
 
 

University of Birmingham

Robust residual-guided iterative reconstruction for
sparse-view CT in small animal imaging
Zhang, Jianru; Wang, Zhe; Cao, Tuoyu; Cao, Guohua; Ren, Wuwei; Jiang, Jiahua

DOI:
10.1088/1361-6560/ad360a

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Zhang, J, Wang, Z, Cao, T, Cao, G, Ren, W & Jiang, J 2024, 'Robust residual-guided iterative reconstruction for
sparse-view CT in small animal imaging', Physics in Medicine & Biology, vol. 69, no. 10, 105010.
https://doi.org/10.1088/1361-6560/ad360a

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 17. May. 2024

https://doi.org/10.1088/1361-6560/ad360a
https://doi.org/10.1088/1361-6560/ad360a
https://birmingham.elsevierpure.com/en/publications/04be4942-55d0-4780-8cc2-0d4ad282b6fa


Phys.Med. Biol. 69 (2024) 105010 https://doi.org/10.1088/1361-6560/ad360a

PAPER

Robust residual-guided iterative reconstruction for sparse-view CT in
small animal imaging

JianruZhang1,5,6 , ZheWang2,6, TuoyuCao3, GuohuaCao2,∗,Wuwei Ren1,∗ and Jiahua Jiang4,5,∗

1 School of Information Science andTechnology, ShanghaiTechUniversity, Shanghai, 201210, People’s Republic of China
2 School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University,
Shanghai, 201210, People’s Republic of China

3 United ImagingHealthcare Co., Ltd, Shanghai, 201807, People’s Republic of China
4 Institute ofMathematical Science, ShanghaiTechUniversity, Shanghai, 201210, People’s Republic of China
5 School ofMathematics, University of Birmingham, Edgbaston, B15 2TT,UnitedKingdom
6 These authors contributed equally to this work.
∗ Authors towhomany correspondence should be addressed.

E-mail: caogh@shanghaitech.edu.cn, renww@shanghaitech.edu.cn and j.jiang.3@bham.ac.uk

Keywords: sparse-viewCT, image reconstruction, inverse problem,Golub–Kahan process, regularization

Abstract
Objective.We introduce a robust image reconstruction algorithmnamed residual-guidedGolub–
Kahan iterative reconstruction technique (RGIRT) designed for sparse-view computed tomography
(CT), which aims at high-fidelity image reconstruction from a limited number of projection views.
Approach. RGIRTutilizes an inner-outer dual iteration framework, with aflexible least squareQR
(FLSQR) algorithm implemented in the inner iteration and a restarted iterative scheme applied in the
outer iteration. The inner FLSQR employs aflexible Golub–Kahan bidiagonalizationmethod to
reduce the size of the inverse problem, and aweighted generalized cross-validationmethod to
adaptively estimate the regularization hyper-parameter. The inner iteration efficiently yields the
intermediate reconstruction result, while the outer iterationminimizes the residual and refines the
solution by using the result obtained from the inner iteration.Main results. The reconstruction
performance of RGIRT is evaluated and compared to other referencemethods (FBPConvNet, SART-
TV, and FLSQR) using projection data fromboth numerical phantoms and real experimentalMicro-
CTdata. The experimental findings, from testing various numbers of projection views and different
noise levels, underscore the robustness of RGIRT.Meanwhile, theoretical analysis confirms the
convergence of residual for our approach. Significance.We propose a robust iterative reconstruction
algorithm for x-ray CT scanswith sparse views, thereby shortening scanning time andmitigating
excessive ionizing radiation exposure to small animals.

1. Introduction

X-ray computed tomography (CT) has become an indispensable tool in various fields, including industrial
inspection, security checks, andmedical diagnosis of awide range of diseases (Wang et al 2008). However,
traditional CT scanning requires a dataset from a large number of projection angels, which can expose patients
to excessive ionizing radiation, increasing the risk of cancer (Brenner andHall 2007). To lower theCT radiation
dose in clinical practice, sparse-viewCT scanningwith a small number of projection viewswas proposed.
Sparse-viewCThas the significant advantage of reducing the radiation dose proportionally to the number of
projection views. It also improves scanning speed and hence temporal resolution by shortening data acquisition
time, which is particularly useful for some dynamic imaging tasks, such as cardiacmicro-CT imaging for small
animals (Kudo et al 2013).
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Despite the potential benefits of sparse-viewCT, one significant challenge is image reconstruction due to
insufficient projection data. Reconstructing images fromunder-sampled projection data is an ill-posed inverse
problem and imposes amore strict requirement on the robustness of the algorithm in contrast to a full-
projection problem (Kim et al 2014). In general, CT reconstruction can be primarily classified into three
categories: (1) direct or analytical reconstruction, (2) iterative reconstruction, and (3)deep-learning (DL)-based
reconstruction (Wang et al 2020). Thefirst type of direct reconstruction relies on themathematical inverse of a
forwardmodel. Its embodiment in CT reconstruction isfiltered back-projection (FBP) (Holschneider 1991).
Despite its high efficiency, FBPmay not constitute a propermethod in a sparse-view problem, as it is vulnerable
to appeared noise and produces highly degraded images with severe streaking artifacts (Singh et al 2010).
Alternatively, iterative reconstruction combines a numerical forwardmodel with a feedback loop, by
progressively reducing the error between predicted sensor data and realmeasurement (Beister et al 2012).
Examples include theKaczmarz family of algorithms (e.g. algebraic reconstruction technique (ART) (Gordon
et al 1970), simultaneous ART (SART) (Andersen andKak 1984)), ordered-subsets expectationmaximization
(OSEM) (Shepp andVardi 1982,Hudson and Larkin 1994), separable quadratic surrogates (SQS) (Kim et al
2013, 2014), penalizedweighted least-squares (PWLS) (Fessler 1994,Niu et al 2014), and nonlocalmeans (NLM)
algorithm (Kim et al 2016). Compared to direct reconstruction, iterativemethods demonstrate significant
improvement in reconstruction quality in reducing noise and artifacts. Nevertheless, these algorithms exhibit
limited robustness regarding reconstructionwith sparse-view projection data, attributed to the challenges of
balancing datafidelity and regularization terms (e.g. Tikhonov regularization ( 2l ) (Golub et al 1999), total
variation (TV) regularization (Lu et al 2012, Liu et al 2013,Niu et al 2014, Kim et al 2016), or 1l regularization
(Kim et al 2014, Beck andTeboulle 2009)), and, a lack of theoretical convergence analysis (Scherzer 1995, Elfving
et al 2014, 2017,Magreñán andArgyros 2018). In particular, for some regularizations such as TV and ,1l it is
mathematically challenging to show the theoretical convergence due to the non-smoothness and non-linearity
of the regularization terms.More recently, DL-based reconstructionwas conceived, showing promising results
in sparse-viewCT reconstruction (Lee et al 2018, Zhang et al 2018, 2020, Li et al 2022). However, DLmodels
typically lack explainability and generalizability, which implies that thesemethods tend to bemore susceptible to
irregularities, biases, and noise inherent in the data, thereby compromising their robustness. Specifically, the
effectiveness of supervised learning approaches is significantly influenced by the caliber of their training data,
whereas the success of unsupervised learning techniques primarily relies on the convergence ability of the
optimization solvers whenminimizing their loss functions. Therefore, investigating robustmethods capable of
consistently producing accurate reconstruction results is of great significance in sparse-viewCT reconstruction.

In this paper, we focus on improving the robustness of iterativemethods and develop a new approach to
tackle two primary challenges:meticulouslyfine-tuning the regularization parameter and the deficiency of the
theoretical convergence analysis. To address the former issue, we consider integrating flexible least squaresQR
(FLSQR) (Chung andGazzola 2019), an advanced inverse problem solver to adaptively choose appropriate
regularization parameter in an iterativemanner . Themain ingredient of FLSQR isflexibleGolub–Kahan (FGK)
process (Chung andGazzola 2019), an iterative dimension reduction techniquewhich can progressively
augments the solution space, thereby enabling the implementation of computationally demanding parameter
selectionmethods (e.g.WGCV (Chung et al 2008), UPRE (Vogel 2002), DP (Colton et al 1997)). Although
FLSQR shows promising simulation results in sparse-viewCT, it still requires theoratical convergence guarantee
and practical testing. To address the latter problem,we consider adopting an inner-outer scheme (Saad 1993,
Eiermann et al 2000, Baker et al 2005, Ergül et al 2010) that uses the inner loop results to refine the solution at
each outer loop iteration. This strategy can not only expedite convergence but also facilitate the convergence
analysis.

Exploiting aspects of both FGKprocess and inner-outer framework, we propose residual-guidedGolub–
Kahan iterative reconstruction technique (RGIRT) for sparse-viewCT, amore robustmethod that inherits the
benefits of parameter selection in FLSQR, and ensures theoretical convergence of the residual. RGIRTutilizes a
unique inner-outer iteration framework, inwhich FLSQR is implemented in the inner iteration, while a
restarted iterative scheme is applied in the outer iteration. The outer iteration is capable of effectively
minimizing the residual and refining the solution by integrating the intermediate results acquired from the inner
iteration. By incorporating the residual, the theoretical convergence of thewhole algorithmdoes not rely on the
convergence of its inner solver, thus circumventing themajor bottleneck of FLSQRwhich lacks a theoretical
convergence proof. Based on the theoretical and experimental results, RGIRToffers two notable advantages
comparedwith FLSQR and SART-TV (Lu et al 2012)which is awidely used TV-regularizedCT reconstruction
algorithm:first, RIGIRT enhances the precision of the reconstruction under sparse-view conditions. It is
important to note that setting the number of outer iterations to one in RGIRT results in a solution equivalent to
FLSQR, representing theworst-case scenario for RGIRT, as no correction is implemented; second, RIGIRT
ensures the theoretical convergence of the residual and experimental convergence to the reference solution. It
has a higher convergence rate and costs lessmemories. On the other hand, comparedwith FBPConvnet (Jin et al
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2017), a representativeDL-basedmethod, RGIRT exhibitsmore robust performance in comparative
experiments, especially in increasingly sparse-view condition and escalating noise levels. From an algorithmic
perspective of RGIRT, under the correctionmechanism applied in the outer iteration, high accuracy is not
required during the inner iteration. This increases the tolerance of the algorithm, thereby in turn enhancing its
robustness.

2.Method and experiments

2.1. Residual-guidedGolub–Kahan iterative reconstruction technique
2.1.1. Inner-outer iterative scheme
The ill-posed nature of sparse-viewCT image reconstruction calls for the use of regularization to stabilize the
inverse process. Themathematicalmodel can be formulated as

  ( ) ( )l- + Ax b xmin , 1
x

2
2

where Îx RN is the discrete image array; Îb RM is the correspondingmeasurement data (sinogram) that
carries noise; Î ´A RM N is the systemmatrix thatmodels the forward process; M is the number of source-
detector pairs, N is the number of CT image grids. ( ) x denotes the regularization term, and ( )l l > 0 is the
regularization parameter that balances the data fidelity term -Ax b 2

2 and the regularization term ( ) x .The
primary framework of ourmethod is based on inner-outer iterations (as shown infigure 1), where FLSQR is
performed in the inner iterations to solve a subproblemuntil convergence, and the outer iteration refines the
intermediate solution to themain problem (1) heuristically using the results from the inner iteration. Given an
initial guess ( )x ,0 wedefine the inner problem at the ( )+ 1l th outer iteration as

  ( ) ( )( ) l- + As r smin , 2
s

2
2l

where ( ) ( )-=r b Axl l represents the residual at the lth outer iteration and ( )x l is the approximated solution
at the lth outer iterative; s represents the correction that will be used for updating ( )x l in the outer iteration.
Subsequently, we obtain the ( )+ 1l th outer iterative result ( ) ( )= ++x x s.1l l Although there aremultiple
choices for ( ) s , in this workwe use 1l regularization, which is defined as  ( ) = s s .1 Furthermore, we
proved the convergence of residual for our proposed algorithm.We show that incorporating the correction in
the outer iteration facilitates a gradual reduction of the residual, therebymitigating the concern regarding semi-
convergence. This can be expressed as

    ( )( ) ( )+ r r , 31
2 2

l l

where the proof is provided in appendix.

Figure 1.The framework of RGIRT. RGIRTminimizes the residual in the outer iteration and employs the FGKprocess in the inner
iteration to reduce its dimension adaptively.
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2.1.2. Optimization via iterative reweighted norms
Note that each inner problemof RGIRT can be regarded as a newminimization problem solved by FLSQR
method. The implementation of FLSQR can be delineated into two steps: first, employing iterative reweighted
norms (IRN) to break the original non-convex optimization problem into a sequence of weighted norm
least-square problems; second, utilizing FGKprocess to perform iterative dimensionality reduction. IRN
method has proven effective in solving inverse problemswith 1l regularization constraint, by approximating 1l

regularizationwith iteratively updatedweightmatrix (Gorodnitsky andRao 1992, Rodrguez and
Wohlberg 2008). Thefirst step of IRN approach is to reduce 1l regularized problem to a sequence of least-
squares problems involving aweighted 2l norm.

   ( ) ( )( ) l- +As r D s s ,min 4
s

2
2

2
2l

where

{ }( ) [([ ] ) ] [([ ] ) ] ( )t t= + + Î- - ´D s s s Rdiag , , , 5N
N N

1
2 1

4 2 1
4

with [ ]s i denoting the ith entry of s and a small threshold t > 0.To avoid nonlinearities of solving (4), we follow
the commonpractice of approximating ( )D s by theweightedmatrix at the kth inner iteration ( )( )= -D D s ,k

k 1

where ( )-s k 1 is an approximation of the solution at the ( )-k 1 th inner iteration.Notice that seeking ( )s k in (4)
requires solving a large optimization problemwith N unknowns at each iteration. To ameliorate the
computational burden, we adopt the FLSQRmethod that can reduce problem size and automatically estimate
regularization parameter.

2.1.3. Solution for the inner problem via FGK
The essence of dimension reduction lies in an iterative projection scheme, encompassing twomain stages in each
iteration. First, we generate a basis (a set of vectors) for the solution by exploiting the FGKprocess (Chung and
Gazzola 2019). Second, we compute the coefficients of the basis by solving an optimization problem in the
projected subspace, where the regularization parameter can be estimated automatically viaWGCV (Chung et al
2008).

During the implementation of thefirst stage, at the kth iterationwe obtain

( )= +AZ U G 6k k k1

( )=+ + +
A U V T , 7k k k1 1 1

where ( )Î + ´G Rk
k k1 is upperHessenberg and ( ) ( )Î+

+ ´ +T Rk
k k

1
1 1 is upper triangular;

[ ]= ¼ Î- - ´Z D v D v R, , kk k
N k

1
1

1
1 whose column vectors are the basis for the solution of ( )s ;k

[ ] ( )= ¼ Î+ +
´ +V v v Rk k

N k
1 1 1

1 and [ ] ( )= ¼ Î+ +
´ +U u u Rk k

M k
1 1 1

1 satisfy the orthogonality condition (in
exact arithmetic)

( )= =+ + + + + +
 V V I U U I 8k k k k k k1 1 1 1 1 1

with identitymatrix ( ) ( )Î+
+ ´ +I R .k

k k
1

1 1 Then, we can convert problem (4) to

‖ ‖ ‖ ‖ ( )( ) l- +
Î

r DAZ f Z fmin 9
f

k
R

k 2
2

k 2
2

k

l

and approximate the solution of (4) via the relations ( ) =s Z fk
k k where the basis coefficient Îf Rk

k is the
solution to (9). To further simplify the problem (9), we performQR factorization of =D Z Q Rk k Z k Z k, , Demmel
(1997), where QZ k, has orthonormal columns and RZ k, is an upper triangularmatrix. Plugging the factorization
results from equations (6) and (8) into problem (9), we arrive at a small-sized optimization problem in the
projected subspace at the kth iteration

‖ ‖ ‖ ‖ ( )b l- +
Î

G e R ffmin , 10
f R

k Z k1 2
2

, 2
2

k

Where ‖ ‖( )b = r 2
l is a scalar, [ ]= ¼ Îe R1,0, ,0 .k

1 Note that the size of the projected problem (10) is ( )+k 1
by k.Therefore, RGIRT alleviates the computational complexity by transforming the challenge of solvingN
unknowns of s in the full-sized problem (4) into that of solving k unknowns of fk in the small-sized projected
problem (10). After applyingWGCV in (10) to estimate the regularization parameters l,we can determine the
optimal coefficient

( ) ( )l b= +
-  f G G R R G e . 11k k k Z k Z k k, ,

1
1

Finally, when the stop criterion of the inner iteration is satisfied, we obtain the solution of problem (1) at the
( )+ 1l th iteration
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( )( ) ( )= = ++s Z f x x s, 12k k
1l l

Ageneral overview of RGIRT is illustrated infigure 1.Meanwhile, the implementation details of RGIRT are
provided in algorithm1,where dtol is the tolerance given by the user, and z z,in out are themaximumnumber of
the inner and outer iterations, respectively.

2.2. Numerical simulation based on a Shepp–Logan phantom
Weutilized a Shepp–Logan phantom to simulate sparse-viewCT reconstruction, as it incorporates both high-
contrast and low-contrast structures. The sinogramdatawere generated usingASTRA toolbox (vanAarle et al
2016). The detector row comprises 1024 elements with a pixel pitch of 0.05mm. The distance from the focal spot
of the x-ray source to the detector was set to 185.03mm,while the distance to the system iso-centre was set to
141.52mm.The detector array consists of 1024 elements. The dimension of each element is 0.05mm. The
matrix size of the reconstruction image is 512× 512, and each pixel covers an area of ´0.0765 0.0765mm .2 A
total of 400 projections were evenly distributed over 200° in the fan-beam geometry. The photon numberwas set
to 1× 106 for simulating Poisson noise in the sinogram.Different projection views (100, 75, 57, and 39 views)
were sampled evenly among the 400 views and testedwith different reconstructionmethods for validation
purposes.

2.3.Mouse cardiacmicro-CTdata
The sinogramdata used in this studywere experimentally collected from amouse cardiac scan using a
customizedmicro-CT scanner (Cao et al 2010). The scanning parameters were 50 kVp anode voltage, 2mA
anode current, 1024 detector elements of 0.05mmpixel pitch for each detector row. The source-to-detector
distance and source-to-object distance are 185.03mmand 141.52mm, respectively. A total of 400 projections
were acquiredwith a step angle of 0.5°, resulting in a total scan angle of 200° for a short-scanmode in the fan-
beamgeometry. The 400 projection viewswere acquired in the step-and-shootmodewith prospective gating to
both the respiratory and cardiac signals of themouse subject under free-breathing condition, so that all the
projection viewswere acquired at the same phase of the cardiac and respiratory cycles. Similar to the Shepp–
Logan phantom experiment, we designate the FBP reconstruction results obtained from400 projection views as
the reference image, and employ the reconstruction outcomes from100 (or 75, 57, and 39)projection views to
evaluate the performance of our algorithm.

2.4. Performance evaluation
Wechose four differentmethods for comparisons including FBP, FBPConvNet (Jin et al 2017), SART-TV (Lu
et al 2012), and FLSQR (Chung andGazzola 2019). FBP relies on the radon transform and its inverse, usually
viewed asmuch faster than iterativemethods. FBPConvNet is a post-processingDLmodel based on
convolutional neural network (CNN). To ensure a fair comparison, we trained fourmodels for each experiment,

Algorithm1.Residual-guidedGolub–Kahan iterative reconstruction technique (RGIRT).

Initialization: d z zÎ Î =´A bR R k, , , , , 1M N M
tol in out

while   /( ) d<r b2 2 tol
l and z< outl do outer iteration

( ) ( )= -r b Axl l

Initialize Î ´RD ,N N
1

for k = 1 to zin do inner iteration

= w A u ,k = w vtj,k j for = ¼ -j k1, , 1

= - å =
-w w vt ,j k jj 1

k 1
, ‖ ‖= wt ,k k 2, /=v w tk k k,

= -z D vk k k
1

=w Az ,k = w ugj k j, for = ¼j k1, ,

= - å =w w ug ,j
k

j k j1 , ‖ ‖=+ wg ,k k1, 2 /=+ +u w gk k k1 1,

DoQR factorization =D Z Q Rk k Z k Z k, ,

Obtain l viaWGCV

Calculate fk using (11),

Update ( ) =s Z fk
k k

( )( )= = ++ D s k kD , 1k
k

1

end for

Obtain ( )x l using (12)
= + 1l l

endwhile

return final reconstruction ( )x l
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with eachmodel representing a distinct sparsity sampling condition (100, 75, 57, and 39 views, respectively). For
each sampling rate, the training dataset consisted of 300 images ofmouse with an image size of 512× 512 pixels.
Meanwhile, we usedmean square error (MSE) as the loss function and employed theAdam (Kingma and
Ba 2014) optimizer during network training. TheMSE loss function can bewritten as

|| ( ) || ( )= -L Y F X , 132
2

where Y is the reference images reconstructed from the full 400 projection views by using FBP, X is the images
reconstructed from the sparse-view sinograms via FBP, and ( )F X stands for the images post-processed by
FBPConvNet. The SART-TV and FLSQR are both iterativemethods. In particular, FLSQR is the same algorithm
as our inner iteration butwithout the outer restarted iterative scheme. As for quantitativemeasures, we used
MSE, structural similarity indexmeasure (SSIM) (Wang et al 2004), peak signal-to-noise ratio (PSNR), and
computational time to evaluate the performance of each algorithm.

3. Results

3.1. Reconstructions of numerical simulation results
Reconstructed images of the Shepp–Logan phantomunder various view-sampling conditionswere compared in
figure 2. Thematrix size of the reconstruction image is 512× 512, and each pixel covers an area of

´0.0765 0.0765mm .2 For training themodel of FBPConvNet, we generated a dataset consisting of 500 images
representing ellipses with random intensity, size, and location. Afixed learning rate of ´ -1 10 4 was employed.
For all iterative reconstructionmethods, wefine-tuned the reguxlarization parameters to strike a balance
between artifact removal and image resolution, following the examples outlined in the original literature.
Specifically, in this case, themaximumnumber of iterations for the gradient descent step in the SART-TV
methodwas set to 1000, with a regularizationweight reduction factor of ´ -2.5 10 ,4 afixed step size of 0.2 that
directly influences image refinement, and a tolerance of -10 ,7 consistent with other iterative algorithms. For the
FLSQRmethod, themaximumnumber of iterationswas set to 100. As for RGIRT, the inner iteration number
was set to 1, while the outer iteration numberwas set to 300. The regularization parameters for these two
methodswere selected automatically byWGCV.

As observed infigure 2, all the reconstructed images from39 views are significantly degraded, exhibiting the
streaking artifacts indicated by the green arrow. In contrast, relatively reasonable reconstruction results are

Figure 2.Reconstruction results of the numerical study based on a Shepp–Logan phantom. Columns from left to right are the
reference image and sparse-view image reconstructed via FBP, FBPConvNet, SART-TV, FLSQR andRGIRT, respectively. Images
from top to bottom show reconstruction results obtained from 100, 75, 57, and 39 projection views, respectively.
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achievable using 57 views. From the results, FBP exhibits streaking artifacts across all sparse-view sampling
conditions. FBPConvNet recovers sharper edges attributed to its ability to learn representative features from the
training dataset. However, as the number of views for reconstruction decreases, the smaller ellipsesmarked in
the red box in the FBPConvNet-reconstructed images become increasingly blurred. This blurring effect is
primarily caused by the adoption ofmean squared error (MSE) as the loss function, where a lowerMSE
corresponds tomore blurred images. To further illustrate this, we selected andmagnified the region outlined by
the red box infigure 2 for eachmethod, as shown infigure 3.While the FBPConvNet resultsmerge the three
ellipses within the red box for the images reconstructed from79, 57, and 39 views, other iterativemethods
successfully separate them. SART-TV results exhibit blurred edges in the images reconstructedwith 75 and 100
views. Although the FLSQR andRGIRT results appear similar infigure 2 due to the simple structure of the
Shepp–Logan phantom, RGIRTdemonstrates superior performance in the subsequent experiment involving
more complexmouse cardiacmicro-CT images.

To further demonstrate the advantages of RGIRT in terms of artifact reduction and preservation of image
details, figure 4 presents the absolute difference images, which highlight the absolute discrepancies between the
results obtained from eachmethod and the reference image. In the FBPConvNet results, fewer differences are
observedwithin the phantombutmore outside of it. These outside residual streaking artifactsmay be attributed
to discrepancies between the training and test datasets, a challenge often encountered in deep learning-based
methods known as dataset shift (Takahashi and Braga 2020). Specifically, for the Shepp–Logan phantom
experiment, the training dataset consist of 500 images, each containing 20–40 randomly positioned ellipses. The
length of the horizontal and vertical axes is randomly chosen between 32 and 128 pixels, and each ellipse rotates
with a randomangle. Although the Shepp–Logan phantom is comprised of ellipses, not all its features are
randomly incorporated in the current training dataset. Additionally, significant differences of the three ellipses
are visible, particularly in the images reconstructed by 75, 57, and 39 views sinogram, aligningwith the findings
depicted infigure 3. The SART-TV results exhibit noticeable differences along the edge of the phantom, though
there are fewer artifacts outside of it.Moreover, in comparison, the FLSQR andRGIRT results exhibit less
differences along the edge and less discrepancy in the region containing the three ellipses. Compared to the
FLSQR results, our RGIRT results have fewer artifacts outside of the phantom, especially in the 57-view
reconstructions, further demonstrate the robustness in cases of extreme sparse-view conditions. Among the
evaluatedmethods, RGIRT exhibits themost superior performance acrossmultiplemetrics, indicating its
higher overall competence in terms of artifact reduction, preservation of image details, and fidelity to the

Figure 3.The zoomed regionmarked by the red box infigure 2 (a). Columns from left to right are zoomed images from the reference
image and sparse-view images reconstructed via FBP, FBPConvNet, SART-TV, FLSQR andRGIRT, respectively. Images from top to
bottom show zoomed region for 100, 75, 57, and 39 projection views, respectively.
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reference image. Furthermore, figure 5 displays the comparison of line intensity profiles of variousmethods
passing through the yellow dash line (see figure 2) in the 57-view case. It is evident that the line intensity profile
fromRGIRT closely resembles that of the reference CT image, especially the valley in the zoomed region.

Figure 4.The difference images between the reference image and the sparse-view images infigure 2. Columns from left to right are
difference images fromFBP, FBPConvNet, SART-TV, FLSQR andRGIRT, respectively. Images from top to bottom showdifference
results for 100, 75, 57, and 39 projection views, respectively.

Figure 5. Line intensity profiles for the yellow dashed line infigure 2 (a3) (57 projection views). The inset shows the line from the our
RGIRTmethod is closer to the reference linewhen compared to the othermethods.
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Aquantitative analysis was conducted on the reconstructions of the sparse-view Shepp–Logan phantomand
presented in table 1, with the best results highlighted in bold red and the second-best results in bold blue. Among
all sparsity conditions, RGIRT demonstrated the smallestMSE and PSNR, except for the 100 views image, which
closely resembled the performance of FLSQR. Furthermore, RGIRT ranked second highest in SSIM across all
sparsity conditions, except for the 75 views image.While SART-TVoutperformedRGIRT in SSIM, it exhibited
significantly largerMSE. The results in table 1 demonstrate that RGIRT is capable of reducing artifacts and
preserving image structure simultaneously, rather than excelling in one aspect while performing poorly in the
other.

Figure 6.Reconstruction results of the numerical study based on a Shepp–Logan phantomwith photon number
´ ´ ´ ´1 10 , 5 10 , 1 10 , 5 10 ,6 5 5 4 and ´1 104 (57 views). Columns from left to right are the reference image and sparse-view

image reconstructed via FBP, FBPConvNet, SART-TV, FLSQR andRGIRT, respectively.

Table 1.Quantitative results for sparse-view Shepp–Logan phantom. The best results aremarked in red, and the second-best results are
marked in blue.

9

Phys.Med. Biol. 69 (2024) 105010 J Zhang et al



3.2. Robustness analysis to noise
In practical applications, the presence of photonic noise during imaging can significantly impact the quality of
reconstructed images. To evaluate the robustness of our proposedmethod, we carried out further comparative
experiments within the Shepp–Logan experiment, assessing the performance of our proposedmethod under
various noise levels. Poisson noise withfive different intensities was introduced to the simulated sinogramof 57
projection views, corresponding to ´1 10 ,6 ´5 10 ,5 ´1 10 ,5 ´5 10 ,4 ´1 104 photons. The reconstruction
results using FBP, FBPConvNet, SART-TV, FLSQR, andRGIRT at different intensity levels are shown in
figure 6.Notably, while allmethods are affected by noise at the intensity level of ´1 10 ,4 FBPConvNet exhibits a
higher level of noise compared to the othermethods. Reconstruction results (figure 6) andmetrics (figure 7)
show a good agreement that that RGIRTmaintained its efficiency and accuracy both qualitatively and
quantitatively, even in the presence of a increasing noise level. Although SART-TV also exhibits high noise
tolerance (green curves infigure 7), its convergence is not guaranteed, resulting in a relatively poorer image
quality when the stopping point is inappropriately selected. Another noteworthy observation is that, as the noise
level increases, FBPConvNet experiences a sudden rise inMSE and a sharp decline in SSIM (figure 7), which
emphasizes the susceptibility of FBPConvNet to noise interference, alongwith limited robustness and
applicability.

3.3. Reconstructions ofmouse cardiacmicro-CT
The reconstructed images under various view-sampling conditions of the cardiacmicro-CT are shown in
figure 8.We can observe severe streaking artifacts (marked by the arrows) appearing in all the reconstructed
images obtained from39 views. As a comparison, the reconstructed results from57 views have effectively
eliminated the streaking artifacts. To train the FBPConvNet onmouse cardiacmicro-CT images, the training
dataset consisted of 300 images, with an additional 100 images allocated as the validation dataset. In this
particular instance, RGIRTwas configuredwith an inner iteration count of 3 and an outer iteration count of 20.
The selection of the number of inner and outer iterations in contrast regions to be reconstructed.When the level
of detail complexity is higher, we decrease the number of inner iterations and increase the number of outer
iterations. The step size for SART-TVwas set to 0.1. For all iterativemethods, the tolerancewas set to -10 .7 All
other parameters used in FBPConvNet training process and the three iterativemethods are the same as the
Shepp–Logan experiment. The FBPConvNet, SART-TV, and FLSQRmethods effectively suppress the streaking
artifacts in 100 views. However, as the views become sparser, the differentmethods degrade differently.
FBPConvNet tends to blur low-contrast regions such as the heart and enhance high-contrast regions such as
bones. Particularly, in the case of 57 views, the FBPConvNet blurs the heart entirely, while othermethods
preserve its structure. SART-TV, on the other hand, tends to blur the entire image, including both high- and
low-contrast regions. This blurring effect can be clearly observed in the results of 75, 57, and 39 views (figure 8).
Comparedwith the FBP and FBPConvNet, RGIRT and FLSQR successfully preserve the geometries of imaging
objects in both high- and low-contrast regions in a small number of views (e.g. 57 views and 75 views,figure 8).
However, in the case of 57 views, FLSQR exhibits a slight degradation thanRGIRT in high contrast regions, as
clearly shown in the difference images infigure 8.

More detailed visual comparison is shown in figure 9, where the red box region offigure 8 (a) is enlarged to
examine the thin interventricular septummore closely. The interventricular septum (indicated by the blue

Figure 7.Analysis ofMSE (left) and SSIM (right) of different reconstructionmethods using different photon numbers
( ´ ´ ´ ´ ´1 10 , 5 10 , 1 10 , 5 10 , and 1 106 5 5 4 4).
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Figure 9.The zoomed regionmarked by the red box infigure 8(a). Columns from left to right are zoomed images from the reference
image and sparse-view images reconstructed via FBP, FBPConvNet, SART-TV, FLSQR andRGIRT, respectively. Images from top to
bottom show zoomed region for 100, 75, 57, and 39 projection views, respectively. Blue arrow and red curve indicate a thin
interventricular septum.

Figure 8.Reconstruction results for amouse cardiacmicro-CT dataset using differentmethods. Columns from left to right are the
full-view reference image and sparse-view image reconstructed via FBP, FBPConvNet, SART-TV, FLSQR andRGIRT, respectively.
Images from top to bottom show reconstruction results from100, 75, 57, and 39 projection views, respectively.
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arrow and red curve in the reference image offigure 9) is not discernable at all from the sparse-viewCT image
reconstructed by FBP. For the images reconstructed by FBPConvNet, it is somewhat visible from the 100-view
case but barely visible from the remaining fewer-view (e.g. 75, 57 and 39 views) scenarios. The same
interventricular septum is visible from the images reconstructed fromSART-TV, FLSQR, andRGIRT, but a
close look reveals that the interventricular septum reconstructed by SART-TV and FLSQR are a little bit blurry
due to the over-smoothing from those twomethods. The interventricular septum reconstructed by our RGIRT
method seemsmost clear, especially when examining the small structure details.Moreover, the contrast between
the interventricular septum and the neighboring iodine-filled ventricles appears clearer than that from the other
methods, which indicates RGIRT is capable of preserving soft tissue contrast and suppressing noise. Judging
fromfigure 9, as the sparsity changes from100 views to 75, 57 and 39 views, the superiority of our RGIRT
method becomes evenmore obvious.

The effectiveness ofRGIRT is further demonstrated in thedifference images shown infigure 10,whichwere
calculated as the absolute difference between the reference image and the sparse-view images infigure 8. In these
difference images, the darker the color, the larger the error.We can see that thedifference imageofRGIRThas the
smallest overall difference,which confirmsRGIRT’s superiority inpreserving the imagedetails. Interestingly,
comparing thedifference images betweenFBPConvNet andRGIRT,we found thatRGIRT is better at preserving the
soft tissues,while FBPConvNet is better at preserving thebone structures. Because theheart is a soft-tissue organ
without bone structure, ourRGIRTmethod is indeedbetter suited for sparse-view cardiacCT reconstruction.

Figure 11 shows the comparisonof line intensity profiles of variousmethods passing through the yellowdash
line (seefigure 8) in the 57-view case. It is clear that the line intensity profile fromRGIRT resemblesmost closely to
theone from the referenceCT image, especially for the peak and valley in the zoomed region. This demonstrates
the advantage of ourmethodover the othermethodsonpersevering edge and small features in the images.

We also carried out quantitative analysis for the sparse-view cardiacmicro-CT reconstructions and the
results are presented in table 2. As shown in table 2, RGIRT and FBPConvNet clearly outperformed the other
methodswith smallerMSE and higher SSIM and PSNR. The FBPConvNetmethod has the bestMSE among
many sparse-view cases,mainly because it usesMSE as the loss function.However, as the aforementioned

Figure 10.The difference images between the reference image and the sparse-view images infigure 8. Columns from left to right are
difference images fromFBP, FBPConvNet, SART-TV, FLSQR andRGIRT, respectively. Images from top to bottom showdifference
results for 100, 75, 57, and 39 projection views, respectively.
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zoomed images (figure 9) clearly show, FBPConvNet has a poor performance in reducing the overall noise and
noise textures, which led to the loss of small image details. Thus, although the FBPConvNetmethod provides
good quantitative results, it cannot provide visual results as good as RGIRT. Compared to the other reference
methods, the superiority of RGIRT ismore obviouswhen it comes to fewer projection views. Therefore, we can
conclude that RGIRTprovides themost accurate reconstruction results for sparse-viewCT.

3.4. Convergence analysis
For the three iterativemethods (SART-TV, FLSQR, RGIRT), we analyzed their convergence behaviors from the
following three aspects: whether it converges, the speed of convergence, and image error. This convergence
analysis can be examined by plotting theMSE loss curves during iterations, whisch are shown infigure 12(a).
Thisfigure demonstrates the capability of the three iterativemethods in stabilizing the semi-convergent
behavior of the ill-posed problem in the 57-viewmouse case. First, compared to FLSQR andRGIRT, SART-TV
method has clear semi-convergent behavior, whereMSE shows a trend offirst decreasing and then slowly
increasing as the number of iterations increases. As for the speed of convergence, it can be observed that RGIRT
reaches the convergence point fastest with only 9 iterations. Furthermore, the image at the 9th iteration in
figure 12(a) show that our RGIRT is able to obtain themost optimal result compared to the othermethods. This
is consistent with the performance of theMSE loss curve (see the zoomed area infigure 9). Combinedwith the
fact that each iteration of RGIRT is to solve the dimensionality-reduced projected problem, the computing time
of RGIRT spent on one iteration is the smallest among the three iterativemethods. Thus, RGIRT is the fastest
method to converge. In terms of image error, RGIRTproduced the lowestMSE in all three iterativemethods
throughout the iterations. Therefore, among the three iterativemethods studied in this work, RGIRT can
provide themost accurate result with the fastest convergence speed.

Whendetermining themaximum iteration number for inner and outer loops, it is essential to consider their
respective roles—the inner iteration focuses on calculating solution space,while theouter iteration is dedicated to
correcting the results obtained from the inner loop. Anexploratory study concerning the selectionofmaximum
iteration number for inner and outer loops is presented infigure 12(b). From the curve, wenotice that the
combinationof fewer inner iterationswith larger outer iterations often serves as a suitable parameter selection,
which can improve the precisionwithhigh reconstruction speed. Theoretically speaking, FLSQR is a special case of
RGIRT,wherein the number of outer iterations is set to 1 andno residual information is used for guidance.

3.5. Computational cost
Computational cost is an important factor for any reconstruction algorithm. All the algorithms in this work
were implemented usingMATLAB except the FBPConvNet, whichwas implementedwith PYTHON.
Considering that the training process for aDLmethod is very time consuming, the pre-training timewas not
included in comparison. Although the algorithmswere realized using different programming languages, the
efficiency can be roughly compared on a same computer. TheMSE, SSIM and reconstruction time from the

Figure 11. Line intensity profiles for the yellow dashed line infigure 8(a) (57 projection views). The inset shows the line from the our
RGIRTmethod is closer to the reference linewhen compared to the othermethods.
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differentmethodswhen reconstructing the images for the 57-viewmouse case are shown infigure 12(c). All
metrics infigure 12(c)were normalized to the largest value from variousmethods. For example, the SSIMof
RGIRT is scaled to 1, and the SSIMs of othermethods are normalized to the SSIMof RGIRT. The average
reconstruction time for FBPConvNet, SART-TV, FLSQR, andRGIRT is 1.57, 84.66, 5.33, and 3.89 s per CT slice,
respectively. All the reconstructions were conducted on the same PCworkstation (Intel XeonGold 6248RCPU
@3.00GHz, 128GBRAMandNvidiaQuadroRTX4000GPU card). Our RGIRTmethod clearly owns a
considerable advantage in computational efficiency compared to the other iterativemethods.

Figure 12. (a)MSE loss curve of SART-TV (green), FLSQR (purple) andRGIRT (red)methods during iterations. The number of
iterations for RGIRT is the product of the inner and outer iterations. (b)MSE loss curve of RGIRTduring various number pairs of
inner-outer iterations (57 views ofmouse data). The number of inner iterations ranges from1 to 30, while the number of outer
iterations ranges from1 to 200. (c)Quantitative evaluation of different reconstructionmethods in the 57-viewmouse case. (d)
Variation of SSIMvalues with different projection views and reconstructionmethods. RGIRT and FLSQR achieve a similarly
smoother trend than FBPConvNet and SART-TVwhen the number of views changes.

Table 2.Quantitative results for sparse-viewmouse cardiacmicro-CT image. The best results aremarked in red, and the second-best results
aremarked in blue.
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4.Discussion and conclusion

AlthoughDL-based sparse-viewCT reconstructionmethods have gained increasing popularity in recent years,
the interpretability and generalizability of trained networks remain unresolved issues in clinical applications
(Antun et al 2020). A feasible strategy for resolving these issues is to combine deep learning networks with
model-based iterative reconstructionmethods (Zhang et al 2020, Xiang et al 2021, Su et al 2022). The focus of
this study is to develop a robust iterative reconstruction algorithm for sparse-viewCT,which is beneficial for the
future research into sparse-viewCT reconstructionmethods that leverage the synergistic powers of data-driven
andmodel-drivenmethods. The proposed RGIRT algorithm is based on an inner-outer iteration framework,
where FLSQR is implemented in the inner iteration to build up the solution space and a restarted iterative
scheme is applied in the outer iteration as a correction. In this study, we utilized data from100, 75, 57, and 39
projection views for reconstruction and conducted comparative experiments involving four other algorithms
(FBP, FBPConvNet, SART-TV and FLSQR) to explore the performance and limitations of RGIRT.Given
sufficient projection views (e.g. 100 views), all reconstruction algorithms, including FBP, can yield outstanding
reconstruction results. In contrast, in a situationwith considerable data scarcity (e.g. 39 views), noticeable
artifacts emerge, indicating that 39 views exceed the practical limitations of all considered algorithms.
Consequently, we selected reconstructions from57 views for further evaluation, inwhich the performance
differences (e.g. accuracy, stability) among various algorithms become particularly noticeable. It is important to
mention that all the presented reconstructionmethods including RGIRT cannot fully eliminate artifacts under
extremely sparse-view conditions, e.g. 57 and 39 views. One have to be careful in selecting an appropriate
number of projection angles according to specific scenarios and image quality requirements.

The key strengthofRGIRT lies in its exceptional robustness, primarilymanifesting in the following aspects.
Firstly, comparedwithothermethods, RGIRTcandelivermore accurate reconstruction results, especially under
sparse-viewconditions, since its inner-outer framework incorporates the residual-guided solution correctionduring
the iterativeprocess.Weobserve that the performanceof allmethodsdeteriorates as thenumber of viewsdecreases.
FBPConvNet tends toblur thedetails in low-contrast regions as shown in cardiac data of 57 and39views (figure 9)
andnumerical data of 75, 57, and39 views (figure 3). SART-TVdisplaces a large error in the edgesof high-contrast
regions,which is clearly visible in both cardia data andnumerical data for each case of viewnumbers (figures 4 and
10). Comparedwith these twomethods, ourmethodmaintains a relatively smaller error in strong edges anddepicts
the low-contrast regionsmore clearly evenunder someextremely sparse-viewconditions, e.g. 57 views, for both
in vivo andnumerical experiments. Furthermore, The variationof SSIMwithdecreasingnumbers of projectionviews
indicates thatRGIRT is distinguishedby the lowest gradient of change, providing greater stability and robustness in
more ill-posed caseswith fewer projectionviews compared to othermethods (figure 12(d)).

Secondly, the convergenceofRGIRT is validated throughboth theoretical and experimental results. RGIRT
employs a restarted iterative scheme in theouter loop to iterativelyminimize the residual and refine the solutionusing
the result obtained fromthe inner loop, thereby ensuring convergence.Classic iterativemethods such as SART-TV
have semi-convergent behaviour (figure 12(a)). Similarly, it has been shown that duringnetwork trainingpractical
DLnetworks fail to converge tooptimumsolutions (Kawaguchi andSun2021), due to the challenge of solvinghighly
nonlinear optimizationproblems.Webelieve the convergence guarantee of ourRGIRT frameworkwouldbe
valuable indesigninghybrid learningmethods that combineRGIRTanddeep learning techniques, particularly in
improving algorithmic stability and robustness, a claim that canbe validated throughproof-of-concept. Thiswould
certainly improve the explainability and generalizability of hybridDLmethods. Furthermore,RGIRT features a faster
convergence speed, primarily attributed to its adoptionof the efficientGolub–Kahanbidiagonalizationmethod, and
theuseof residual-guided correction expedites the approximationof the optimal solution.

Thirdly, RGIRT outperforms othermethods in terms ofMSE and SSIM across different noise levels
(figure 7). FBPConvNet occurs a sharp decrease in reconstruction accuracy when introducing Poisson noise
with ´1 104 intensity levels. For RGIRT, because of the correction in the outer loop, the inner solver doesn’t
require high degree of accuracy, which enhances the robustness of our algorithm against various levels of noise.
Moreover, we can also reduce the number of iteration for the inner solver to save runtimememory. In
figure 12(b),We investigated the performance of RGIRT across varying numbers of inner iterations and
observed that a high number of outer iterations combinedwith a relatively smaller number of inner iterations
can yield precise results.

Ourwork is subject to following limitations. Firstly, RGIRT is currently designed for a certain type of
regularization, i.e. 1l -norm regularization. In fact, other sparsity-encouraging prior knowledge can be adopted,
such as 0l -norm regularized dictionary learningmethod (Wu et al 2018). It is obvious thatmore complex and
advanced priorsmay improve the reconstructed image quality, although they aremore computationally
demanding. In practice, onewould balance reconstruction performance and computational cost. Secondly, the
inner-outer double iteration scheme of RGIRT could cause some computational complexity, especially when
the convergence speed is slow for some special CT geometries. In this studywemainly focused on the short-scan
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in fan-beam geometry, since for a cone-beamCT scanner the short-scan is advantageous in terms of decreased
mechanicalmanipulation, increased scanning flexibility, and shortened acquisition time.Given the prevalent
use ofDL-basedmethods nowadays, we expect that ourmethod can be hybridizedwith anDL-basedmethod.
Thismay involve a neural network to pinpoint an optimalmix of the regularization parameter and penalty
function, followed by employing our algorithm for iterative reconstruction. Such frameworkwillmaintain the
algorithmic convergence while reducing the uncertainties inherent inDL-methods.

In conclusion, we introduce a robust sparse-viewCT reconstruction algorithmnamedRGIRT, which
features an inner-outer dual iteration framework. The inner iteration efficiently yields an intermediate result,
while the outer iterationminimizes the residual and refines the solution. Both numerical phantoms and real
experimentalMicro-CT data demonstrate the robustness and accuracy of RGIRT.Meanwhile, theoretical
outcomes confirm the convergence of our approach.
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Appendix

Proof of convergence of the residual
Proof:
The residual at ( )+ 1l th outer iterations is
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where s denotes the solution of the inner problem at lth outer iterations formulated as (4) in themain text and
that 0 (zero vector) is in the solution space of s,
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Combining the relationship of (14) and (17), we can obtain
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