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Energy-Efficient Train Control with Onboard Energy
Storage Systems considering Stochastic Regenerative

Braking Energy
Chaoxian Wu, Shaofeng Lu*, Zhongbei Tian, Fei Xue and Lin Jiang

Abstract—With the rapid development of energy storage tech-
nology, onboard energy storage systems(OESS) have been applied
in modern railway systems to help reduce energy consumption.
In addition, regenerative braking energy utilization is becoming
increasingly important to avoid energy waste in the railway
systems, undermining the sustainability of urban railway trans-
portation. However, the intelligent energy management of the
trains equipped with OESSs considering regenerative braking
energy utilization is still rare in the field. This paper considers
the stochastic characteristics of the regenerative braking power
distributed in railway power networks. It concurrently optimizes
the train trajectory with OESS and regenerative braking energy
utilization. The expected regenerative braking power distribution
can be obtained based on the Monte-Carlo simulation of the train
timetable. Then, the integrated optimization using mixed integer
linear programming (MILP) can be conducted and combined with
the expected available regenerative braking energy. A generic
four-station railway system powered by one traction substation
is modeled and simulated for the study. The results show that by
applying the proposed method, 68.8% of the expected regenerative
braking energy in the environment will be further utilized. The
expected amount of energy from the traction substation is reduced
by 22.0% using the proposed train control method to recover more
regenerative braking energy from improved energy interactions
between trains and OESSs.

Index Terms—Train trajectory, on-board energy storage system
(OESS), regenerative braking energy, Monte-Carlo simulation,
intelligent energy management

NOMENCLATURE

Parameters
∆di The ith distance segments [m]
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ηo Integrated energy conversion efficiency considering
both motor efficiency and internal resistance of OESS

ηr Transmission efficiency of the regenerative braking en-
ergy in the network

ηs Integrated energy conversion efficiency considering
both transmission loss and motor efficiency

a Preset maximum acceleration rate [m/s2]
Fb Maximum braking force of train motor [kN]
Ft Maximum traction force of train motor [kN]
Pb Maximum braking power of train motor [kW]
Po Maximum discharging/charging power of OESS [kW]
Pt Maximum traction power of train motor [kW]
ρ Index of power supply sections of the studied railway

system
θi Gradient of ∆di
P̃reg,ρ The expected available time-variant regenerative brak-

ing power distribution in power supply section ρ [kW]
P̃ ′
reg,ρ The expected available time-variant regenerative brak-

ing power distribution in power supply section ρ in
piecewise form [kW]

a Preset maximum deceleration rate [m/s2]
A Davis coefficient [kN]
B Davis coefficient [kN · s/m]
bx coefficient of piecewise linear functions for expected

regenerative braking power [kW]
C Davis coefficient [kN · s2/m2]
cx coefficient of piecewise linear functions for expected

regenerative braking power [kW/s]
Ecap Capacity of OESS [kJ]
g Gravitational constant
i Index of the distance segment
K Number of piecewise section of the expected available

regenerative braking power
k Index of piecewise section of the expected regenerative

braking power in the network from the perspective of
the studied train

L A sufficient large number
Mt Mass of the train with OESS [t]
N The number of distance segments of the discretized

track
SOC1 Preset initial state of charge
T Preset journey time [s]
x Index of the departure time instant of the studied train
Variables
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αx 0-1 variables to determine the time instant of the train
in the network

αi,j SOS2 variables to linearize energy utilization from the
network in each ∆di

βi,j SOS2 variables to linearize energy utilization from the
network in each ∆di

λi,1 0-1 variables to determine the energy flow transmission
in each ∆di

λi,2 0-1 variables to determine the energy flow transmission
in each ∆di

λi,3 0-1 variables to determine the energy flow transmission
in each ∆di

µα
i,j 0-1 variables to linearize energy utilization from the

network in each ∆di
µβ
i,j 0-1 variables to linearize energy utilization from the

network in each ∆di
Ẽi,ch,reg Expected energy received by OESS from the network

in each ∆di [kJ]
Ẽi,reg Expected energy consumed by motor from the network

in each ∆di [kJ]
Ei,reg,o Energy transmitted to other trains in each ∆di [kJ]
Ei,res Energy dissipated by resistors in each ∆di [kJ]
Ei,s Energy from substation in each ∆di [kJ]
Ek

i,ch Energy charged to OESS in each ∆di [kJ]

Ek
i,dch Energy discharged from OESS in each ∆di [kJ]

t′i,x Auxiliary variables to determine the time instant of the
train in the network [s]

v2i Square of train speed when train reaches
∑i−1

1 ∆di
[m2/s2]

yi,1 Auxiliary variables to linearize energy utilization from
the network in each ∆di

yi,2 Auxiliary variables to linearize energy utilization from
the network in each ∆di

I. INTRODUCTION

With the fast development of railway transportation world-
wide, the energy consumption of the railway transportation
systems is found to increase significantly [1], [2]. To reduce
energy costs and meet the carbon-reduction targets of railway
transportation, energy-saving technologies in railway systems
continue to play a critical role. On the one hand, locating the
optimal train control strategy and train scheduling to save energy
is the most commonly used method since it does not need to
change the infrastructure [1]. On the other hand, as one type of
emerging technology, on-board energy storage systems (OESSs)
have been utilized in modern railway transportation systems to
absorb the regenerative braking energy and improve the energy
efficiency further [3]–[5].

A. Energy-efficient Train Control Considering OESS

Energy-efficient Train Control (EETC), a classic problem in
understanding how to operate the train from one station to
another with a minimum energy cost within a given time, has
been studied since the 1960s [6]. Many scholars have conducted
pioneering work in this area using different methods from op-
timal control theories including but not limited to Pontryagin’s

Maximum Principle (PMP) [7]–[11], Dynamic Programming
[12], [13], and different direct methods based on mathematical
programming algorithms [14]–[18].

With the fast development of energy storage technology, more
recent studies on EETC consider this emerging technology.
Miyatake et al. [19], [20] investigate the optimal train trajectory
with supercapacitor as OESS. In both papers, optimal train tra-
jectories between two stations are found with the circuit model
of supercapacitors by using sequential quadratic programming
(SQP) and DP. Huang et al. [21] explore the energy-saving
potential of supercapacitors by optimizing the train trajectory
from the viewpoint of energy flow modeling for a single line
by employing DP. Based on DP, for the battery-driven trains
with continuous tractive effort, the optimal solution for train
operation with Li-ion battery is also studied by Ghaviha et
al. [22]. A general integrated optimization model for the train
with a general model of OESS by applying mixed integer linear
programming (MILP) is proposed by Wu et al. [23] with high
energy-saving rate and computational efficiency. The work is
extended in [24], and the management of OESS at stations and
train trajectory are investigated, and it shows that appropriate
charging/discharging management in inter-station journeys and
dwellings is critical. Based on MILP, different dynamic power
limits of supercapacitors, flywheels, and Li-ion batteries are also
considered in [25] to optimize the train speed profiles with the
three above types of OESSs, where the energy-saving potential
comparisons among different types of energy storage as OESS
are also given. Wu et al. [26] propose a two-step method
based on convex programming (CP) to concurrently optimize
the train speed, timetable, and OESS management based on
the actual data from the Beijing metro system. An efficient
heuristic algorithm is designed in [27] based on an improved
artificial bee colony (ABC) algorithm to simultaneously obtain
the optimal timetable and the matching capacity allocation
scheme of OESSs.

On the one hand, combining EETC and OESSs has become
an interesting research topic given the vast potential both
technologies can offer in energy saving of railway transporta-
tion systems, and the analytical method [7]–[11], mathematical
programming method [12], [13], [23], [25], [26], and heuristic
method [27] are employed to find the optimal solution. On
the other hand, researchers keep exploring the possible energy-
saving benefits arising from cooperative operations between
connected trains. The energy flowing inside the power network
plays a crucial role in the net energy cost of the system
due to the network’s resistive costs and regenerative braking
recuperation. As discussed below, well-designed cooperative
train operations will realize further energy savings.

B. Cooperative Train Operations for Energy Saving

Making the most of the regenerative braking energy in railway
systems by coordinating the trains in the network to save
energy is widely studied by many researchers. In 2004, the train
running time modification method for reducing power peaks
and thus energy consumption was studied in [28]. Li et al.
investigate the integrated optimization of the train trajectory and
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timetable by maximizing the overlapping time for acceleration
and braking events to make the most of the regenerative energy
[29] by applying GA. In [30], train speed between switching
points and each station’s departure/arrival time is optimized
for saving more net energy consumption based on CP and
Kuhn–Tucker conditions. A mathematical energy consumption
model of bidirectional trains running in the same power section
based on train operation and electrical theories is proposed
in [31], where GA is applied to generate an optimal speed
profile for the second train to minimize energy consumption
at the power substations. Taking into account the single-side
feeding mode of the urban railways, Yang et al. employs
GA to optimize the timetable of the Beijing Yizhuang line to
fully utilize the regenerative braking energy [32], where the
overlapping time for the accelerating and braking trains for
single direction is maximized under the fixed train operation
mode at each inter-station section. The model is further extended
in [33], where the real-world train trajectories and both sides’
feeding modes are considered in the model to maximize the
energy interaction among trains for both directions. Taking
the coasting points of each inter-station operation and station
dwell times as variables, a multi-train traction power network
modeling method by using a statistical approach with Monte-
Carlo simulation is proposed to determine the system energy
flow with regenerating braking trains in railway system [34]. A
multi-train dynamical cooperation method was proposed without
changing the timetable in [35]. The study shows that the regen-
erative braking energy can be calculated and then distributed to
trains in the neighborhood by adjusting the train speed profiles.
The paper conducted a perturbance analysis of the necessary
condition under the precondition that the train runs in a long
speed-holding journey. Based on DP and Simulated Annealing
(SA) algorithm, Su et al. proposes a two-level model to jointly
optimize the train timetable and driving strategy, in which the
regenerative braking energy utilization significantly reduces the
net mechanical energy consumption [36]. In [37], a real-time
cooperative control method for train operation that can minimize
the net energy consumption is proposed based on multi-agent
reinforcement learning (MARL) algorithm, in which the driving
strategy of each train can be real-time obtained according to
the states of all trains. By taking the external power flow as
an essential factor for Energy Efficient Train Control (EETC),
the study [38] incorporates the spatial-temporal area into EETC.
The spatial-temporal area combines the gradient information in
space(distance) and the external power flow in time. Under the
constraints of spatial-temporal area, the multi-train coordination
problem was converted into the energy-efficient control of a
train traveling in the spatial-temporal area. The problem was
solved using PMP, and three arbitrary cases were shown to
verify the effectiveness of the proposed method.

Based on the above discussion, it is clear that the connected
trains will benefit from coordinated operations to realize the
maximum energy-saving potential. Using different methods,
successful case studies are reported in the literature, and some
recent studies began to investigate how the external power flows
will impose any impacts on EETC and energy saving [38]. And
yet, few studies are dedicated to the effect of OESS and the

M
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Braking Traction

XCatenary/Third rail

Track
Train 1 Train 2

Energy from/to OESS Energy from substation Energy to resistor

Energy from/to other trains

Fig. 1. The schematic of the energy flow for the metro train operation with
OESS in the existing studies.

dynamic spacial-temporal energy interaction inside the traction
power network, leaving a challenging but essential research gap
to fill. This paper aims to develop an agent-environment opti-
mization framework in which OESS and statistical regenerative
braking energy are modeled in detail to address this challenging
problem discussed below.

C. Problem Statement and Contributions

1) Problem statement: In the existing studies related to the
train EETC with OESS, the regenerative braking energy that
the OESSs cannot fully recover due to their limited power and
capacity are all assumed to be dissipated by the resistors as heat.
For instance, Figure 1 shows the energy flow between two trains
with OESSs, Train 1 in braking mode and Train 2 in traction
mode, in the practical railway system. The energy transmitted
from OESS to the motor (green solid arrow), energy from the
motor to OESS (green solid arrow), energy from the substation
(red solid arrow), energy dissipated by braking resistor (gray
solid arrow), and energy from Train 1 to Train 2 (green dashed
arrow) can be found. In the figure, the ”cross” shows that the
energy from Train 1 to Train 2 is not considered in the previous
relevant studies [23], [25]. This assumption compulsorily shuts
off the connection of each train. It ignores the possibility of
the energy exchange among trains with OESSs in the network,
which is impractical in real applications.

Whether the OESSs are fully charged or not, if the regen-
erative braking energy can be stored in OESS and utilized
by other trains concurrently during the operation, the energy
consumption of the entire system can be reduced even further.
It is noted that through proper coordination of train operations
in the line, the regenerative braking energy can be further
utilized to improve the energy efficiency of the railway system.
Nevertheless, due to the ignorance of the possible energy
exchange among trains with OESSs, their mutual coordination
is still not discussed in the field of study. In addition, in the
existing studies related to the coordination of the trains to
save energy, the components involved are typically only trains
and substations, and energy storage has not been considered
for further coordination, not to mention the complex spatial-
temporal energy dynamics in the traction power networks.

2) Contributions: To tackle the operation optimization prob-
lem of metro systems with OESS, this paper proposes an op-
timization framework to optimize the train trajectory to further
utilize the OESS as well as the regenerative braking energy in
the systems at the planning stage, and it is a significant extension
of [23] which only deals with the optimization on the train with
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Environment

Dynamic fluctuating timetable

Stochastic regenerative braking 
power
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Fig. 2. An agent-environment structure of the train and railway power network.
The train is the intelligent “agent” to perceive the environment using Monte-
Carlo simulation to obtain the information of stochastic regenerative braking
power and take optimal action to minimize the long-term expected energy cost
via actuation to offer an impact on the environment.

OESS not considering the energy interaction with other trains
in the network. In this paper, the stochastic characteristic of the
railway network is brought by the running time variation of the
train services in the network, which leads to the stochastic value
and distribution of the traction/regenerative braking power in
the environment. As shown in Figure 2, an agent-environment
framework illustrates the relationship between trains and the
environment. In this structure, the Monte-Carlo simulation as the
“perception” method is first applied to generate the expected re-
generative braking power that the OESSs cannot absorb from the
viewpoint of long-term operation. This expectation is regarded
as the environment to be perceived by every train running in the
network. Then, based on the simulation results, an integrated
mixed integer linear programming (MILP) model is proposed
to optimize the train trajectory with OESS to minimize the net
energy consumption by considering the stochastic regenerative
braking energy in the environment. It should be noted that this
metro-related method is not feasible and practical in rail systems
like high-speed rail, diesel trains, trams, etc., with different
system structures and application scopes.

In summary, the main contributions of this paper are listed
as follows:

• Different from the existing research considering only the
single train and OESS [19], [20], [23], [25], [39], this
paper proposes a novel optimization framework to obtain
the optimal train trajectory with OESS considering the
utilization of regenerative braking energy. The optimal
catenary/third rail power, OESS power, and utilized re-
generative braking power are concurrently optimized to
minimize the net energy consumption and maximize the
expected utilization of the available regenerative braking
energy. The case study also shows that the OESS can
improve the energy efficiency of the entire system when
the regenerative braking energy from other trains can be
stored and utilized afterward.

• Different from the existing methods with determinis-
tic information of environment and putting multiple/all
trains in one optimization process with significant problem

size, e.g., [33], [35]–[38], this paper adopts an agent-
environment framework to achieve the long-term optimal
solutions for each train service with consideration of the
spacial-temporal influence of other trains in the network.
The proposed model has a smaller problem size, enabling
an efficient solution for achieving optimal coordination
of multiple/all trains in the network to reduce energy
consumption.

The remainder of the paper is organized as follows: Section
II discusses the EETC considering OESSs and the modeling of
the expected regenerative braking power. Section III presents
a numerical experiment using a generic railway system to
show the effectiveness and energy-saving performance of the
proposed method. Section IV concludes the research findings.
In the Appendix section, we illustrated the detailed modeling
procedure for stochastic braking energy in the environment.

II. EETC MODEL CONSIDERING OESSS AND EXTERNAL
ENERGY INFORMATION IN ENVIRONMENT

This section gives the detailed procedure to optimize the train
trajectory with OESS considering external energy information
in environment. The external energy information in environment
is obtained by following the simulation process proposed in
Appendix with the first step shown in Appendix.A to simulate
the stochastic train running time, and the second step presented
in Appendix.B to extract the expected regenerative braking
power P̃reg,ρ in the environment. P̃reg,ρ is then input in the
proposed EETC model as the external energy information in
modelling and optimization process.

A. Kinematics of the Single-Train Movement

Similar to the model proposed in [23], the track length D
between two adjacent stations is divided into N segments, as the
∆di shown in Figure 3. As a result, there are N+1 speed points
vi in total. In the model, the train is assumed to do uniformly
accelerated/decelerated motion in each ∆di. As a result, the
acceleration/deceleration ai in ∆di can be expressed by (1).

ai = ±
v2i+1 − v2i
2∆di

(1)

Here, the positive value of ai implies the acceleration, and the
negative value implies a deceleration operation.

To ensure the riding comfort of the passengers and the op-
erational limit of the train vehicle, the acceleration/deceleration
should be limited by the maximum allowed value a and a, as
shown in (2).

−a ≤ ai ≤ a (2)

The relevant constraints need to be added to guarantee the
proposed model’s feasibility. First, the initial speed v1 and
terminal speed vN+1 need to be preset as in (3).

v21 = 0, v2N+1 = 0 (3)

The relationships among the speed-related variables, vi, v2i ,
v2i,ave and 1

vi,ave
, are not linear. These relationships can be

linearized using the proposed method discussed in [23].
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∆𝑑1 ∆𝑑2 ∆𝑑3 ∆𝑑4 ∆𝑑5 ∆𝑑6 ∆𝑑7 ∆𝑑8
Distance (m)

𝑣2
𝑣3

𝑣7

𝑣8

𝑣1

𝑣4 𝑣5 𝑣6

𝑣9

Fig. 3. An example of the discretization of the track length in the proposed
method. The number of ∆di, denoted by N , is 8, and nine determinant speed
points are denoted by vi, i=1,2,...,9.

For each ∆di, the average speed vi,ave can be calculated
using (4).

vi,ave =
vi + vi+1

2
(4)

Thus, the elapsed time ∆ti for each ∆di is shown in (5).

∆ti =
∆di
vi,ave

(5)

To guarantee the punctuality and operational requirement, the
constraint of total journey time T should be added, as shown
in (6).

N∑
i=1

∆ti = T (6)

B. Consideration of the Expected Regenerative Braking Power

As shown in Figure 4-(a), the black solid line is the expected
available time-variant regenerative braking power distribution
in power supply section ρ, and it can be expressed with the
function shown in (7).

P̃reg,ρ = f(t) (7)

where t is the time instant.
It needs to be clarified that P̃reg,ρ is formed by the trains

following simulated timetables (referred to as the ”sampled
trains” below). To integrate P̃reg,ρ with the proposed single-
train model above, the available regenerative braking energy that
can be utilized by single-train operation needs to be extracted.
The gray square in Figure 4-(a) represents the running time of a
specific inter-station train service to be optimized (Referred to
as the ”studied train” below). In this running time horizon, the
expected generated and consumed regenerative braking energy
by sample trains serving the same inter-station section for
same service cycle as the studied train need to be deducted
from/compensated back to the P̃reg,ρ as these sampled trains are
not supposed to directly contribute to the environment from the
viewpoint of the studied train and their impacts need to be off-
set by the deduction or compensation procedure as demonstrated
by Figure 4-(b).

As shown in Figure 4-(b), P̃reg,ρ excludes the expected used
regenerative braking power by the sampled trains; thus, this part
needs to be compensated to the environment since the studied
train can still use it, shown as the orange area in Figure 4-(b). In
addition, P̃reg,ρ also contains the expected regenerative braking

power from the sampled trains. This part should be eliminated
since the studied train cannot use it, as the gray area shown in
Figure 4-(b). After the recalculation procedure of the expected
regenerative braking power distribution in the environment from
the viewpoint of the studied train, P̃ ′

reg,ρ can be obtained. Then
the piecewise linear approximation is introduced, shown as the
red dashed lines in the figure, to approximate P̃ ′

reg,ρ. Assuming
that there are K piecewise linear sections for the approximation,
it can be represented by using (8).

P̃ ′
reg,ρ ≈



f ′
1(t) = c1t+ b1, for t0 ≤ t ≤ t1
f ′
2(t) = c2t+ b2, for t1 ≤ t ≤ t2

...
f ′
x(t) = cxt+ bx, for tx−1 ≤ t ≤ tx

...
f ′
K(t) = cKt+ bK , for tK−1 ≤ t ≤ tK

(8)

where t0, t1, t2, ... , tx, ... , tK are the time instant for
the piecewise linear sections, f ′

1, f ′
2, ... , f ′

x, ... , f ′
K are the

approximated linear functions, c1, c2, ... cx, ... , cK and b1, b2,
... bx, ... , bK are the coefficient for the piecewise functions.

As the approximation of the expected regenerative braking
power is obtained, it can be utilized by adjusting the train
operation. The expected regenerative braking power the train
can utilize in each ∆di depends on the corresponding time
instant. Due to the discretization of the proposed model, the
time instant, denoted as t′i, of the train from departure to any
∆di can be calculated using (9).

t′i = tx +

i−1∑
1

∆ti +
1

2
∆ti (9)

Here, the 1
2∆ti is the midpoint of the elapsed time of each ∆di

that is used to approximate the time instant together with the
accumulated value of the previous journey. It can be observed
that this approximation is more accurate with the shorter ∆di.

C. Energy Flow during Movement

The kinetic energy change of the train Ei,v in each ∆di can
be expressed in (10).

Ei,v =
1

2
Mt(v

2
i+1 − v2i ) (10)

where Mt is the total mass of the train with OESS.
When the train is running on the track, it is imposed with

drag force Fi,drag in each ∆di estimated by the Davis Equation
based on Davis coefficient A, B and C shown in (11).

Fi,drag = A+Bvi,ave + Cv2i,ave (11)

As a result, the work of the drag force Ei,f can be obtained in
each ∆di as shown in (12).

Ei,f = Fi,drag∆di (12)

In addition, since there are varied gradients along the track,
the work of the gravity Ei,p, which is also the potential change
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Running time of the train operation to be 
optimized (studied train)
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(b)

𝑓𝑓𝑥𝑥+1′
𝑓𝑓𝑥𝑥+2′ 𝑓𝑓𝑥𝑥+3′
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Recalculated expected available regenerative braking power from viewpoint of 
studied train �𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟,𝜌𝜌

′

Piecewise linear approximation

Elimination of the expected regenerative braking energy from the sampled trains

Compensation of the expected regenerative braking energy used by the sample 
trains

Fig. 4. (a) The obtained expected time-variant available regenerative braking
power in the environment formed by the sampled trains; (b) The piecewise linear
approximation of the recalculated expected available regenerative braking power
from the viewpoint of the studied train by compensating and eliminating the
expected regenerative braking power affected by the sampled trains.

of the train caused by gravity, is applied to the train. Thus, each
∆di can be obtained as shown in (13).

Ei,p = Mtg∆diθi (13)

where a positive value of θi represents the down-slope, and a
negative one represents the up-slope.

During the journey, the train can consume the energy from
the traction substation Ei,s, the energy discharged by the OESS
Ei,dch and the expected regenerative braking energy from other
trains Ẽi,reg when the train is motoring. Here, the work of the
train motor, denoted as E+

i,m, can be expressed in (14).

E+
i,m = Ei,sηs + Ei,dchηo + Ẽi,regηr (14)

where ηs, ηo, and ηr are the energy supply sources’ energy
conversion efficiency, respectively.

When the train is braking, the motor is in regenerative braking
mode, and part of the energy can be delivered to the OESS,
denoted as Ei,ch here. Part of the energy will be transmitted to
other trains through catenary/third rail, denoted as Ei,reg,o, and
the rest of the energy will be dissipated by resistors, denoted
as Ei,res. Thus, during the braking mode, the work of the train
motor, denoted as E−

i,m, is represented in (15).

E−
i,m = −Ei,ch

ηo
− Ei,reg,o − Ei,res (15)

Here the state of charge (SOC) is used to represent the energy
status of the OESS during the operation. There are N+1 SOCi

during the journey with N ∆di. SOC for OESS when the train
passes ∆di, denoted as SOCi+1, can be expressed in (17).

SOCi+1 = SOC1 +
−
∑i

1 Ei,dch +
∑i

1 Ei,ch +
∑i

1 Ẽi,ch,reg

Ecap
(16)

where SOC1 is the initial stored energy in OESS, Ẽi,ch,reg is
the expected regenerative braking energy charged to the OESS
from other trains, and Ecap is the capacity of the OESS.

The SOC of OESS needs to be higher than 0 and lower than
1; thus, constraint (17) needs to be added to the model.

0 ≤ SOCi ≤ 1 (17)

According to the law of conservation of the energy, the
conversion of the energy can be expressed in (18).

E+
i,m + E−

i,m − Ei,v − Ei,f − Ei,p = 0 (18)

As the motor has its traction/braking characteristics, in each
∆di, the maximum force the motor can conduct should follow
the limitation of its maximum traction force Ft and maximum
braking force Fb. Also, it needs to be limited by the maximum
traction power Pt and maximum braking power Pb. Thus, these
can be expressed as shown in (19) and (20).

0 ≤ E+
i,m ≤ Ft∆di, 0 ≤ E−

i,m ≤ Fb∆di (19)

0 ≤ E+
i,m ≤ Pt∆ti, 0 ≤ E−

i,m ≤ Pb∆ti (20)

For OESS, the discharged and charged energy cannot exceed
the maximum value determined by the maximum charge and
discharge power Po, as expressed in (21).

0 ≤ Ei,dch ≤ Po∆ti, 0 ≤ Ei,ch + Ẽi,ch,reg ≤ Po∆ti (21)

Here P̃ ′
i,reg,ρ is used to represent the maximum expected

regenerative braking power that can be used by the train in
each ∆di in specific power supply section ρ. In this case, the
expected regenerative braking energy utilized by the studied
train operation in each ∆di depends on the product of P̃ ′

i,reg,ρ

and ∆ti which is expressed by (22).

0 ≤ Ẽi,reg + Ẽi,ch,reg ≤ P̃ ′
i,reg,ρ∆ti (22)

D. Linearization of the Model with Integer Variables

The above section proposes a model for EETC with OESS,
considering the expected regenerative braking energy utilization.
Nevertheless, there are still some equations that need to be
linearized by using the integer variables to make the logical
section during the operation.

1) Logic of the energy transmission: During the journey, the
train cannot conduct traction and braking at the same time; the
traction energy in (14) and regenerative energy in (15) of the
train cannot exist simultaneously in one ∆di. Similarly, OESS
cannot discharge or be charged simultaneously. Still, the OESS
can receive the regenerative braking energy in the environment
whenever the train is running on the track, just as shown in
Figure 19. In this case, the 0-1 variables λi,1, λi,2, λi,3 and a
large number L need to be imposed into the model to determine
the train and OESS operation mode in each ∆di, as shown in
(23) - (27).

0 ≤ Ei,s ≤ λi,1L, 0 ≤ Ẽi,reg ≤ λi,1L (23)

0 ≤ Ei,ch ≤ (1− λi,1)L (24)

0 ≤ Ẽi,ch,reg ≤ (1− λi,2)L (25)
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TABLE I
THE VALUE SELECTION OF THE 0-1 VARIABLES λi,1 , λi,2 AND λi,3 AND

THE RESULTED IN TRAIN OPERATION MODE WITH CORRESPONDING
ENERGY FLOW ILLUSTRATION

Value Operation Energy flow
selection mode illustration

λi,1=1,
λi,2=1,
λi,3=1.

Motoring
O

M

Catenary/Third rail

Track

O

M

O

M

O

M

O

M

Motoring

Braking

Coasting

O OESD Motor
Regenerative braking energy Energy from traction substation/OESD
Energy dissipated by resistor

M

Catenary/Third rail

Track

Catenary/Third rail

Track

,
,

,

,,

, ,

, ,

, 	, 	

,

, ,

, ,

Catenary/Third rail

Track

Catenary/Third rail

Track

~

λi,1=1,
λi,2=0,
λi,3=0.

Motoring
O

M

Catenary/Third rail

Track

O

M

O

M

O

M

O

M

Motoring

Braking

Coasting

O OESD Motor
Regenerative braking energy Energy from traction substation/OESD
Energy dissipated by resistor

M

Catenary/Third rail

Track

Catenary/Third rail

Track

, ,

,

,
,

, ,

, ,

, 	, 	

,

, ,

, ,

Catenary/Third rail

Track

Catenary/Third rail

Track

~
~

λi,1=0,
λi,2=1,
λi,3=0.

Braking

O

M

Catenary/Third rail

Track

O

M

O

M

O

M

O

M

Motoring

Braking

Coasting

O OESD Motor
Regenerative braking energy Energy from traction substation/OESD
Energy dissipated by resistor

M

Catenary/Third rail

Track

Catenary/Third rail

Track

, ,

,

,,

, ,

, ,

, 	, 	

,

, ,

, ,

Catenary/Third rail

Track

Catenary/Third rail

Track

λi,1=0,
λi,2=0,
λi,3=0.

Braking

O

M

Catenary/Third rail

Track

O

M

O

M

O

M

O

M

Motoring

Braking

Coasting

O OESD Motor
Regenerative braking energy Energy from traction substation/OESD
Energy dissipated by resistor

M

Catenary/Third rail

Track

Catenary/Third rail

Track

, ,

,

,,

, ,

, ,

, 	, 	

,

, ,

, ,

Catenary/Third rail

Track

Catenary/Third rail

Track

~

λi,1=1, λi,1=0,
λi,2=0, or λi,2=0,
λi,3=0. λi,3=0.

Coasting

O

M

Catenary/Third rail

Track

O

M

O

M

O

M

O

M

Motoring

Braking

Coasting

O OESD Motor
Regenerative braking energy Energy from traction substation/OESD
Energy dissipated by resistor

M

Catenary/Third rail

Track

Catenary/Third rail

Track

, ,

,

,,

, ,

, ,

, 	, 	

,

, ,

, ,

Catenary/Third rail

Track

Catenary/Third rail

Track

~

∗ In all of the figures in the table, the green boxes with ”O” inside
represent OESSs, and the blue boxes with ”M” inside represent motors.
The red arrow represents the traction energy from the substation or
OESS, the green arrow represents the regenerative braking energy, and
the gray arrow represents the energy dissipated by resistors. The black
arrow is the running direction.

0 ≤ Ei,dch ≤ λi,3L (26)

λi,3 ≤ λi,1, λi,3 ≤ λi,2, λi,3 ≥ λi,1 + λi,2 − 1 (27)

To make it more clear, the value selection of these three 0-1
variables and the resulting train operation mode with different
power flows have been shown in Table I. It can be seen that
when λi,1=1, the traction substation, OESS, and regenerative
braking energy in the environment can be transmitted to the
train jointly. At the same time, if λi,2=1, then λi,3=1, the
train is motoring, and the discharge process of the OESS can
occur; if λi,2=0, then λi,3 =0, discharge process of OESS
does not happen. It represents two possible scenarios: (1) the
train is motoring, and the regenerative braking energy in the
environment can be charged into the OESS during the traction;
(2) the train is coasting, and the regenerative braking energy
in the environment can be charged into the OESS when energy
from substation and environment to the motor are both assigned
to be 0. Contrarily, when λi,1=0, then λi,3 is always 0, ensuring
that the discharging process would not happen simultaneously.
The train motor is enabled to regenerate the energy, and the
OESS can receive the energy from the motor and environment.
At this time, if λi,2=1, the train is braking, and the OESS can
only be charged by the regenerative braking energy from the
train’s motor; if λi,2=0, it represents two possible scenarios:

(1) the train is braking, and the OESS can be charged by
the regenerative braking energy from the train’s own motor
and the environment together; (2) the train is coasting and the
regenerative braking energy in the environment can be charged
into the OESS when energy from train’s own motor is assigned
to be 0.

It should be noted that the option that the energy charged to
the OESS directly from the substation is naturally avoided since
it is an inefficient use of the electricity due to the transmission
loss of the grid, the conversion loss of the motor, and the
discharging/charging loss of the OESS in the transmission
process.

2) Expected regenerative braking power utilization: In (8)
and (9), the time-variant expected available regenerative braking
power in the environment is approximated by using piecewise
linearization, and the time instant for the train’s moving by
using the middle point of the ∆ti is also shown. To achieve the
utilization of the power in the network, the relationship between
the time-variant expected available regenerative braking power
and time instant need to be established.

To build the relationship between P̃ ′
i,reg,ρ and time instant t′i

in the model, the integer logical variables αx, and the auxiliary
variables t′i,x are introduced to reformulate the original functions
as shown in (28) - (31).

P̃ ′
i,reg,ρ =

x+k∑
x

axt
′
i,x + bxαx (28)

αxtx ≤ t′i,x ≤ αx+1tx+1, , for x = x, x+1, ..., x+k (29)

x+k∑
x

αx = 1 (30)

t′i =

x+k∑
x

t′i,x, for i = 1, 2, ..., N (31)

In each ∆di, the corresponding t′i will be automatically allo-
cated to a specific piecewise linear section.

In (22), the product of the power and time can be linearized
by conducting the method in [40]. The auxiliary variables yi,1
and yi,2 are introduced, as shown in (32).

yi,1 =
1

2
(P̃ ′

i,reg,ρ +∆ti), yi,2 =
1

2
(P̃ ′

i,reg,ρ −∆ti) (32)

In this case, it has the relationships represented by (33).

P̃ ′
i,reg,ρ∆ti = y2i,1 − y2i,2 (33)

Here one preset series of piecewise points Yj is used to
represent yi,1 and yi,2. In this case, (33) can be reformulated
into (34).

P̃ ′
i,reg,ρ∆ti =

J∑
j=1

Y 2
j αi,j −

J∑
j=1

Y 2
j βi,j (34)

where αi,j and βi,j are two sets of SOS2 variables for each
type of OESS in ∆di, and J is the number of the corresponding
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1

2

3
4

5

6

Train 1 Train 2 Train 3 Train 4 Train 5

Fig. 5. The first-hour scheduled timetable of the metro system used in the
numerical experiment. There are 4 stations with 6 inter-station operations (red
solid lines).

piecewise points. As a result, they also need to follow the (35)
and (36).

J∑
j=1

αi,j = 1,

J∑
j=1

βi,j = 1 (35)

0 ≤ αi,j ≤ 1, 0 ≤ βi,j ≤ 1 (36)

To ensure that only the adjacent αi,j and βi,j can be nonzero and
their sum is 1, 0-1 variables µα

i,j and µβ
i,j need to be imposed,

as shown in (37) - (38).

αi,j + αi,j+1 − µα
i,j ≥ 0, βi,j + βi,j+1 − µβ

i,j ≥ 0 (37)

J−1∑
j=1

µα
i,j = 1,

J−1∑
j=1

µβ
i,j = 1 (38)

E. Objective of the Proposed Model

The optimization objective of the proposed model is to
minimize the net energy consumption of the train operation from
the energy sources, substation, OESS, and environment. The net
energy consumption can be expressed by the difference between
the traction energy consumption and the recovered energy by
OESS, which can be formulated as (39).

min

N∑
i=1

(Ei,s + Ei,dch + Ẽi,reg︸ ︷︷ ︸
Energy consumed for traction

−Ei,ch − Ẽi,ch,reg︸ ︷︷ ︸
Energy recovered by OESS

) (39)

By conducting the optimization, it can be seen that the
traction energy consumption, Ei,s + Ei,dch + Ẽi,reg , can be
minimized with the support of the energy from OESS and
expected utilization of regenerative braking energy, and the
expected recovered energy Ei,ch and Ẽi,ch,reg by OESS can
be maximized.

III. NUMERICAL EXPERIMENTS

The above sections propose detailed simulation methods for
obtaining the expected available regenerative braking power
within the railway traction power network. A MILP model for
train operation optimization is then developed. In this section,
the effectiveness of the proposed optimization framework is
verified with numerical experiments.

TABLE II
THE PARAMETERS FOR THE STUDIED ROUTE

Inter-station Track Scheduled WS Q (µs, σ2
s)

section length (m) running time (s)
1 1500 105 270 365 (105, 4.42)
2 1600 110 270 365 (110, 4.42)
3 2000 120 270 365 (120, 4.42)
4 2000 120 270 365 (120, 4.42)
5 1600 110 270 365 (110, 4.42)
6 1500 105 270 365 (105, 4.42)

A. Parameters Set-Up

A typical railway traction power network with 4 stations
supplied by one traction substation is used in the numerical
experiment. Since there are 4 stations in the studied railway
system, the number of inter-station train operations is 6, includ-
ing the up-directional and down-directional ones, as shown in
Figure 5 with its first hour’s timetable. The scheduled headway
is set to be 240 s for each run; thus, there are 15 runs for each
inter-station per hour since its first train service. The track length
and scheduled running time for each inter-station operation are
listed in Table II. Assuming 18 hours of operation for a day
q, the total number of the operations WS is 15 × 18 = 270.
The running time variation for each inter-station operation is
assumed to obey the normal distribution Nor(µs, σ

2
s) [41], [42],

and the mean value µs and the variance σ2
s of each inter-station

operation are also preset in Table II. µs is assumed to be the
scheduled running time of each inter-station operation, and σ2

s

is assumed to make most of the running time variation range
from -10 s to 10 s.

The train and OESS parameters used in simulation and
optimization are tabulated in Table III. The size of the OESS
follows the similar value used in [20], [21], [43]. Noted that
the Li-ion battery, flywheel, or any other type of energy storage
system can also be used in the proposed method to conduct
the optimization, and in this case study, the supercapacitor
is used solely due to its more common use as OESS in
existing railway lines. Additionally, though the proposed model
is flexible enough to take into consideration the varied slope and
speed limit of the journey, the track of this numerical experiment
is set to be flat. There is no speed limit for all of the inter-station
sections in order to avoid the interference of other factors and
highlight the direct influence of the energy interaction among
train, OESS and regenerative braking energy in the environment
on train trajectory changes in the later sections.

It should be noted that the energy transmission efficiency
from the traction substation to the motor is set as 90% due to a
10% average energy loss, and the energy conversion efficiency
of an electric motor is set as 90% for most typical engineering
applications [1]. Therefore, the approximated value for ηs is
81% = 90% × 90% in this study. On the other hand, energy
can be directly transmitted between the motor and OESS with
a negligible transmission loss [44]. Thus, the value for ηo is
set as 90% considering only the discharge/charge efficiency
resulted from the OESS’s internal resistance. From [45] and
[46], the efficiency for the utilization of the regenerative braking
energy from other trains ranges from 0.65 for inter-city railway
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TABLE III
THE PARAMETERS FOR THE ROLLING STOCK AND THE OESS USED IN THE

NUMERICAL EXPERIMENT

Parameter Value/Type
Train mass (t) 176

Max traction/braking force (kN) 310
Max traction/braking power (kW) 4000

A (kN) 2.0895
B (kN ·s/m) 0.0098

C (kN ·s2/m2) 0.0065
Max acceleration/deceleration (m/s2) 1.2

ηs 0.81
ηo 0.90
ηr 0.85

OESS type Maxwell® 125V HEAVY
TRANSPORTATION MODULE

OESS max power (kW) 1034
OESS mass (t) 0.61

OESS capacity (kWh) 1.4

S1 S2 S3 S4

(a) (b) (c)

(d) (e) (f)

Fig. 6. The sampled running times for inter-station sections 1-6 of the first hour
of the studied metro system, where (a) is the sampling histogram for inter-station
section 1, (b) for inter-station section 2, (c) for inter-station section 3, (d) for
inter-station section 6, (e) for inter-station section 5 and (f) for inter-station
section 4.
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Fig. 7. The heat map of the expected net power for the first hour in the
studied metro system after the Monte-Carlo simulation. The sparks in the figure,
including positive and negative ones, represent the expected net power that
accumulated due to departure or arrival following the stochastic timetable.

systems and 0.95 for urban rail transit systems, here ηr in this
paper is set as 85%. In the case study, the power supply system
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Fig. 8. The expected available regenerative braking power distribution in the
first hour of the studied metro system based on the results of the Monte-Carlo
simulation. A similar pattern can be found when the train services become
stable.

for the studied railway line follows the structure in Figure 2,
where the regenerative braking energy will be transmitted via
the catenary/third rail and common buses in traction substations,
and the corresponding energy transmission efficiency among
trains are set to be an average value ηr. However, it should
be noted that the proposed method can also be utilized in
other types of energy transmission systems by modifying this
efficiency value. For instance, if the studied system is the tie
feeding system with interconnections between two tracks, the
corresponding ηr needs to be changed accordingly (which might
be higher than the efficiency of using common buses in traction
substation since the transmission distance is shorter). If this
value is misused, the expected available regenerative braking
energy will see a large error, leading to unpractical results. All
in all, these three efficiency values can be modified according
to the field data collected from different types of power supply
systems, rolling stocks, and different types of OESS.

Note that this experiment is conducted by using Matlab
R2020a® and Gurobi® 9.0.1 solver on a PC with Intel Core®

i5-6500 processor (3.20 GHz) and 8.00 GB RAM.

B. Monte-Carlo Simulation of the Regenerative Braking Power

As shown in Figure 6, the running time distribution for all
the inter-station sections is generated based on the information
listed in Table II and Table III. Since Q is set to be 365
to represent the 365 days in one year, the total running time
generated for each inter-station operation is 15 × 365 = 5475.
Due to the difference in the service cycle for each train, some of
the inter-station sections see less than 15 operations in the first
hour since the first train departs from the initial station, e.g.,
inter-station section 3 with 14 operations, inter-station section
4 with 13 operations, inter-station section 5 with 12 operations
and inter-station section 6 with 12 operations, which is usual
in daily operations and does not influence the results of the
proposed method.

Due to the fluctuation of the running time of each inter-
station operation, the practical timetable for any day in a year
is different. This leads to the number of scenarios being 365
and the same probability for each scenario being 1/365=0.0027.
Based on the simulation results, the heat map for the expected
net power of the studied railway network about the distance and
time is shown in Figure 7, and the whole simulation process
consumes 315 s in total. It can be seen from the figure that
the value of the net power is different at different positions
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Fig. 9. The optimal train trajectory, catenary/third rail power, OESS power (positive for both discharging and charging, SOC dropping for discharging, and SOC
rising for charging) and expected utilized regenerative braking power from other trains for the 1st service cycle of Train 1.
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Fig. 10. The optimal train trajectory, catenary/third rail power, OESS power (positive for both discharging and charging, SOC dropping for discharging, and SOC
rising for charging) and expected utilized regenerative braking power from other trains for the 2nd service cycle of Train 1.

and time instants. The heat map looks like a timetable since
only when the train is braking can the regenerative braking
power be generated, and this happens typically near the arrival
station. The more trains braking simultaneously, the higher the
regenerative braking power in this power supply section will be
at that moment. Figure 8 shows the time-variant expected avail-
able regenerative braking power in the environment. Though
the practical timetable is stochastic and fluctuates, it can be
seen that the expected available regenerative braking power in
the first hour’s operation follows similar patterns with respect
to the time when the train service cycles are stable.

C. Train Trajectory Optimization

After obtaining the expected available regenerative braking
power in the environment, each of the specific inter-station
operations can be optimized using the proposed MILP model.
The service cycles for Train 1 (see Figure 5) in the first hour
from the initial station to the terminal station are selected to
show the optimization results. The running time for each inter-
station is fixed to be scheduled running time, as shown in Table
II. The time complexity for obtaining the globally optimal result
of each service cycle depends on the sum of the computational
time of each inter-station section. For the 1st service cycle, its
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Fig. 11. The optimal train trajectory, catenary/third rail power, OESS power
(positive for both discharging and charging, SOC dropping for discharging, and
SOC rising for charging), and expected utilized regenerative braking power from
other trains for the inter-station operation 3 of the 1st service cycle of Train 1.
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Fig. 12. The optimal train trajectory, catenary/third rail power, OESS power
(positive for both discharging and charging, SOC dropping for discharging, and
SOC rising for charging), and expected utilized regenerative braking power from
other trains for the inter-station operation 2 of the 2nd service cycle of Train
1.

time complexity is 514.90 s in total (0.52 s, 0.43 s, 100.32 s,
122.54 s, 90.65 s, and 200.44 s for inter-station section 1, 2, 3, 4,
5 and 6 respectively). For the 2nd service cycle, it is 736.42 s in
total (30.75 s, 140.46 s, 133.21 s, 130.89 s, 80.90 s, and 220.21
s for inter-station sections 1, 2, 3, 4, 5 and 6 respectively). It can
be noted that the first two inter-sections for 1st service cycle
see the shortest computational time since, at the beginning of
the daily operation, there is no available regenerative braking
power in the environment that can be utilized; thus no integer
variables introduced to build the piecewise sections during the
optimization process.

The results are illustrated in Figure 9 and Figure 10, which
show the approximation of the expected available regenerative
braking power in the environment, optimal train trajectories,

Running direction

Running direction

FB

PB

FB

PB

FB

PB

FB

PB

FB

PB

FB

PB

Fig. 13. The comparison between the optimal trajectory resulting from the
proposed method (Optimal case) and the base trajectory from the case without
the utilization of regenerative braking energy of other trains (Base case).

power profiles, and OESS discharge/charge profiles for the 1st

and 2nd service cycles of Train 1. The figures show that the
energy from the traction substation, OESS, and regenerative
braking energy from other trains are all utilized during one
service cycle, shown as the red, blue, and green dashed lines.
The train trajectories for all of the inter-station operations are
obtained, and the OESS discharge/charge power profiles also
change frequently and notably, which shows the OESS releases
or receives energy from the studied train and the other trains.
Since the track is flat and there is no speed limit, the optimal
train trajectory between two adjacent stations in both directions
(inter-station sections 1 and 6, 2 and 5, and 3 and 4) should
be the same. However, due to the influence of the regenerative
braking energy in the environment (power network), the train
trajectory for each inter-station section changes accordingly
to adjust the train operation status, which results in different
adaptive train trajectories. For instance, the train trajectory for
the inter-station section 1 is less fluctuated than that for the inter-
station section 6 since the regenerative braking energy from
other trains in the environment is less. Similar observations
can also be found when comparing the train trajectories for
inter-station section 2 and 5 and 3 and 4. On the other hand,
when comparing the running in the same inter-station section at
different times, the influence of the regenerative braking power
in the environment on the optimal train operation, referring to
the optimal trajectories for inter-station sections 1, 2, and 4 in
two service cycles in both Figure 9 and Figure 10.

To demonstrate the energy interaction among the trains,
OESS, and the available regenerative braking energy in the
environment, the optimal solutions for inter-station operation
3 in Figure 9 and the inter-station operation 2 in Figure 10 are
zoomed in here as examples for a more detailed discussion.

Figure 11 presents the optimal solution of the inter-station
section 3 of the 1st service cycle of Train 1, and it can be seen
that the train firstly uses the energy from the traction substation
and the energy stored in the OESS to support its motoring at the
beginning of the journey. After the motoring, the train begins to
coast, and during the coasting, the regenerative braking energy
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from other trains is charged into the OESS, which raises its SOC
to nearly 100%. Then, the train begins to re-motor and only uses
the energy from OESS. The OESS’s process of receiving the
regenerative braking energy from the environment and releasing
the energy occurs back and forth during the journey, showing
the effectiveness of the proposed method on utilization of the
available regenerative braking energy by adjusting both the train
and OESS operations accordingly. It can also be observed that
the OESS power equals the expected regenerative braking power
when charging, and it rises first as the expected regenerative
braking power increases.

Figure 12 presents the optimal solution of the inter-station
section 2 of the 2nd service cycle of Train 1. Due to the
occurrence of the regenerative braking energy from other trains
at the beginning of the journey, the studied train utilizes the
energy from the traction substation, OESS, and other trains
together in its traction process. During the motoring mode of
the train (from 1335 s to 1366 s), the available regenerative
braking energy in the environment can be used to charge
the OESS and replace part of the energy from the traction
substation during motoring. It is observed that during the later
period of the motoring, regenerative braking energy becomes
the primary power source of the train. The expected utilized
regenerative braking power changes with the power variation
trend in the power network environment. This indicates the
proposed method can use the energy from other trains as much
as possible.

Figure 13 compares the difference between the optimal train
trajectory with OESS, taking into account the expected avail-
able regenerative braking energy in the environment (Optimal
case) and optimal train trajectory with OESS but without
regenerative braking energy in the environment (Base case).
It can be found the train trajectories for both situations are
significantly different. For the base case, fewer fluctuation of
the trajectory is found, and more coasting is preferred to save
energy consumption. For the optimal case obtained in this paper,
slight acceleration for lower speed at the beginning and re-
motoring process in the middle of the journey happen frequently.
The motoring phase is observed to be postponed to the later
operation stages to adapt to the expected time of regenerative
braking energy from other trains and utilize more of it. It also
should be noted that the optimal results impose an insignificant
impact on the obtained expected regenerative braking energy
as the same full braking operation (”FB” in Figure 13) occurs
only at the end of each inter-station section, which keeps the
same trend with the base case before some slightly different
or even similar partial braking operation (”PB” in Figure 13)
compared with the base case. This indicates that the amount of
regenerative braking energy newly added to the environment
is insignificant for train-optimized operations based on the
proposed method.

D. Energy-Saving Performance

Following the optimization method mentioned in the above
sections, the optimal train control strategies for one hour can be
obtained, the performance of which is demonstrated by using
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Fig. 14. The expected utilization of the available regenerative braking power
in the environment for the studied metro system after the application of the
proposed method in the first hour.
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Fig. 15. The energy consumption comparison between the base and optimal
cases in one hour. The energy from the traction substation is expected to be
significantly reduced by 22%.

the expected utilized regenerative braking power in Figure 14.
The figure presents the expected utilized regenerative braking
power in one hour. It can be found that most of the time, the
regenerative braking energy in the environment is expected to
be fully utilized, and 68.8% of available regenerative braking
energy is expected to be utilized by using the OESS and
adjusting the train trajectory following the optimal solution.

To further show the effectiveness of the proposed method,
four indicators are presented here to compare the performance
brought by the proposed method (optimal case) and the solution
without considering the regenerative braking energy utilization
(base case). The four indicators from (40) to (43) are Rdch, the
expected improvement/reduction rate of the energy from OESSs,
Rreg , the utilized regenerative braking energy, Rres, the energy
dissipated by resistors, and Rs, the energy from substation.

Rdch = (EO
dch − EB

dch)/E
B
dch × 100% (40)

Rreg = (EO
reg − EB

reg)/E
B
reg × 100% (41)

Rres = (EO
res − EB

res)/E
B
res × 100% (42)

Rs = (EO
s − EB

s )/EB
s × 100% (43)
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where EO
dch and EB

dch are the energy from OESSs of all the
train services of optimal case and base case respectively, EO

reg

and EB
reg are the utilized regenerative braking energy of all the

train services of optimal case and base case respectively, EO
res

and EB
res are the energy dissipated by resistors of all the train

services of optimal case and base case respectively and EO
s and

EB
s are the energy from substation of all the train services of

the optimal case and base case respectively.
The comparison is illustrated in Figure 15. It can be seen

that the energy released by the OESS during each journey
of the optimal case reaches 278.1 kWh, which is 145.3% of
that of the base case (113.4 kWh). The reason for this large
discrepancy is that for the base case, without consideration
of the regenerative braking energy utilization, the OESS is
normally used at the beginning and the end of the journey
without the discharge/charge processes back and forth, like the
optimal case in the middle of the journey. When the OESS
can receive energy from the environment, it can support the
train repeatedly, making the most of the OESS and available
regenerative braking energy together. As a result, it can be seen
that the regenerative braking energy utilization rate is expected
to see a 136.4% increase compared with the base case, and the
energy dissipated by resistors is expected to drop by 68.8%. The
energy from the traction substation is expected to see a 22.0%
reduction, showing the energy-saving potential of the proposed
approach.

E. Sensitivity Analysis

The sensitivity analysis of the optimal train trajectory is con-
ducted in this section to validate the effectiveness and robustness
of the proposed method. The study adopts two extreme timetable
scenarios from the simulation results to show the possible range
of energy-saving performance in different train paths.

The first scenario is referred to as the “Min” scenario, rep-
resenting that all the train services follow the shortest running
time in Figure 6 for each inter-station section. Therefore, the
running time for inter-station sections 1, 2, 3, 4, 5, and 6 is 90
s, 94 s, 104 s, 100 s, 94 s, and 85 s, respectively. The second
scenario is referred to as the “Max” scenario, representing that
all the train services follow the longest running time in Figure
6 for each inter-station section. Therefore, the running time for
inter-station sections 1, 2, 3, 4, 5, and 6 is 119 s, 125 s, 135 s,
136 s, 127 s, and 123 s, respectively. The selection of these two
scenarios is because they both are extreme situations that cause
the most significant discrepancies in the train paths compared
to the scheduled timetable. This leads to the worst cases in
which the available regenerative braking energy distribution is
significantly different in the network and hard to coordinate.

The results for utilizing the regenerative braking energy for
two worst cases are presented in Figure 16 and Figure 17. It
can be observed that the green areas are reduced significantly
when compared with Figure 15, showing the lower frequency of
the coordination among different trains. Additionally, Figure 18
illustrates the detailed energy-saving performance, i.e., Rdch,
Rreg , Rres and Rs, of implementing the proposed optimal
trajectory in different train paths. ”Normal” here represents the
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Fig. 16. The utilization of the available regenerative braking power in the
environment for the studied metro system for the worst scenario ”Min” in the
first hour.
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Fig. 17. The utilization of the available regenerative braking power in the
environment for the studied metro system for the worst scenario ”Max” in the
first hour.

scenario in all of the train services following the simulated
distribution (Figure 6) with the results from Figure 15. It can
be easily observed that the energy from OESSs and expected
utilized regenerative braking energy for the “Min” scenario and
”Max” scenario are much less than the ”Normal” scenario,
forming a trend of rising first followed by dropping. Though
it is much lower than the ”Normal” scenario, which is more
than 130%, it can still see more than 10% and a more than
30% energy-saving improvement compared to the operation
without the optimal trajectory. As for the energy dissipated by
resistors, the reduction rates for both the “Min” scenario and the
“Max” scenario are -3.1% and -14.8%, relatively lower than the
”Normal” scenario.

Similarly, the energy from the substation follows the same
trend, such that the value for the ”Min” scenario and ”Max”
scenario is much lower than the ”Normal” scenario. A “Normal”
scenario can represent the minor-delayed scenario since some
inter-station sections have been randomly allocated with the
minor-delayed/advanced running time in the sampling process.
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All in all, the energy-saving performance comparison for the
worst case and the optimal case is conducted, and it is found
that though the energy-saving performance is significantly re-
duced, the proposed optimal solution can still help cut energy
consumption in all aspects.

IV. CONCLUSION AND FUTURE WORK

By adopting an agent-environment model, this paper proposes
a new approach to optimize the train trajectory with an onboard
energy storage system (OESS), considering the utilization of the
regenerative braking energy in the environment of the railway
power network. Different from most previous studies to simul-
taneously optimizing the operation of all trains in the network,
this paper considers the stochastic available regenerative braking
energy as the environment information to be fed into a smart
decision-making process using mixed integer linear program-
ming (MILP) for each single-train operation. The expected time-
variant available regenerative braking power in the environment
can be obtained by employing the Monte-Carlo simulation based
on the field data of the stochastic timetable. Then, by integrating
the energy support from the traction substation, OESS, and
regenerative braking energy from other trains, a MILP model
is established to obtain the optimal train trajectory to minimize
the expected net energy consumption.

A generic railway system with four stations in one power
supply section is used in the numerical experiment in the
paper, and the results show that the proposed method can give
an optimal solution for minimizing the expected net energy
consumption by adjusting the train trajectory and the operation
of the OESS to make the most of available regenerative braking
energy. In this case, from the results, it can be seen that for a
specific service cycle, the energy consumption from the traction
substation is expected to be reduced by 22.0%, and 68.8% of
regenerative braking energy in the environment is expected to
be further utilized for one hour’s operation by applying the
optimal solution. Also, the energy-saving performance of the
worst cases is explored, showing the robustness and usefulness
of the proposed method. Since the proposed method can locate
the optimal train speed, the solution can be provided directly
to train drivers or embedded in a driver advisory system (DAS)
and automatic train operation (ATO) system to implement in
train operations.

In the future, realistic metro systems can be studied using
the method if the field data of stochastic timetables is available.
Moreover, the timetable optimization can also be considered to
utilize the regenerative braking energy in the network further by
extending the current model. Furthermore, it can also be noticed
that some sparks of the power in the network can also be found
after the optimization. To deal with this, the model can also
be extended or modified to reduce the peak power to ensure a
safe operation from the perspective of the grid, which is also
an exciting topic in the field. Furthermore, the train platforming
and routing problem integrated with the train control and OESS
management can also enhance the practicality of the proposed
model, and extending the model by involving this problem is
inspiring.

APPENDIX
STOCHASTIC REGENERATIVE BRAKING ENERGY IN THE

ENVIRONMENT

In real applications, fluctuations of the train running time of
each inter-station section always occur in the daily operations
[47]–[50], as shown in Figure 19, and it influences the gener-
ation and consumption of the regenerative braking energy. The
uncertainty of the running time brings the stochastic charac-
teristic on both the value and distribution of the regenerative
braking power in each power supply section and the entire
railway power network, which leads to challenging applications
of the solution given by the traditional timetable and trajectory
optimization methods by using deterministic parameters from
static environment information.

In this section, the Monte-Carlo simulation is used first to
obtain the expected regenerative braking power distribution.
The procedure of the stochastic running time generation, the
corresponding power distribution obtainment, and the expected
available regenerative braking power in the network are given.

A. Scenario Simulation of Stochastic Running time

For obtaining the expected regenerative braking energy distri-
bution in the environment, the railway traffic scenarios need to
be found first. Some existing works have explored the methods
to generate railway traffic scenarios. For instance, [51] considers
a condensed-traffic approach where the dwell time follows the
log-normal distribution and the time shift at the terminal station
follows the uniform distribution. The work is extended in [52]
where the ATO train speed profile and specific module of the
traffic regulation system in real-time are involved.

Unlike these studies, this paper mainly takes the running time
variation as the primary consideration in scenario generation,
and the detailed procedure is shown as the flowchart in Figure
20. The running time for the particular run w of inter-station
section s in one specific day q is denoted as Tw,s,q . Based on
the data collected from the industry, running time between two
adjacent stations is stochastic due to the unexpected influence
of the status of passengers, operators, or rolling stocks. In
many papers related to the performance of the train timetable,
most of the theoretical distribution models, such as Normal,
Exponential, Weibull, and Log-normal distributions, have been
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Fig. 19. A schematic illustration of two power supply sections. The power
is supplied from adjacent traction substations, with the common buses at
substations to transmit the regenerative braking energy, and the difference
between the power consumption (negative) and generation (positive) is resulted
by scheduled/practical running time. Most power interaction occurs within one
section due to the existence of sectioning points (used to separate adjacent
power supply sections and are assumed to be kept open in this research), e.g.,
the regenerative braking energy generated in the power supply section 1 can
only be used by the trains running within the same section, i.e., Train 1, Train
2 and Train 3, but not by the trains running in other supply sections, i.e., Train
4 and Train 5 in the power supply section 2 [32], [33], [46].

used to fit statistical models to train running times [48]–[50]. In
this case, the running time variation of each inter-station section
s is assumed to follow a specific distribution based on the
performance analysis of the field running time data. In addition,
it is assumed that there are totally S inter-station sections, WS

journeys for each inter-station s, and Q days in the simulation
of the studied railway network.

After the running time of all inter-station sections for Q days
are obtained, the running time matrix for each day Tq can be
constructed. Here the Tq with the same elements are marked as
a specific scenario γ with a corresponding number of occurrence
day q′γ . The total number of the scenario is denoted as Γ, then
scenario Tγ from 1 to Γ can be obtained. In this case, the
probability πγ of each specific scenario γ can be calculated by
q′γ over the total number of days Q, as presented in Figure 20.

B. Expected Regenerative Braking Power

In the above running time simulation by using Monte-Carlo
simulation, all scenario Tγ and their corresponding probability
πγ from 1 to Γ have been obtained. Then the Tγ can be assigned
to form the simulated timetable following the base timetable
of the studied railway system, as shown in Figure 21-(a). The
departure headway for the first train at the initial station and the
dwell time at each station are assumed to remain unchanged as
the scheduled base value in the simulation process.

After the simulated timetable of all scenarios is made, the
power distribution of each scenario can be produced by using
the simulation model proposed in [23] based on each Tγ , as
illustrated in Figure 21-(b). The model proposed in [23] can
simulate the motoring power outstripping the OESS discharge
power and the regenerative braking power outstripping the
OESS charge power. Here, the regenerative braking energy is

Start

Initialization q = 1

Initialization s = 1

Sample a random number Tw,s,q obeying 
specific distribution extracted from field data

Initialization w = 1

w = Ws ?

Running time for inter-station section s of day q 

[T1,s,q , T2,s,q , … ,TWs,s,q]

w = w + 1

s = S ?s = s + 1

Running time for all inter-station of day q 

[T1,1,q , T2,1,q , … ,TW1,1,q ;

 T1,2,q , T2,2,q , … ,TW2,2,q ;

…

T1,S,q , T2,S,q , … ,TWS,S,q ]

q = Q ? q = q + 1

End

Fig. 20. The flowchart of the Monte-Carlo simulation by sampling the running
time for all of the inter-station operations and conducting the statistics analysis
of the generated scenarios.

positive, and the motoring power is negative. The energy status,
also called the state of charge (SOC) of OESS, for all sampled
trains is controlled following the rule that the OESS is fully
charged (SOC=100%) before the departure of each train’s first
service of the day and SOC will not be adjusted at any stations
for later operation. Assuming ρ is used to index each power
supply section in the studied railway system, as shown in Figure
21-(c), the time-variant net power distribution can be obtained
by summing all of the negative and positive power on same
time instant in same power supply section since some released
regenerative braking energy would be used instantly by the
motoring train. By eliminating the negative part of the net power
distribution, the rest of the regenerative braking power forms the
time-variant available regenerative braking power distribution
Preg,γ,ρ in the environment for each scenario in each power
supply section, as presented in Figure 21-(d). As shown in
Figure 21-(e), the next step is to calculate the expected value
by multiplying the power distribution of each scenario with
its corresponding probability πγ , then the expected available
regenerative braking power for each power supply section P̃reg,ρ

can be simulated and obtained, as presented in Figure 21-(f).
By following the above procedures shown in both Figure 20
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Fig. 21. The procedure to obtain the expected time-variant regenerative braking power distribution of the metro system: (a) Simulate the timetable of each
scenario using Tγ following the base timetable of the studied system; (b) Simulate the power distribution of each scenario of the studied system (The red lines
and green lines are the power profiles of the trains: red lines underneath the station-time plane represent the power consumed by trains, and green ones over the
station-time plane represent the regenerative braking power); (c) Calculation of the time-variant net power values of all scenarios for all power supply sections;
(d) Time-variant available regenerative braking power distribution of all scenarios for all power supply sections; (e) Calculation of the expected value based on
all scenarios for all power supply sections; (f) Expected time-variant available regenerative braking power distribution for all power supply sections.

and Figure 21, the statistical parameters of all inter-station sec-
tions derived from the historical data can be used and converted
to the distribution and expected value of the regenerative braking
power of the entire railway network based on the Monte-Carlo
simulation.
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