
 
 

University of Birmingham

Enabling Data Integration in the Rail Industry Using
RDF and OWL
Tutcher, Jonathan; Easton, John; Roberts, Clive

DOI:
10.1061/AJRUA6.0000859

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Tutcher, J, Easton, J & Roberts, C 2017, 'Enabling Data Integration in the Rail Industry Using RDF and OWL:
the RaCoOn Ontology', ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil
Engineering, vol. 3, no. 2, F4015001. https://doi.org/10.1061/AJRUA6.0000859

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 09. Apr. 2024

https://doi.org/10.1061/AJRUA6.0000859
https://doi.org/10.1061/AJRUA6.0000859
https://birmingham.elsevierpure.com/en/publications/65cfcead-cce6-4cbb-927a-4e4f42ccb9e8


ENABLING DATA INTEGRATION IN THE RAIL INDUSTRY1

USING RDF AND OWL - THE RACOON ONTOLOGY2

Jonathan Tutcher1,

John M. Easton (Corresponding Author) 2,

and Clive Roberts 3

3

ABSTRACT4

As traditionally infrastructure-centric industries such as the railways deploy ever more5

complex information systems, data interoperability becomes a challenge that must be over-6

come in order to facilitate effective decision making and management. In this paper, the7

authors propose a system based on semantic data modelling techniques to allow integration8

of information from diverse and heterogeneous sources. The results of work, which aimed to9

demonstrate how semantic data models can be used in the rail industry, are presented; these10

include a novel domain ontology for the railways, and a proof-of-concept real time passenger11

information system based on semantic web technologies. Methods and patterns for creat-12

ing such ontologies and real world systems are discussed, and ontology-based techniques for13

integrating data with legacy information systems are shown.14

Keywords: Ontology, Linked Data, Railway.15

INTRODUCTION16

In recent years many railways worldwide have undergone a revival, with growth in pas-17

senger numbers driven by factors such as traffic congestion, a desire to work during travel18

time, and social pressures to switch to “greener” modes of transport. The United Kindom’s19
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(UK) railway network is the oldest in the world, and has been steadily growing in popularity;20

between the years of 1991 and 2011 passenger numbers across the network rose by 67%(Of-21

fice of Rail Regulation 2011). As demand has increased, the railway industry has invested22

heavily in infrastructure and rolling stock as it strives to meet the need for greater capacity,23

while ensuring the railways remain a reliable and safe mode of transport. However, as the24

cost of new infrastructure has grown and external financial pressures have increased, there is25

a growing acceptance within the industry that simply “building out of trouble” is no longer a26

viable long-term solution to passenger growth, and stakeholders are instead seeking to make27

better use of their existing assets. In many cases this is expected to be achieved through28

greater use of Information and Communications Technology (ICT), creating a need for ac-29

curate, timely information on the state of the infrastructure at the heart of the industries30

operational and planning decision making processes. In contrast to the infrastructure-centric31

industry of the past, this new system can be thought of as the data driven railway.32

33

The early stages of the industries move towards the data driven railway were charac-34

terised by a rush to instrument, monitor and record data on the state of the railway system.35

Remote Condition Monitoring (RCM) systems, such as Network Rail’s Intelligent Infrastruc-36

ture platform, are now generating huge quantities of data on asset health. However, aside37

from superficial investigation in the form of thresholding and alarm generation, very little38

analysis of the corpus gathered is ever carried out. This restricts the amount of new business39

intelligence that can be gained from the system, and places limits on the overall return on40

investment. Other, pre-existing ICT systems within the industry are commonly “siloed” -41

they exist in isolation, with a dedicated set of data collection equipment, databases, and42

front-ends that serve a specific purpose. The siloed nature of these ICT systems makes it43

hard to bring together data to answer questions that cross physical system or organisational44

boundaries, and queries involving data from multiple systems without established interfaces45

must be carried out manually by human operators. The problem of ICT system fragmenta-46
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tion in the rail industry is particularly evident in the UK, where privatisation of the railway47

network in the mid-1990s has led to a complex, multi-stakeholder industry that separates48

the management of the infrastructure, performed by Network Rail, from the passenger and49

freight train operators (TOCs and FOCs), rolling stock leasing companies (ROSCOs), and50

safety and governance authorities including the Rail Safety and Standards Board (RSSB),51

the Office of Rail and Road (ORR), and the Department for Transport (DfT). It was esti-52

mated that in 2011 over 100 shared ICT systems were in use by the UK rail industry(Rail53

Safety and Standards Board 2012), a figure that does not take into account systems used54

within individual organisations.55

Beyond the railways, other traditionally infrastructure-centric industries faced with the need56

to make better use of their assets have seen substantial benefits from greater integration of57

data across ICT system boundaries; a process that enables in-depth, whole-system analyses58

that can generate new business intelligence. Examples can be found in the upstream oil and59

gas industries Integrated Information Platform(Sandsmark 2008) and Integrated Operations60

in the High North projects (Verhelst 2012), and the United States’ (US) Capital Facilities61

Industry, where it was estimated that the adoption of improved information interoperability62

standards for operations and maintenance could have saved $15.8 billion in 2002 alone (Gal-63

laher et al. 2004).64

A key enabler of data integration is the provision of common data models both within the65

domain of study and linking it to the wider world.66

67

Existing Rail Domain Data Models68

A number of research projects and industrial initiatives concerning knowledge manage-69

ment and data modelling for railway data have been undertaken over the last decade, aiming70

to allow better integration of data between systems. Few have enjoyed significant commercial71

uptake, although support for RailML (Nash et al. 2004), a cross-industry project establishing72

comprehensive eXtensible Markup Language (XML) data models for information exchange,73
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continues to grow in Europe. Other relevant models include efforts by the International74

Union of Railways (UIC) to develop a new infrastructure model, RailTopoModel, (UIC75

2013) and the European Union’s (EU) 7th Framework Programme (FP7) InteGRail project76

(InteGRail 2011), which delivered a basic rail ontology - a semantically richer graph-based77

representation of domain concepts and relationships that will be discussed in detail in a later78

section. Many other transportation data models also exist and are widely used; most notably79

the National Public Transport Access Nodes (NaPTAN) model(Cartwright 2010) and the80

ArcGIS Esri model(ESRI 2014).81

EU interoperability legislation, coming into force across the railway industry from 2015, will82

also provide incentives for companies to consider novel methods of data management. The83

EU Register of Infrastructure (RINF) requires that all rail infrastructure operators across84

Europe provide a basic level of information about their networks(European Railway Agency85

2010), a task that has so far caused many companies difficulty. As European interoperability86

is mandated further, the demand for efficient data management and exchange is likely to87

grow.88

89

Semantic Data Models90

In creating and storing information in a computer system, data context and meaning91

must be preserved alongside the data itself to allow future re-use. Traditional data storage92

approaches ensure this by specifying detailed data schemas such that the context of a piece93

of data can be recalled based on its position in the store, and dealt with correctly. This94

approach works well for many systems, but makes representation of data not accounted for95

by the schema very difficult. Interoperability between these systems necessarily requires96

bespoke interfaces that map data between schemas, as no knowledge of data structure can97

be deduced or acted on by the computer systems themselves.98

Semantic models store data context alongside the data itself in a machine-understandable99

form, reducing the need for an explicit database schema and allowing greater flexibility in100

4



maintaining and querying the data present. Knowledge is represented by defining a set of101

entities and building up facts between each entity, each of which has an understood meaning.102

In this way, an unambiguous representation of each entity and its characteristics is built up103

without the need for or the constraints of complex data structures. The precise meaning of104

relationships and entity types within a semantic model are usually defined by an ontology :105

a machine-readable formalisation of how a particular domain or world view works.106

The Resource Description Framework (RDF) is a World Wide Web Consortium (W3C) rec-107

ommendation for the representation of semantic data models that describes entities and the108

relationships that interlink them as Uniform Resource Identifiers (URIs). Subject-predicate-109

object facts called triples are assembled to build up knowledge graphs, including information110

about entities and about the semantics of the relationships used. This graph-based represen-111

tation can be serialized in several ways, including as plain text or XML(Beckett et al. 2013),112

binary, and inside traditional Structured Query Language (SQL) databases. Examples of113

RDF triples are shown in Table 1114

The RDF itself is technology-agnostic, and thus data is preserved into the future as new115

technologies and tools are released. The RDF specification only calls for the representation116

of facts as explained above, and these facts can be serialised in several different ways. Whilst117

there is still a dependency on the vocabulary and design patterns used when representing118

data, the meaning of the data is preserved through time, and so its use as a knowledge119

representation technique fits well with long system lifecycles present in the rail industry.120

121

Ontology122

Ontologies are data models that formally describe some problem domain or world view123

in a machine-interpretable way. By creating ontologies and associating real-world data with124

them, it becomes possible for computer systems to infer new knowledge in the same way125

that humans might use “common sense” when considering a set of facts. This inference aids126

data integration by making data implicit within a model explicit, and simplifies information127
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systems by reducing the amount of logic required in individual applications when interpret-128

ing data.129

In practice, two things are required to develop an ontology; a set of controlled vocabularies130

of terms used within the domain, and a set of related classes and rules that can be used to131

describe the domain from a particular viewpoint. When using a conceptual data model, de-132

velopers state the relationship between an item of data and the model of the world, allowing133

that data to be seen in context by the computer. As an illustration, consider the US English134

and British English use of the word jelly. Jelly is a perfectly acceptable term in both US and135

British English, and even has the same syntax (can be used in the same places in sentences),136

but the meaning of the term - its semantic - is different in the two languages. In British137

English, jelly is a gelatine-based dessert, whereas in US English jelly is a fruit preserve (a138

jam in British English). In a conventional data model such as an XML document, the tag139

jelly can be used ambiguously, because XML schema only enforce the positioning of the tag140

in the document and the values it can take, not its meaning in that context. Participants in141

a solely XML-based data exchange could legitimately use the tag jelly for either meaning,142

even if the designers of the XML schema had a particular usage in mind. By representing the143

data in a conceptual model this situation can be avoided, because the term jelly is defined144

as being a type of dessert that is composed of gelatine, and which may have a particular145

colour, flavour, shape and wobbliness.146

Once facts have been entered into an ontology, it becomes possible to use the relationships147

contained within the model to infer new information about the world; a process known as148

reasoning. On the simplest level this could involve the user stating that an object “377149

401” is an instance of “Class 377” and the reasoner then inferring that “377 401” must150

be a train because the ontology shows that “Class 377” is a type of train. Over and above151

this type of simple common sense reasoning, ontologies can be further enhanced by the152

additional of rule-based axioms. Rules make it possible for ontologies to capture and use153

more expressive logical statements that are needed for complex decision making, such as the154
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following statement:155

156

“if axle bearing temperature sensor x has a reading of over 100 degrees, then157

the axle sensor x is monitoring is faulty”158

This can be used to infer new facts such as “axle bearing y is faulty” against the model159

where relevant. By expressing these rules in the ontology, the operational logic associated160

with a domain can be stored in the data model, rather than in the code of individual appli-161

cations, making change management and future development easier (only a single source of162

domain logic changes, rather than many individual applications).163

Ontologies are formalised into machine-readable form by using an ontology language; on-164

tology languages provide a defined vocabulary and set of logic with which to build models.165

By far the most well-supported of these is the Web Ontology Language (OWL). Now in166

its second major release, OWL is based on description logic, and provides a number of167

sub-languages (called profiles) that trade flexibility with guaranteed computational speed of168

reasoning. OWL 2 DL is the most expressive of these, allowing complex reasoning across169

data models at the cost of long worst-case processing times. By contrast, the simpler OWL170

2 EL profile guarantees that reasoning will complete in polynomial time with respect to171

the size of the ontology but limits the range of ideas that can be expressed. A number of172

other OWL 2 profiles are also specified for other purposes; these include OWL QL, a pro-173

file intended to allow standard query languages to utilise ontology (representing relational174

databases), and OWL RL, which allows expressivity for an ontology to be represented using175

the logic employed in rule languages.176

177

A CORE ONTOLOGY MODEL FOR THE RAIL DOMAIN178

At this stage, the authors would like to introduce the Rail Core Ontology (RaCoOn), an179

ontology model specifically tailored for use within the railway industry. Although initially180
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developed with the representation of signalling and rail infrastructure in mind, the model181

rapidly developed into a general model for the railways, including a “core” of generic rail-182

way concepts with extensions capturing particular subdomains (infrastructure, timetabling,183

rolling stock etc.) and an upper level model to define concepts used more broadly than rail184

(e.g. transport) The layered design philosophy behind the model is shown in Fig. 1.185

186

Ontology Design and Model Scope187

A novel ontology engineering technique based on the NeON methodology(Suárez-Figueroa188

et al. 2012) was employed in designing the RaCoOn ontologies, based around extracting189

knowledge from existing railway models and domain experts to inform and validate design190

decisions. This technique comprised three major steps:191

192

1. Specification: High level requirements were defined, as well as the scope and content193

specification of system. Several individual ontology modules were defined according194

to reusability and level of domain detail: an “upper” module for domain-agnostic195

concepts, a “core” module for railway knowledge, and several subdomain-specific vo-196

cabularies including “infrastructure” and “rolling stock”.197

198

2. Conceptualisation, formalisation and implementation: Both top-down and re-use ori-199

ented approaches were taken in eliciting knowledge for the RaCoOn ontologies, as200

detailed below.201

202

3. Evaluation and documentation: Ontology modules were evaluated throughout the203

design process and then validated at the end of the design process.204

205
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Specification and Modularisation of Domain Ontologies206

Design of application-specific data models is usually driven by a set of functional and207

non-functional requirements that can be derived from the established needs of the system.208

Domain models such as the RaCoOn ontologies, however, are intentionally abstracted from209

any one particular application and are expected to allow representation of concepts without210

assuming how the data will later be used. The scope of the RaCoOn ontologies was dic-211

tated by three initial use cases: an infrastructure visualisation tool, a railway maintenance212

application, and a signalling design interchange tool. Requirements for these use cases were213

considered in conjunction with applications and data requirements elicited from recent rail214

industry data workshops(Roberts et al. 2011), and a high level specification for the RaCoOn215

ontologies created emphasising commonalities between these use cases.216

217

Conceptualisation and Formalisation of RaCoOn Ontologies218

Each ontology module was created by repeatedly iterating over two approaches to model219

creation: a “top down” method that draws upon expert knowledge to build a hierarchical220

model of a domain, and a “reuse-oriented” method where existing knowledge was extracted221

from models such as RailML, Network Rail’s Signalling Data Exchange Format (SDEF), and222

Siemens Rail Automation’s Layout Description Language (LDL). In both cases, ontology im-223

plementation was performed by defining ontology design patterns (ODPs): sets of concepts,224

relationships, and documentation that define how a particular concept should be encoded in225

the semantic data model. Fig. 2 shows steps through the iterative process.226

The top-down approach aimed to establish a high quality meta-model structure for railway227

domain knowledge, and to fill gaps in knowledge that may be present when re-using other228

models. The process performed was as follows:229

230
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1. Review scope of initial ontology (or changes for review).231

232

2. Decompose concepts into subcategories, and create competency questions (CQs) around233

new concepts. For example, when considering a “railway track” entity, a competency234

question may be: “How can we establish whether a piece of railway track is electrified,235

and what type of electrification does it provide?”236

237

3. Consider scope of new CQs. A decision on whether they are in or out of scope for238

the current module is made, and in scope CQs are either implemented or constructed239

using the reuse-oriented approach.240

241

4. Re-engineer concept into OWL design pattern if appropriate.242

243

The reuse-oriented approach was undertaken to map existing domain knowledge from non-244

ontological sources into the ontology.:245

246

1. Identify terms for reuse through prompts from previous iterations of this or the top-247

down process;248

249

2. Analyse term semantics by reviewing documentation and use of a term in the existing250

model;251

252

3. Re-engineer term into OWL design pattern by either reusing or extending an existing253

pattern, or creating a new one;254

255
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4. Consider new competency questions based on term and design pattern.256

257

Fig. 3 shows decisions made in the creation of an example ontology using this process. New258

ODPs are shown in the diagram as red stars.259

260

High Level Concepts and Railway Fundamentals261

The RaCoOn upper level ontology contains knowledge of generic upper level concepts262

that transcend the railway domain. Such concepts include space and time, and are mostly263

reused from existing “gold standard” vocabularies, including:264

265

• The W3C Time Ontology(World Wide Web Consortium 2006), which provides ways266

of representing instants, intervals, and Allen time relations(Allen 1984). Entities are267

labelled with start and end times where required, allowing data to be queried based268

on the time period in which it occurred.269

270

• The W3C Geo(Brickley 2003) and Ordnance Survey (OS) Spatial Relations(Ordnance271

Survey 2014) ontologies for location positioning.272

273

• The National Aeronautics and Space Administration (NASA) Quantities, Units, Di-274

mensions and Types (QUDT) ontology(Hodgson and Keller 2011) provides an ex-275

haustive list of quantities, units, dimensions and datatypes. These are used in the276

upper ontology in conjunction with an appropriate design pattern to represent mea-277

surements and datatypes.278

279

• ISO15926:2(International Standards Organisation 2003), which provides a meta-model280

for entity types. The ontology classifies objects into independent (can exist in their281
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own right), and dependent (existence depends on another entity, such as in the case282

of a measurement), which is useful in defining acceptable ranges and domains for283

properties.284

285

The rail core vocabulary ontology is a result of work carried out manually constructing and286

curating knowledge from other domain models and from UK industry experts. The vocabu-287

lary and its sub-modules predominantly draw upon corresponding elements in RailML 2.2,288

relying on both its XML syntax and human-readable documentation in building an equiva-289

lent semantic data model.290

291

THE DELIVERY OF CONSISTENT PASSENGER INFORMATION ACROSS A292

CHANGING TECHNOLOGICAL LANDSCAPE293

In order to demonstrate the feasibility of the use of ontology within the railway industry,294

the authors joined with Siemens Rail Automation in the UK to produce two technology295

demonstrators; the work was performed as part of the Future Railway funded “Universal296

Data Challenge”. The first demonstrator, which was presented at the 2014 Institute of297

Electrical and Electronics Engineers (IEEE) Conference on Big Data(Tutcher 2014), showed298

how the use of a linked data approach to the handling of asset information could add value299

as part of a scalable asset management platform. The second demonstrator, which is the300

subject of this paper, aimed to show how the use of ontology and linked data can help the301

industry maximise on investment in existing information systems despite changes elsewhere302

in an increasingly technology-driven railway system. In particular, the demonstrator sets out303

to show how the use of ontology can provide a bridge between legacy systems and newer re-304

placement services without sacrificing functionality, and how interfaces between such legacy305

systems and more contemporary linked data-based systems can be set up. As the volumes306

and variety of data gathered in new information systems on the railway continue to increase,307
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this demonstrator seeks to illustrate the practical uses of semantic data models in simplifying308

interfaces and applications, and enriching content.309

310

Train Locator Overview and Key Concepts311

Presented as a web application, the Train Locator system demonstrates a number of key312

areas in which ontologies can allow better integration and management of data in the field313

of railway Real Time Passenger Information (RTPI) systems. It focuses on the benefits that314

can be gained by using ontologies to unambiguously describe data to applications, and the315

ease with which new data in the system can be translated to accommodate existing appli-316

cations. The following scenarios were demonstrated:317

318

• How two independent RTPI systems can co-exist and share data, without being ex-319

plicitly designed to do so;320

321

• How new data (train location mileage information) can be quickly integrated into a322

data model given a new application or physical system upgrade - in this case from323

track-circuit based location recording to radio-based mileage location recording;324

325

• How ontology reasoning allows a legacy customer information system to continue326

functioning, even with loss of the initial track circuit location data;327

328

• How ontology rules can be defined in the ontology to provide graceful degradation of329

functionality in passenger information systems.330

331

In addition to the above, the demonstrator application illustrates the advantages of a linked332

data-based approach, showing contextualised train station information taken from other333
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sources, and allowing users to explore information associated with entities such as trains,334

locations, and schedules.335

The storyboard for the demonstrator is as follows:336

337

1. Imagine a railway network equipped with legacy, low resolution train positioning sys-338

tems, such as track circuits and axle counters. These devices are placed close enough339

together to drive signalling systems but only provide a low resolution view of where340

trains are located across a network.341

342

2. The data produced by the train positioning systems is used to (amongst other things)343

power a number of passenger information systems, including platform boards and344

third-party applications for mobile devices.345

346

3. As part of an upgrade programme, for example a migration to European Rail Traffic347

Management System (ERTMS), existing low resolution train positioning equipment348

on a line is replaced by a more accurate system. Future passenger information sys-349

tems can be designed to operate using the higher resolution positions from the new350

system, but existing passenger information systems, that require positional data to351

be at track circuit level, will all need updating - a costly process that involves many352

stakeholders if third-party applications are included.353

354

4. In an information landscape utilising ontology, the data being delivered by the posi-355

tioning systems, and being used by the passenger information systems, is described356

unambiguously; the computer “knows” exactly what data is available and what is357

needed by the applications. Rules can be added to the data model describing how358

data in one form is converted to the other, allowing the system to deliver inferred359

track circuit-level data to legacy systems based solely on the new, high resolution360
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location data.361

362

5. By using the combination of ontology, rules, and reasoning, it becomes possible to363

maintain the functionality of existing applications, despite changes elsewhere in the364

rail system, without altering the applications’ codebase. Ontology will allow the365

industry to design and implement information systems only once in a changing tech-366

nological landscape. Old and new applications will be able to co-exist and can be367

driven by the same underlying data resources.368

369

The demonstrator was designed to showcase the benefits that could be gained through the370

integration of data across a simple semantic data model using only a few very simple rules371

and ontological axioms. In order to achieve this two simple passenger information applica-372

tions were created, and ontology reasoning was used to remove these applications’ reliance373

on specific input data types.374

The demonstrator itself, available at http://purl.org/rail/trainlocator, is a website that pro-375

vides a number of views to simulate real world railway customer information systems. Each376

view illustrates a usage scenario, and the application is designed to allow users to understand377

the effects and advantages of differing ontology constructs on the system. Train movement378

data is provided by simulated values, which update the website in real time and drive out-379

puts on each page.380

The key technological components used in the presentation of this demonstrator are:381

382

• Stardog, an RDF triple store used to store all data (ontology and resources). Stardog383

is a scalable off-the-shelf product that provides several levels of ontology reasoning,384

from the schema reasoning described above, to the ability to read custom-written385

rules. It conforms to W3C standards on linked data storage and presentation, allow-386
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ing a generic interface between the application and data store to be created;387

388

• The train movement simulator, residing on the web server, which updates the lo-389

cations of a set of trains as they pass through the demonstrator’s railway network.390

Train locations are simulated through internal logic and pushed to the Stardog server391

through its linked data endpoint. Controls on the demonstrator website allow the392

user control over whether the simulator sends legacy (track circuit) or high resolution393

(mileage) train position data;394

395

• A web user interface, written using modern web technologies - Hypertext Markup396

Language (HTML), Cascading Style Sheets (CSS), and Javascript. This front end397

provides all of the application functionality, and queries the Stardog data store di-398

rectly for each function. Logic in the web front end is limited purely to presentation399

details; all other information about interactions between trains, infrastructure, and400

location is stored and computed in the triplestore.401

402

These three components communicate via the SPARQL 1.1(Prud’hommeaux et al. 2008)403

linked data protocol, and data is exchanged in linked data at all points. Further input and404

output applications could quickly be realised by leveraging ICT industry standard practices405

for linked data and concepts shown in the core railway ontology.406

The web user interface shows information in any one of three scenarios:407

408

• Legacy Departure Board System (Using Track Circuit Data). In this scenario, a user409

can select a train station and view a very basic simulation of a platform-based pas-410

senger information board, including departure point, destination location, scheduled,411

and expected times. Expected times are calculated based on the position of trains412
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on a track circuit (such as would be provided by a train describer system), which is413

queried directly from the triple store. The current track circuit of each train can also414

be displayed for exploratory purposes;415

416

• Train Position Map (Using Mileage Data). The train position map shows the “live”417

locations of each train on the network. The system queries the ontology for mileage418

location, and displays it in line with the train’s route through the network. Through419

rule reasoning, the ontology provides the train position map with the most relevant420

data should both be available;421

422

• Entity Information View (Using Linked Data & Inference). The final view is pro-423

vided should a user want more information on a particular train, station, or location.424

The application requests information from the ontology about the location in ques-425

tion, and returns useful information. In the case of train services, inference provides426

information about the rolling stock itself as well as the train service; for locations,427

reasoning provides additional information such as touching/neighbouring entities and428

line reference information.429

430

A summary of the behaviour of the ontology given differing applications and input data is431

shown in Table 2.432

433

Design Patterns and Reasoning Devices434

Infrastructure and Location Storage Design Pattern435

Infrastructure & location data is stored in the train locator demonstration model as436

linked data, following patterns defined by the core ontology. Data taken from ATOC work-437

ing timetable files was used as a base for modelling train movements, and track circuits438
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were added manually, using simulated track circuit distances. Each “Track Circuit” object439

has a start location and end location, each of which have an associated mileage and Global440

Positioning System (GPS) co-ordinates, and these track circuits are aggregated into “:Ser-441

viceNode” objects that are referenced in timetable data. Fig. 4 shows an example Service442

Node associated with a track circuit, which is in turn associated with maximum and mini-443

mum locations at points along the track infrastructure.444

By linking track circuits to mileages and known pieces of infrastructure, inference can pro-445

vide train services associated with them with further information. For example, in the case446

of a train stoppage or cancellation, passengers using linked-data based applications could447

check the next station’s facilities and connections based on the train they are currently on,448

although this functionality is not shown in the demonstrator.449

450

Reasoning to Allow Legacy System Functionality Given New System Input Data451

In order to provide legacy system functionality when a system upgrade occurs, a rule is452

constructed and added to the triple store. Rules are custom-based reasoning patterns that453

a triplestore applies to matching data at query-time. The aim is to capture the following454

knowledge:455

456

“If a train’s current mileage is between the minimum and maximum mileages457

of a particular track section, and on the same line, the train is defined as being458

in that track section”459

460

When encoded as a SPARQL rule, this logic leads the reasoner to perform the following461

actions:462

463

1. Check for current node’s line reference;464
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465

2. Filter list of possible track circuits to only those on current line;466

467

3. Retrieve minimum and maximum mileages for each candidate match;468

469

4. Identify track circuits with mileages within range of current train’s mileage;470

471

5. Assert that the current node is associated with the matching track circuit.472

473

Consequently, whenever a legacy application now requests a node’s track circuit location,474

this rule is checked and the correct track circuit returned whether it was encoded explicitly475

by an input system, or calculated based on a train’s current mileage position.476

477

Reasoning to Allow Improved Resilience of Information Systems during Degraded Service478

The strengths of an ontology-driven data store do not only allow the mapping of new479

data back into other forms for use in legacy systems, but also make it possible to increase480

data availability during periods of degraded system reliability. Using the capability of the481

system to interlink data, a hierarchy of “preferred” properties were specified for each sys-482

tem concept, and these hierarchies used with closed world rule reasoning to find the best483

available data for a particular application. Recall the following scenario from the storyboard484

presented earlier in this paper:485

486

• A railway line has recently been upgraded to ERTMS operation, and now provides487

very rich location information for each train on the track, rather than only track cir-488

cuit occupation details;489

490
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• New applications for customer information and service monitoring are built using491

the new, more accurate ERTMS location information. It is desirable, however, for492

these systems to continue functioning in times of degraded operations - for instance493

if ERTMS systems are unavailable and the line reverts to fixed block operation.494

495

In this case, the usual approach would be to include application logic to search for available496

systems and make a decision specified at system design time as to which data source to497

choose - an approach which is inflexible and unsustainable in a complex system.498

To enable the data model to find which data to provide for a train location application, the499

following pattern encodes knowledge of “preferred systems” (see Fig. 5). This shows several500

OWL classes (marked with yellow circles) related to each other through RaCoOn properties501

(marked on arrows) forming transitive “:preferredOver” relations. Thus, a reasoner can infer502

that an “is:CrsLocation” instance is preferred to a “vocab:RailwayMileage”, and can choose503

to prioritise data of this type.504

With this knowledge of which system of measurements is preferred given data availability,505

it is now possible to encode a rule that states:506

507

“If entity X has multiple locations associated with it, and one is preferred508

(location Y) over the other (location Z), then insert a new fact: entity X − >509

preferredLocation − > location”510

511

As a result of the inclusion of these rules, systems utilising the :preferredLocation property512

will automatically be presented with the most accurate data for their needs. It is important513

to note that applications have varying requirements for location data (some rely on GPS514

co-ordinates, others rely on Computer Reservation System (CRS) codes, and others on data515

with other constraints). The pattern above does not ignore these constraints; they are repre-516
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sented through other clauses in the query.517

518

Implemented System Demonstrator519

The demonstrator web application includes several views which show the effect of reason-520

ing based on location, as discussed above. These views are described in the following sections.521

522

Admin Page: Scenario Control523

The Train Mapper home page, accessed when the user first contacts the system, briefly524

explains the aims of the demonstration and gives users control of the various scenario con-525

figuration options. These options influence the behaviour of both the legacy “Departure526

Boards” view, and the “Map View” application. On-screen controls allow users to select527

the data supplied to the system by the simulator: either track circuit data, mileage-based528

position data, or both. Further configuration options turn reasoning on and off within the529

web application, allowing users to see the effect with or without rules being triggered in the530

ontology.531

532

Legacy Departure Boards View533

The departure boards view (see Fig. 6) shows trains soon to arrive and depart from a534

station. These are determined by querying the triplestore for relevant services with an ap-535

propriate arrival time, and station information if present. Expected train times are naively536

obtained through adding a :trainTime property to every track circuit, and calculating the537

difference in this property’s at the current train’s location and the station being viewed.538

If the “Track circuit data” data source is turned on, the departure boards view utilises no539

ontology reasoning whatsoever. Instead, it is presented as a legacy system using linked data540

as a data storage and interchange format. There are advantages even to this approach, as541

can be proven by the success and uptake of the Linked Open Data movement on the World542
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Wide Web. If the “track circuit data” data source is missing, however, ontology reasoning543

steps in, and resolves live train locations to track circuits for the benefit of this application.544

545

Map View: Dynamic Train Progress546

The dynamic train progress page (see Fig. 7) allows a user to track the progress of a train547

in real time, using mileage values resolved from a fictitious moving block signalling system.548

Users can select the train they want to track, and watch its position change across the map.549

550

• With only the “mileage data” source turned on, this display uses no inference and551

displays the current mileage of the train selected on a map.552

553

• With both mileage data and track circuit data, this display calls the ontology to as-554

certain the priority of these location values (as described above), and displays the555

mileage location, with its track circuit displayed as a secondary information source.556

557

With only track circuit data available, the ontology resolves a less accurate position for the558

train based on available information. Whilst it would have been possible to build this logic559

into the application itself, this approach quickly becomes complicated and hard to maintain560

when deployed as part of a more complex system.561

562

Map View: Track Circuit Information563

Finally, the track circuit and entity views (see Fig. 8) allow users to view more detailed564

information about each track circuit, or other entity. With reasoning disabled, queries used565

to populate this view bring back only explicit information held in the infrastructure database566

about track circuit information. However, with reasoning enabled, links between track cir-567

cuit locations and other infrastructure items become apparent, and users are able to browse568

22



information about train stations, maintainers, and nearby trains. This view is included to569

further illustrate the use of ontology reasoning to enrich knowledge and convey useful in-570

ferred information.571

572

Alternative Use Cases573

The demonstrator discussed in this paper was designed to illustrate how the application of574

ontology, developed according to a modular approach and using a set of basic design patterns,575

can deliver large potential benefits when used to integrate multiple industrial information576

systems. The benefits described in the scenario (e.g. selection of the most appropriate form577

of data based on the task being performed and the resources available, the delivery of in-578

ferred results from queries, or the reusability of the RDF data resources) also apply to a579

wide range of other industrial use cases, a few examples of which are given below.580

581

Railway Operations Management and Train Routing During Degraded Railway Service582

Whilst an ontology will not in itself evaluate decisions on train routing, the ability to583

provide data at the most appropriate level of granularity that is available can inform human584

signallers and computer algorithms and help them to make operational decisions based on585

the most accurate information available at the time. For example, consider a scenario in586

which two trains are waiting outside a major interchange station, and one unoccupied plat-587

form is available. At present, selecting which of the trains can proceed and which should be588

delayed depends mostly on a controller’s intuition to work effectively; this relies on highly589

experienced individuals fulfilling the same role over months or years and presents challenges590

in terms of the retention of corporate knowledge. Using a more integrated data approach,591

where data is drawn from a number of ICT systems as needed, would allow a more informed592

decision-making process, particularly for staff members transferring into the geographical593

area under control. Ontology reasoning could infer typical train capacity in absence of it594

being known, or show actual capacity if it is. Likewise, information on connections from the595
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following stations could be displayed if known, or based on a rule if not.596

597

Railway Maintenance on Tracked and Untracked Rolling Stock Assets598

Using the same approach, plus knowledge of rolling stock composition (as provided by599

the infrastructure ontology), rolling stock maintainers can be informed of likely asset fail-600

ures in absence of monitoring information. If a particular class of railway vehicle is known601

to develop a fault after a certain number of miles, it is possible for the ontology to display602

these likely faults on appropriate vehicles, and not to display them on vehicles with more603

detailed explicit information stored.604

605

Cross-Railway Train Position Reconciliation606

The property translation pattern used to map mileage values into track circuit values is607

only one example of the ability of semantic data models to accommodate transition from608

legacy systems. Whilst ontologies cannot themselves provide very complex algebraic map-609

pings from new systems to old (for example, geographic transforms), reasoning allows more610

common sense properties to be conveyed between systems with very little overhead. An611

example of this may be in resolving a problem encountered by open data enthusiasts when612

reconciling London Underground and Network Rail train movement data in regions where613

the two providers overlap. Where multiple systems log the same information about trains in614

different ways, ontology rules and mappings can help to align data to be appear coherent.615

As these system interactions change, rules can be updated, and no change to application616

code is needed.617

618

Potential Benefits of Implementation619

Industry-wide ontology models for rail have been the subject of significant discussion in620

the UK rail sector in recent years. The 2013 Network Rail Technical Strategy(Network Rail621
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Limited 2013), which outlines the UK Infrastructure Manager’s priorities for investment in622

new technology over the period 2014 - 2019 and beyond, suggests that developing the research623

into ontologies for rail to an “implementation ready” level (i.e. Technology Readiness Levels624

5 - 7) would cost the industry up to £1 million; however, as is often the case in this area625

the document presents no indication of the value of the potential benefits. An estimate for626

the financial benefits resulting from the implementation of ontology in the UK rail industry627

can be found by reference to other domains. As previously mentioned in this paper, the US628

National Institute of Science and Technology’s cost analysis of inadequate interoperability629

in the capital facilities industry(Gallaher et al. 2004) found that $15.8 billion could have630

been saved in 2002 through improved information interoperability, a figure that represents631

between 1% and 2% of revenue for that year. The capital services industry, which deals with632

the construction and management of large commercial and industrial facilities, is similar633

the the UK rail industry in many respects; it consists of a large number of stakeholder or-634

ganisations, each with their own ICT provision, which specialise in delivering infrastructure635

with a long lifecycle - as a result of this, the industry is an appropriate analogue to the636

railways. On this basis, taking the 1% to 2% revenue figure for the capital services industry637

and translating it into the UK rail industry, where the Train Operating Companies received638

fare revenues of £8.2 billion from passengers in the year 2013/2014(Office of Rail Regulation639

2015), results in between £82 million and £164 million of potential savings annually. If only640

a very small proportion of this figure were to be realised in practice by the industry through641

the use of a common data model such as the RaCoOn ontology, then the financial benefits642

would be very significant.643

The design patterns and processes demonstrated in this paper have diverse applications644

across the railway; in particular, the demonstrator highlights a fundamental technique (the645

ability to utilise the most appropriate available resource of a given type) that can be im-646

plemented wherever multiple real-world systems provide the same type of information into647

a data store. Across the industry the ability to automatically select the most appropriate648
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information resources for the selection available means that legacy software packages can649

still function in environments using upgraded information stores, maximising the useful life-650

time and return on investment from these software packages. Furthermore, by moving the651

data dependency to the models and data repositories, rather than the applications, adopt-652

ing the proposed design patterns will enable data-centric, rather than application-centric,653

management of the selection of appropriate information; reducing the complexity and cost654

of implementing business logic changes in software.655

656

Limitations of Approach657

The adoptation of common semantic models, such as RaCoOn, have many potential658

benefits to offer the railway industry. Care must be taken however, to avoid thinking of659

the technology as a ‘silver bullet’ that will fit perfectly into every possible data exchange660

scenario. In enterprise contexts, OWL/RDF systems offer a pragmatic solution to the repre-661

sentation of domain semantics, however, there are limitations to the current implementation662

technologies as outlined in the following sections.663

664

Scalability, Reasoning Performance, and Expressivity665

Many of the benefits of using ontological models in information systems arise from their666

ability to infer new knowledge from existing data. Whilst some of this inference can be done667

in an efficient manner, much of the OWL DL language requires reasoning algorithms that do668

not scale to large volumes of data. A trade-off between reasoning performance and scalability669

is required, which currently prohibit many useful axioms being used in large applications.670

Ongoing research in ‘web-scale’ reasoning techniques combined with state-of-the-art RDF671

graph storage technology is likely to bring increased performance in the future, but applying672

reasoning techniques over large datasets, represented using highly expressive OWL models,673

is currently a significant technical challenge.674

675
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Architecture and Distribution676

Cross-enterprise data exchange is necessarily decentralised, and requires transmission and677

consumption of information between many systems and parties. While ontological models678

make it easy to refer to the same concepts universally, they do not address the practicalities679

of actually publishing and consuming information. Data sharing on the wider semantic web680

shares this issue: to make use of another dataset, one must either download it in its entirety681

to interact with locally, or rely on the data provider’s processing power and availability using682

a SPARQL endpoint. Possible alternative architectural approaches to the data provisioning683

issue include the use of bespoke Service Oriented Architectures, and Linked Data Fragments,684

which use small, targeted data dumps to facilitate local querying of federated data. How-685

ever, work remains to be done in this area before a ‘gold standard’ architectural template686

can emerge.687

688

Versioning and Change Control689

Although ontological models afford a great deal of flexibility and backwards compatibility690

in their design and modification, it is still possible for changes to, or removal of, existing691

axioms from published ontologies to result in incompatibilities between systems. Web on-692

tologies often present version-specific Internationalized Resource Identifiers (IRIs), so-called693

‘Version IRIs’ in addition to canonical IRIs to allow for users that wish to fix their application694

on one version of an ontology, but the problem of change management through a network of695

ontologies has yet to be formally addressed.696

697

CONCLUSIONS698

As demonstrated by the UK Rail Technical Strategy, which states that “Common archi-699

tectures and protocols would facilitate integration and information-sharing. Costs would be700

lowered and services improved”(Rail Safety and Standards Board 2012), there is an appetite701

for greater data integration within the rail industry. This paper discusses the application of702
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ontology and semantic data modelling techniques to provide better knowledge management703

across large complex systems as one possible response to that aspiration. Development of704

technologies for use in the Semantic Web has led to creation of mature toolsets for creation705

of computer-understandable domain ontologies, as well as for reliable storage, querying, and706

data exchange of semantic models. These technologies have been proven in use on the web,707

and can now be exploited to provide ways of sharing enterprise data across industries such708

as the railway.709

A proof-of-concept demonstrator was presented, drawing upon a novel rail domain ontology710

created at the University of Birmingham. The Train Locator application implemented a711

use case in which ontologies and semantic web technology were used to contextualise and712

enrich information from multiple systems. Simulating two different data sources, the demon-713

stration showed how domain models allow presentation of data independently of its original714

syntax, such that two applications could be driven by data not originally intended for that715

use. The patterns for data usage across systems outlined in this document are transferable716

to other application domains, both within the rail and in other similar industrial settings.717

The application’s implementation using off-the-shelf and open source components, including718

standard web technology stacks, shows the ease with which such applications can be built.719

Future work, also being funded by Future Railway in the UK, will focusses on standardising720

methods for collaborative ontology creation in the rail domain with a view towards encour-721

aging uptake of such models across the industry.722
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TABLE 1. Table Showing Examples of RDF Triples

Subject Predicate Object
:Pendolino390003 rdf:type :Train

:Pendolino390003 :operatedBy :VirginTrains

:Pendolino390003 :location :CoventryStation

:CoventryStation rdf:type :TrainStation

:CoventryStation :operatedBy :VirginTrains
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TABLE 2. Information sources for train locator application scenarios.

Application Scenario / Track Circuit Data Mileage (Moving
RTPI System Type Block) Data
Legacy Departure Asserted (real) track circuit Inferred track circuit

Board System data based on train mileage.
Train Position Inferred (approximate) train Asserted (real) mileage data.

Map location based on known
track circuit positions.

Train Position Map
(When Both Sets of Rule reasoning chooses optimum

Location Data location object for the task.
are Available)
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FIG. 1. Layered design philosophy underpinning the RaCoOn model.
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FIG. 2. Block diagram showing ontology design process
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FIG. 3. Example competency questions and paths to ontology creation
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FIG. 4. Ontology graph showing track circuit positioning.
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FIG. 5. Ontology graph showing the “preferredOver” relation between locations.
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FIG. 6. Train locator departure boards view. Map Data c©OpenStreetMap contribu-
tors, CC-BY-SA, Imagery c©Mapbox.
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FIG. 7. Live train information map view in train locator. Map Data c©OpenStreetMap
contributors, CC-BY-SA, Imagery c©Mapbox.
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FIG. 8. Track circuit detail and track circuit boundary overview screenshot. Map Data
c©OpenStreetMap contributors, CC-BY-SA, Imagery c©Mapbox.
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