phase behaviour of lipid bilayers, which should be taken into account in future studies in 

which deuteration is used to shift IR vibrations or to provide contrast in neutron studies.    

Experimental 

Materials 

The lipids di-myristoyl phosphatidyl ethanolamine (h-DMPE) and D54-DMPE (d-DMPE), in 

which the two acyl chains have all hydrogen atoms replaced with deuterium atoms, were 

purchased from Avanti Polar Lipids (Birmingham, AL) and used without further purification.  

Sodium fluoride (Suprapur grade) was obtained from Merck (VWR) and chloroform and 

methanol (HPLC grade) were obtained from Sigma-Aldrich.  Deuterated solvents used for 

transmission experiments and deuterium oxide (99.9% D) used for infrared measurements 

were obtained from Sigma-Aldrich.  Water purified with a tandem Elix-Millipore Gradient 

A10 system (resistivity 18.2 M cm, TOC < 5 ppb, Millipore, France) was used throughout. 

Cell preparation 

Glassware was cleaned by heating in a mixture of 1:1 nitric and sulphuric acids for at least 

1 h, followed by thorough rinsing with ultrapure water and soaking overnight in ultrapure 

water.  Volumetric glassware was cleaned with piranha solution (Caution! this reaction is 

exothermic and can cause explosion) for at least 1 h, followed by thorough rinsing and 

soaking in ultrapure water.  Teflon and Kel-F parts of the spectroelectrochemical cell (along 

with in-built Au electrode connections) were cleaned with a 1:1 mixture of ammonia and 

hydrogen peroxide, followed by thorough rinsing and soaking in ultrapure water.  The 

spectroelectrochemical cell was dried, after soaking in ultrapure water, in a specially cleaned 

oven. 
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The electrochemical cell was a standard three-electrode cell employing a Au coil (99.997%, 

Alfa Aesar) as counter electrode and a saturated calomel electrode (Radiometer, 

Copenhagen), SCE, as reference electrode.  The reference electrode was housed in a separate 

compartment and connected to the main cell via a salt-bridge.  The electrolyte used was 

0.1 M NaF and the cell was kept free of oxygen by purging with argon before and during 

measurements.  The Au(111) electrode (Mateck, Germany) was prepared by flame annealing 

as described previously
28

 and transferred to the electrochemical cell (and to the Langmuir 

trough) with a protective drop of ultrapure water, to minimize contamination.  The Au(111) 

electrode used for PM-IRRAS measurements was prepared in a similar way.  The CE in the 

spectroelectrochemical cell was a Au coil, concentric around the WE, and the reference 

electrode was a Ag|AgCl|3 M NaCl reference electrode (BASi, US). Potentials in this work 

will be referred to the Ag|AgCl|3 M NaCl reference electrode. The window was a 1″ BaF2 

equilateral prism and was prepared by washing in methanol, rinsing with ultrapure water, 

drying with nitrogen and placing in an ozone chamber for 30 min.  0.1 M NaF was used as 

electrolyte in order to suppress the solubility of the window.  This electrolyte was prepared in 

D2O. Electrochemical and PM IRRAS experiments were performed at 19 °C. At this 

temperature, DMPE is in the gel phase, as the main chain melting transition occurs at 

~50 °C.
29-31

 Comparisons of chain melting transitions for lecithins and their deuterated 

analogues have indicated a decrease of 4-5 °C on deuteration
32

 and a small increase of 

~0.5 °C is observed for DMPE if D2O is used as solvent rather than H2O.
29

 Assuming a 

similar trend can be applied to PE as PC, d-DMPE is also in the gel phase at 19 °C and well 

below the chain melting transition. 

Instrumentation 

Pressure-area isotherms were recorded on a water sub-phase using a Nima trough (Nima, 

UK) of area 600 cm
2
 equipped with a Delrin barrier and a dipper. A known quantity 



7 
 

(typically 50-60 L) of a 1 mg mL
–1

 solution of DMPE or d-DMPE(prepared in a 9:1 v/v 

chloroform:methanol mixture) was deposited on the water sub-phase with a microlitre 

syringe and allowed to equilibrate for 30 min. The monolayer was compressed at a rate of 

25 cm
2
 min

–1
 (ca 4% of the initial area per minute). To deposit a bilayer on a Au(111) 

surface, the flame-annealed Au electrode was placed below the surface of the subphase 

before deposition and compression of the monolayer. The electrode was then withdrawn 

through the monolayer (Langmuir-Blodgett deposition) at a speed of 2 mm min
–1

 and a fixed 

surface pressure of 47 mN min
–1

 (at which the molecules exist in the solid phase in each 

case). The surface was dried in Ar for 30 min and then a second monolayer was formed on 

the first using a Langmuir-Schaeffer (horizontal dip) deposition method. The electrode was 

then transferred to the electrochemical cell or dried and transferred to the IR cell, as required. 

Electrochemical measurements were made with a Heka PGStat590 potentiostat, connected to 

a PC via a data acquisition board (M-series, National Instruments) and BNC block.  Data 

were acquired with in-house written software [kindly provided by Dr Alexei Pinheiro, 

Universidade Tecnologica Federal do Parana, Londrina, Brazil], which also controlled the 

chronocoulometry experiment.  Differential capacity measurements employed a dual channel 

DSP 7265 lock-in amplifier (Ametek, Germany), connected to the potentiostat.  An a.c. signal 

of amplitude 5 mV and frequency 20 Hz was superimposed on a slow potential sweep 

(5 mV s
–1

) and the resulting in-phase and quadrature components of the current analysed to 

give the capacitance as a function of applied d.c. potential, assuming a series RC circuit.  

Chronocoulometry measurements were carried out as follows using the procedure described 

previously.
13-15

  Briefly, differential capacitance measurements were used to choose a base 

potential (in a region of stability for the bilayer) and to determine the potential at which 

molecules were desorbed. The potential was held at the base potential (–0.06 V) for 60 s, then 

stepped to the potential of interest and held for 3 min to allow equilibrium to be reached. It 
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was then stepped briefly to –1.01 V for 0.15 s to desorb all the molecules, during which time 

a current transient was recorded, and then returned to the base potential. This process was 

repeated for a series of potentials moving in the cathodic direction from 0.36 V vs SCE, with 

a step size of 50 mV. 

Spectra were acquired with a Bruker Vertex 80v spectrometer, equipped with modified 

PMA50 module for PM-IRRAS measurements.  The photoelastic modulator and controller 

were from Hinds (U.S.) and the signal was demodulated with a synchronous sampling 

demodulator, SSD, (GWC Technologies, U.S.)  using the technique reported by Corn et 

al.
33,34

 The detector was a liquid nitrogen-cooled mercury cadmium telluride (MCT) detector.  

For each applied potential, a total of 8000 scans was acquired.  A macro within the Bruker 

OPUS software was used to control the potentiostat.  The PEM was set for half-wave 

retardation at 2900 cm
-1

, the angle of incidence was 51º
 
  and the thickness of solution 

between the Au surface and the window was around 2 m. These parameters were chosen to 

optimize signal in the C–H stretching region, using the calculations reported by Jackson and 

Zamlynny,
35

  and the electrolyte thickness was determined by comparing experimental 

reflectivity spectra with theoretical spectra, calculated for the cell configuration as described 

by Zamlynny and Lipkowski.
36

 
 
  The calculations were carried out with “Fresnel 1” software 

kindly provided by Prof. V. Zamlynny (Acadia University, Canada).
37

 

The intensity average and difference signals were corrected for the response of the 

PEM with a modification of the method described by Buffeteau et al.,
38 

which has been 

described in detail by Lipkowski et al., along with the method employed for spline 

interpolation to background-correct the resulting spectra.
39 

The background-corrected 

spectrum plots S, which is related to the absorbance of the adsorbed molecules by: 
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where   is the surface concentration of the adsorbed species,  is its molar absorption 

coefficient and A is the absorbance.
39  

Separate transmission IR experiments are needed to 

evaluate isotropic optical constants of DMPE, which can then be used to simulate PM-IRRA 

spectra of randomly organised molecules in the spectroelectrochemical cell.
36,39 

 The 

transmission spectra were measured in a liquid cell comprising BaF2 windows separated by a 

10 m Teflon spacer.  DMPE is not soluble in water; therefore, a mixed deuterated methanol 

(CD3OD)/chloroform (CDCl3) solvent was used for transmission spectra measurements. 

Software provided by V. Zamlynny
37

  was used to calculate isotropic optical constants from 

the transmission spectra of DMPE.  These optical constants were then used to calculate the 

theoretical PM-IRRA spectra of randomly oriented molecules expected for the cell 

configurations used in each of the PM-IRRAS measurements. The theoretical spectra were 

used to calculate the tilt angles of the transition dipole moments of the vibrations with respect 

to the surface normal. 

Results 

Monolayers 

Figure 2 compares the pressure-area isotherm of per-deuterated di-myristoyl phosphatidyl 

ethanolamine (d-DMPE) with that of the hydrogenous DMPE (h-DMPE).  The shapes of the 

isotherms are similar: at higher area per molecule, the molecules are in a gaseous phase, 

which condenses to an expanded liquid (Le) phase at ~75–80 Å
2
.  A phase transition to the 

condensed liquid (Lc) phase is apparent as a practically horizontal region leading into a 

steeper sloped portion of the isotherm (which corresponds to the Lc phase).  Finally, on 

compressing further, a phase transition to a solid-like phase occurs.  The solid phase is 

characterised by low compressibility, hence a steep slope in this portion of the isotherm.  The 

two molecules reach the same limiting molecular area (~38 Å
2
) in the solid phase, which is in 
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agreement with literature values for DMPE.
40

  The main difference between the isotherms is 

seen in the phase transition between the Le and Lc phases.  For a given temperature, the phase 

transition occurs at a higher surface pressure for d-DMPE than for h-DMPE.  (An alternative 

view might be that to condense the Le to Lc phase at a particular pressure, a lower 

temperature is needed for d-DMPE.)  This implies that d-DMPE has greater fluidity in the 

liquid phase than h-DMPE.  This is an interesting result because the isotherms of the related 

molecules d-DMPC and h-DMPC are very similar.
12

  The reason is not immediately obvious. 

A similar difference in surface pressure of the Le-Lc transition has been previously mentioned 

for D62 DPPC and h-DPPC but not discussed in detail.
41,42

Perhaps if one assumes a van der 

Waals relationship between surface pressure and area in the Le phase, the result would 

suggest either that the strength of attractive intermolecular interactions is decreased for d-

DMPE relative to h-DMPE or that the average volume of the molecules is smaller.  This 

latter could occur as a result of smaller amplitude of CD2 vibrations compared with CH2 

vibrations. The notion is in line with the observations that chain melting transitions occur at 

lower temperatures for deuterated molecules,
32

 which is also indicative of weaker 

intermolecular interactions. 

Electrochemical measurements 

Figure 3 presents plots of charge density vs potential (from chronocoulometry measurements) 

for asymmetric DMPE films on Au(111).  The error bars represent a standard deviation over 

three measurements.  The plot compares Au|d-DMPE|h-DMPE with Au|h-DMPE|d-DMPE 

films.  Little difference is observed between the electrochemical responses of these films, 

which suggests that, in the solid phase at least, the macroscopic properties of the films are 

similar.  The charge density values are comparable with similar plots obtained for h-DMPE 

bilayers supported on Au(111).
14

  The similarity of the charge-potential plots for each starting 

structure could also be explained by isotopic scrambling as a result of lipid “flip-flop” 
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between layers, which has been observed in sum frequency generation (SFG) experiments by 

Conboy et al.
43-46

  In the following discussion we have assumed that isotopic scrambling does 

not take place to a large extent in our bilayers. In the case of DMPC
12

 and in our case (vide 

infra), the tilt angles derived from C-H stretching modes for bilayers where the hydrogenous 

molecules were deposited in the electrolyte-facing leaflet were consistently higher than for 

bilayers where the hydrogenous molecules started adjacent to the Au surface. If the 

deuterated molecules were evenly distributed across the two layers, the same tilt angle would 

be expected for both starting structures. The difference between our results and those from 

SFG experiments probably arises from differences in film preparation. The SFG experiments 

were carried out on films prepared at higher temperatures (relative to the chain melting 

transition temperature) and at lower surface pressures, so there is likely to be more flexibility 

in these bilayers than in the bilayers described herein. 

PM-IRRAS measurements 

Figure 4 shows a spectrum in the C-H stretching region of a Au|h-DMPE|d-DMPE film, at an 

applied potential of 0.0 V.  The spectra contain four fundamental modes and two additional 

Fermi resonances, arising from coupling between CH2 bending overtones and the symmetric 

methylene stretching mode.
47-49

  The spectrum in Figure 4 can be fitted to show the six 

components and an example of this fitting, in which the bands have been fitted with mixed 

Gaussian-Lorentzian character, is provided in Figure 4.  The bands at 2851 cm
–1

 and 

2919 cm
–1

 correspond to CH2 symmetric and antisymmetric stretching modes, 

respectively.
24,30,31,47,48,50-55

  The bands at 2874 cm
–1

 and 2963 cm
–1

 correspond to CH3 

symmetric and antisymmetric stretching modes, respectively.
24,30,31,47,48,50-55

  These bands are 

similar in shape and position to those observed for h-DMPE bilayers supported on Au(111) 

surfaces.
14

  Figure 5 shows spectra acquired at selected applied potentials for each of the two 

films.  The position of the band provides an indication of the degree of ordering of the 
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hydrocarbon chains in that an increase in the number of gauche conformers results in an 

increase in wavenumber.
 30,47,50,51,52

  The band position changes very little as the applied 

potential is varied and values average at 2851.7 cm
–1

 and 2919.4 cm
–1

 for the CH2 symmetric 

and antisymmetric stretching modes, respectively, for the Au|h-DMPE|d-DMPE film and 

2851.2 cm
–1

 and 2919.1 cm
–1

 for the Au|d-DMPE|h-DMPE film.  These values are indicative 

of a film in which the hydrocarbon chains are in the gel state.
30,47,50,51,52

  The close similarity 

of the band positions for the CH2 modes in each type of film indicate that placing the h-

DMPE film adjacent to the surface or to the solution makes little difference to the average 

conformation of the molecules. The full width half maxima (fwhm) observed (20.2 cm
–1

 and 

11.9 cm
–1

 for the antisymmetric and symmetric stretches of the Au|h-DMPE|d-DMPE film, 

respectively, and corresponding values of 18.4 cm
–1

 and 11.2 cm
–1

 for the Au|d-DMPE|h-

DMPE film) suggest relatively low mobility of the hydrocarbon chains (a large bandwidth 

indicates greater mobility).
31

 The hydrocarbon chains in the monolayer adjacent to the 

electrode have only very slightly more mobility than those in the monolayer adjacent to the 

solution; both films display slightly higher fwhm than symmetric Au|h-DMPE|h-DMPE 

layers (16-19 cm
–1

 and 10.5-11 cm
–1

 reported in ref. 15).  

Finally, the integrated intensity of the bands reveals information on the orientation of the CH2 

stretching mode transition dipoles, from which the orientation of the backbone of the 

hydrocarbon chain can be determined.
8,10-15, 36,39

   The integrated band intensity is related to 

the angle between the transition dipole moment and the electric field vector according to Eq 

2: 

∫ 𝐴d𝜈   α   |𝝁. 𝑬|2 = |𝜇|2〈𝐸〉2cos2𝜃 

(2) 
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where the integral represents the integrated band intensity,  is the dipole moment, E is the 

electric field intensity and  is the angle between the vectors representing these quantities.
39,56

  

For molecules adsorbed at a metallic surface, the electric field vector may be taken to be 

perpendicular to the surface and so  represents the angle made by the transition dipole 

moment and the surface normal.  The intensity is related also to the amount of material 

present and so the experimental data must be compared with simulated spectra of randomly 

organised molecules at the surface, using the same experimental parameters (angle, thickness 

of electrolyte between the surface and the window, thickness of the film).  The tilt angle of 

the dipole moment is then calculated from Eq 3:
39,57,58

 

cos2𝜃 =
1

3

∫ 𝐴d𝜈
𝐸

∫ 𝐴d𝜈
𝑟𝑎𝑛𝑑𝑜𝑚

 

(3) 

where ∫ 𝐴d𝜈
𝐸

 is the band intensity in the experimental spectrum at a given applied potential 

and ∫ 𝐴d𝜈
𝑟𝑎𝑛𝑑𝑜𝑚

 represents the integrated band intensity in the simulated spectrum.   

Figure 6 is a schematic diagram of the relationship between the transition dipole moments of 

the symmetric and antisymmetric stretching modes and the direction of the chain tilt angle. 

The tilt angle of the hydrocarbon chain is calculated from the tilt angles of the transition 

dipole moments using Eq 4:
39,59

 

cos2s + cos2as + cos2chain = 1   (4) 

Optical constants calculated from transmission spectra were used to calculate spectra 

simulated in D2O for the same experimental conditions.  These spectra are plotted as dotted 

lines in Figure 5.  It is apparent that the relative intensities of the methyl and methylene 

stretching modes are different for the oriented and randomly organised molecules, which is a 
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qualitative indication that the tilt angle in the bilayer film is less than 55° (the “angle” 

corresponding to random orientation) from the surface normal.  

Figure 7 shows the tilt angles of the symmetric and antisymmetric transition dipole moments 

as a function of applied electrode potential, along with the corresponding tilt angles of the 

hydrocarbon chains.  The open shapes plot tilt angles for the Au|h-DMPE|d-DMPE film (tilt 

angles for the inner monolayer, adjacent to the Au surface) and the filled shapes plot tilt 

angles for the Au|d-DMPE|h-DMPE film (tilt angles for the outer monolayer, adjacent to the 

electrolyte).  In the positive potential region, where the bilayer is expected to be directly 

adsorbed on the surface, the average tilt angle of the monolayer adjacent to Au is 15º and that 

of the monolayer adjacent to the electrolyte is 20º. At the negative potential limit, where the 

bilayer is likely to be separated from the surface by a layer of electrolyte,
7,9

 the average tilt 

angles are closer: 14º and 16º for the Au|h-DMPE|d-DMPE film and Au|d-DMPE|h-DMPE 

film, respectively. These values are comparable with those obtained for DMPE films where 

both monolayers contain h-DMPE, ~17° from the surface normal.
14

 Although the difference 

between the Au|h-DMPE|d-DMPE and Au|d-DMPE|h-DMPE films is small (compared with 

the estimated error of 3° arising from background subtraction), the tilt angle of the inner 

leaflet (adjacent to Au) is always smaller than that of the outer leaflet (adjacent to the 

electrolyte) in the potential region positive of the electrochemical phase transition. (The value 

of 17° obtained for Au|h-DMPE|h-DMPE films seems to be an average over the two layers.) 

The hydrocarbon chain tilt angle of DMPC bilayers was also higher for the electrolyte-facing 

leaflet.
12

 This observation was attributed to modification of the inner leaflet structure by the 

gold surface because the tilt angle measured for the electrolyte-facing leaflet was consistent 

with that calculated from the molecular area at which the monolayer was transferred from the 

air|water interface.  
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If there is a water cushion between the DMPE layer and the surface at negative potentials, as 

observed for DMPC films,
9
 the arguments made previously for the similarity in environment 

resulting in closer molecular orientation on each side of the bilayer (a difference of 5° 

compared with 10° at positive potentials)
12

 could also apply to the case of DMPE, which also 

has similar tilt angles for the two monolayers at negative potentials. The closer to 

perpendicular orientation of DMPE hydrocarbon chains would also be consistent with the fact 

that the DMPE headgroup footprint occupies a comparable molecular area with the two 

chains. The fact that the electrolyte-facing monolayer has higher tilt angle than the gold-

facing monolayer at positive potentials is more difficult to explain for DMPE because of its 

cylindrical shape. It is possible that there are differences in inter-headgroup interactions in 

each side of the bilayer.  DMPE headgroups contain a hydrogen bond donor (the ammonium 

group) and a hydrogen bond acceptor (the phosphate group), as shown in Figure 1. The 

presence of both donor and acceptor enables the molecules to interact directly with one 

another via hydrogen bonding, as opposed to the water-mediated hydrogen bonding 

interactions between DMPC headgoups, which contain only hydrogen bond acceptors.
30

 The 

tight hydrogen bonding network results in low mobility of the headgroups, observed 

previously for symmetric DMPE films, whose phosphate stretching absorptions were much 

narrower
14

 than those of either DMPC
13

 or DMPS. 
15

. If the electrolyte disturbs this tight 

network, the headgroup orientation may differ between molecules directly adsorbed on Au 

and those in contact with electrolyte, in turn leading to a change in chain orientation. If this 

were the case, the electrolyte structure would have to alter at larger negative charge densities 

to account for the fact that the lower tilt angle (close to that of the Au-facing leaflet) is 

observed at negative charge densities.  On the other hand, it is possible that the headgroups 

interact more strongly with the Au surface than with the electrolyte, as suggested for 

DMPC.
12

 An alternative explanation could be that the deuterated chains of adsorbed 
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molecules have a slightly different tilt angle from hydrogenous chains or more fluidity and 

that the first, gold-facing layer influences the structure of the second, electrolyte-facing layer. 

Further studies to investigate this interpretation are in progress. The O-P-O (where O 

represents non-esterified oxygen atoms) symmetric stretching mode has slightly different 

orientation for hydrogenous and deuterated DMPE bilayers: h-DMPE spectra indicated 

higher tilt for this mode than d-DMPE spectra.
14 

If the tilt angles of the symmetric and 

antisymmetric modes are similar for  h-DMPE as they are for d-DMPE, the O-P-O plane lies 

flatter for h-DMPE than for d-DMPE, which is consistent with a smaller chain tilt angle for 

h-DMPE than d-DMPE. Alternatively, the differences may arise from variation in solvent 

content across the bilayer. The volume fraction of water in the electrolyte-facing monolayer 

has been shown to be greater in the positive potential range than that in the Au-facing 

monolayer for DMPE/DMPS (9:1 molar ratio) films formed from vesicles
20

 so, although 

coverage of the surface by vesicles is not always as compact as from Langmuir transfer 

techniques, it is possible that the outer layer is more affected by solvent ingress than the 

inner. 

There is a small variation in band intensity around the electrochemical phase transition, 

which was not apparent in the Au|h-DMPE|h-DMPE bilayers.  The most likely explanation 

for this behaviour is that d-DMPE monolayers have more fluidity than h-DMPE monolayers.  

If the phase transition observed in the electrochemical measurements is indicative of water 

ingress, as for DMPC bilayers,
12

 the ingress might be expected to lead to relative disorder in 

the layers, resulting in a slight increase in average tilt angle of the CH2 groups (as some start 

to point in different directions if the chains twist).  The disorder is slight in the hydrogenous 

leaflet as no trend is observed in IR band position. The isotherms in Figure 2 showed a 

greater fluidity of the deuterated molecules on a water subphase.  Although the supported 

monolayers are notionally in the solid phase, there appears to be more flexibility within these 
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monolayers, which, in turn, translates to a slightly greater flexibility in the opposite 

monolayer. It is also possible that placing two layers of the same molecule leads to stronger 

inter-layer interactions than placing two layers of molecules with potentially different fluidty. 

These results show that the general, basic structure of the bilayers at equilibrium is generally 

unaffected but the dynamic behaviour of the bilayers is affected by deuteration.  This 

observation could have implications for the use of deuterated analogues in determining 

separate signals for each monolayer in spectroscopy or for their use in neutron reflectivity 

measurements.  The results do not suggest that data for hydrogenous and deuterated films are 

necessarily incomparable but rather that some care needs to be taken in their choice and 

comparison with homogeneously distributed bilayers would be prudent. 

Conclusions 

Selective isotopic substitution of hydrogen with deuterium has been used to study the two 

monolayers of Au-supported di-myristoyl phosphatidyl ethanolamine (DMPE) bilayers 

separately with in situ PM-IRRAS. The monolayers were found to have the same orientation 

at the most negative potentials and different orientation at potentials positive of the 

electrochemical phase transition. At these more positive potentials, the monolayer adjacent to 

Au was less tilted than the monolayer adjacent to the solution, as was observed previously for 

di-myristoyl phosphatidyl choline (DMPC) bilayers.
12

  This result is attributed to a different 

interaction of headgroups with the Au surface or differences in orientation between 

deuterated DMPE and hydrogenous DMPE. A small variation in band intensity around the 

electrochemical phase transition was also observed for these asymmetric bilayers but was not 

observed previously for symmetric hydrogenous DMPE bilayers,
14

 indicating that there may 

be slightly greater flexibility in the deuterated monolayer or a stronger interaction between 

two like monolayers. The results show that selective deuteration can have a small but 



18 
 

observable influence on dynamic behaviour of phospholipid films but the macroscopic barrier 

properties of the bilayers studied do not seem to be significantly altered. 
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Figure 1 Chemical structures of the lipid types (a) phosphatidyl choline (PC), (b) 

phosphatidyl ethanolamine (PE) and (c) phosphatidyl serine (PS). 
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Figure 2 Pressure-area isotherms recorded for monolayers of  h-DMPE (dotted line) 

and d-DMPE (solid line) on a water subphase at 19°C. The barrier speed was 25 cm
2
 min

–1
. 

 

 

Figure 3 Charge density vs potential plots of Au in the absence of lipids (triangles), 

Au|h-DMPE,d-DMPE (open squares) and Au|d-DMPE|h-DMPE (filled squares). 
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Figure 4 Example PM-IRRA spectrum of the C-H stretching region for a Au|h-DMPE|d-

DMPE film, acquired at 0.0 V. Angle of incidence 51° and electrolyte (0.1 M NaF in D2O) 

thickness 1.8 m. The dotted lines show the fitted individual peaks and the dashed line shows 

the cumulative fit; the solid line represents the acquired data. 
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Figure 5 Selected PM-IRRA spectra acquired at various applied potentials of the C-H 

stretching region for (a) Au|d-DMPE|h-DMPE and (b) Au|h-DMPE|d-DMPE. Angle of 

incidence 51° and electrolyte (0.1 M NaF in D2O) thickness 1.8 m. The spectra are offset for 

clarity. 

 

Figure 6 Schematic showing the directions of the transition dipoles corresponding to 

the symmetric and antisymmetric CH2 stretching modes (black arrows) and their relationship 

with the chain tilt angle. The grey arrows show relative motions of the hydrogen atoms. 

 

 

Figure 7 Squares: tilt angles of the transition dipoles corresponding to the symmetric 

CH2 stretching modes: ■ Au|d-DMPE|h-DMPE, □ Au|h-DMPE|d-DMPE. Circles: tilt angles 
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of the transition dipoles corresponding to the antisymmetric CH2 stretching modes. ● Au|d-

DMPE|h-DMPE,  ○ Au|h-DMPE|d-DMPE. Triangles: tilt angles of the hydrocarbon 

chains:▲ Au|d-DMPE|h-DMPE, ∆ Au|h-DMPE|d-DMPE. In each case, the error bars 

represent the standard deviations in tilt angles over three experiments. 
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