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Abstract A calcium shellac (CS) matrix was used to encapsulate polymeric melamine formaldehyde 

microcapsules (A) or CaCO3 nanoparticles-stabilized microcapsules (B), both of which encapsulated an oil-

based active ingredient, producing A-CS or B-CS composite microcapsules. The mechanical properties and oil 

release profiles of the composite microcapsules were evaluated. The composite microcapsules showed enhanced 

mechanical stability and reduced leakage of the active ingredient by one order of magnitude. 
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1. Introduction 

Microencapsulation is a powerful technology with a wide range of applications that can enhance the 

stability of active ingredients, aid conversion of liquids to free flowing powders, target the encapsulated 

compound to specific sites, and provide prolonged and controlled release of active ingredients (Yow & 

Routh, 2006). Sustained release microcapsule formulations often rely on diffusion of active ingredients 

from the core through a permeable outer coating or wall to the desired site (Sukhorukov, Fery, Brumen, & 

Möhwald, 2004). However, permeability of the microcapsule wall can also lead to loss of active ingredients 

from the core during processing and storage, and this is especially problematic for volatile core materials 

such as perfume oils. This problem has been partially solved using stimuli-responsive materials
 
(Katagiri, 

Imai, & Koumoto, 2011; Skirtach et al., 2005; Graf et al., 2011; Ke et al., 2011) to form the microcapsule 

wall. These materials provide an impermeable wall during storage and a permeable wall at end use. 

However, construction of microcapsules from these materials requires a layer-by-layer deposition method 

(De Cock et al., 2010), and they are thin-walled and fragile. The low mechanical strength of the wall could 

greatly affect stability of the microcapsules, and they could rupture during transportation and lead to loss of 

the active ingredient and increased cost. In addition, these types of capsules can only be produced in small 

quantities, and are therefore not applicable for industrial application. A system to eliminate or reduce 
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leakage of the active ingredient from microcapsules and increase the mechanical stability of the wall is 

required. 

An alternative strategy involves taking conventional primary microcapsules with an organic (Long, 

York, Zhang, & Preece, 2009) or inorganic (Long, Vincent, York, Zhang, & Preece, 2010) wall and 

encapsulating them in a larger microparticle formed from a biopolymer–shellac cross-linked via calcium 

ions. This outer microparticle can provide good mechanical stiffness and low permeability, and act as a 

carrier and barrier for the more porous primary microcapsules by protecting them from damage during 

various processing steps and reducing active ingredient leakage. In principle, the primary microcapsules 

could be released by dissolution of the biopolymer when needed. 

Shellac is a natural polyester containing hydroxyl, carboxylic acid, and ester functionalities (Singh, 

Upadhye, Mhaskar, & Dev, 1974; Upadhye, Wadia, Mhaskar, & Dev, 1970). Shellac has very low water 

and acid permeability, and it is frequently used as a coating material in pharmaceutical (Pearnchob, 

Siepmann, & Bodmeier, 2003; Oehme, Valotis, Krammer, Zimmermann, & Schreier, 2011) and food 

products (Zhou, Li, Yan, & Xie, 2011; Chauhan, Raju, Singh, & Bawa, 2011). Recently, shellac has been 

further developed as an encapsulating agent for producing microcapsules (Xue & Zhang, 2009; Leick et al., 

2011; Hamad, Stoyanov, & Paunov, 2012, 2013) and tablets (Limmatvapirat et al., 2008), where it 

enhances water resistance and mechanical strength (Xue & Zhang, 2009; Leick et al., 2011). Because it 

possesses good resistance to gastric acid and is biodegradable, it is a good candidate for drug carriers in 

pharmaceutical applications (Ravi, Siddaramaiah, & Kumar, 2008). 

In the work reported here, primary microcapsules with walls made from melamine formaldehyde (MF; 

microcapsule A)
 
(Long et al., 2009) or CaCO3 nanoparticles (microcapsule B)

 
were used to encapsulate 

perfume oil. These primary microcapsules (A and B) were then encapsulated in calcium shellac (CS) 

matrix to form composite microcapsules (A-CS) and (B-CS). MF is a widely used as a wall material for 

microcapsules that are used in many applications, including carbonless copy paper and household products. 

As an inorganic material, CaCO3 is non-toxic and can be dissolved in weak acid, and has attracted much 

attention as a wall material. The advantages for such dual wall structure are that firstly, the cost of using 

shellac as an outer wall to control the mechanical strength of the capsules is relatively low; secondly, with 

the protection of the shellac matrix, one has more flexibility with respect to the choice of chemistry and 

stabilizers to minimize chemical interactions with the active species, thus giving the designer more freedom 

of choice in industrial applications. With the above properties, such microcapsules could be potentially 

used in household products such as detergents or textiles. 

2. Experimental 

2.1. Materials 



    

An aqueous solution of shellac ammonium salt (mass fraction (25±0.4)%, pH 7.3±0.3, density 

1.04±0.03 kg/L; Emerson Resources, Inc., USA), acetic acid (Sigma–Aldrich, UK), calcium chloride 

(Sigma–Aldrich), and Tween 80 (Sigma–Aldrich) were obtained and used without further purification. The 

core oil was a perfume blend with low water solubility that is commonly used in consumer products. An 

aqueous solution of MF precondensate (mass fraction 70%, formaldehyde:melamine molar ratio 1:5) was 

obtained from British Industrial Plastics Ltd (Oldbury, UK). An aqueous solution of formaldehyde (mass 

fraction 37%) was obtained from Sigma-Aldrich, and poly(acrylamide-acrylic acid) sodium salt was 

purchased from Polymer Sciences, Inc. (USA). Calcium carbonate nanoparticles (average diameter 80 nm) 

were obtained from Omya (UK) and were used without further purification. 

2.2. Preparation of composite microcapsules 

2.2.1. Formation of primary microcapsules 

An aqueous solution of MF precondensate (2.50 g) and the poly(acrylamide-co-acrylic acid) sodium 

salt copolymer (0.58 g) in water (70 mL) was stirred with a Rushton turbine (400 rpm, ϕ31 mm, in a 

standard configuration vessel) for 105 min at room temperature. Before stirring, the pH of the solution was 

adjusted to 4.3 with acetic acid (1 mol/L), and monitored using a pH meter during stirring. The core oil 

(9.33 g) was added to the resulting mixture, and the mixture was stirred using a homogenizer (Model 

L4RT, Silverson Machines Ltd, Chesham, UK) at 2500 rpm for 30 min at 15 °C to form an oil in water 

emulsion. The resulting emulsion was stirred at 400 rpm in a vessel (ϕ65 mm×65 mm) with a standard 

Rushton turbine impeller (ϕ31 mm) for 30 min at 15 °C. Then, the temperature was increased to 65 °C and 

stirring was continued for 6 h. The resulting dispersion of MF microcapsules was then cooled to 25 °C. 

To form CaCO3 nanoparticle-stabilized microcapsules (B), the core oil (9.3 g) was added to an 

aqueous dispersion of CaCO3 nanoparticles (40 mL, mass fraction 10%) and stirred using a homogenizer 

(Model L4RT, Silverson Machines Ltd) at 2500 rpm for 3 min. This formed an oil in water emulsion 

stabilized by CaCO3 nanoparticles. 

2.2.2. Formation of composite microcapsules 

Composite microcapsules of CS containing MF microcapsules (A-CS) or CaCO3 nanoparticle 

microcapsules (B-CS) were formed as follows. One gram of MF microcapsules (A) or CaCO3 nanoparticle-

stabilized microcapsules (B) was dispersed in an aqueous solution of shellac ammonium salt (5 mL). 

Sunflower oil (200 mL) was added to the resulting dispersion (Step 1, Scheme 1), and the mixture was 

stirred using a homogenizer (Model L4RT, Silverson Machines Ltd) at 1000 rpm for 30 min. Calcium 

chloride (0.1 g) was added every minute over 10 min (1 g in total) to the resulting emulsion, and the stirring 

was maintained for another 2 h until no CaCl2 powder remained; The divalent calcium ions migrated to the 

oil‒water interface and ion exchange occurred with monovalent ammonium ions and the carboxylate 

anions, resulting in cross-linking of the shellac wall (Step 2, Scheme 1). The resulting composite 



    

capsules (A-CS and B-CS) were isolated from the sunflower oil by filtration and dried using a freeze dryer 

(EF03, Edwards, Crawley, UK) at −40 to −45 °C for 24 h. The pressure was 4–5 mbar at the end of the 

drying process.  

Scheme 1 

CS microparticles were prepared as follows. Sunflower oil (200 mL) was added to the aqueous 

solution of shellac ammonium salt (5 mL), and the resulting mixture was emulsified using a homogenizer 

(Model L4RT, Silverson Machines Ltd) at 1000 rpm for 30 min. Calcium chloride (0.1 g) was added every 

minute over 10 min (1 g in total) to the emulsion, and the stirring was maintained for another 2 h until no 

CaCl2 powder remained. The resulting microparticles were isolated from the sunflower oil by filtration and 

freeze dried. 

2.3. Characterization of composite microcapsules and CS microparticles 

The mean particle size and size distribution of the microcapsules and calcium shellac microparticles in 

the aqueous dispersions were evaluated by static light-scattering (Mastersizer 2000, Malvern Instruments 

Ltd, UK). 

FIB/SEM (Quanta 3D FEG, FEI Company, USA) was used to examine the inner structures of complex 

microcapsules and calcium shellac microparticles. Samples were analyzed in high vacuum mode and the 

operating voltages are shown on the FIB/SEM images. 

The mechanical properties of the microcapsules were determined by micromanipulation (Zhang, 

Saunders, & Thomas, 1999). A glass probe with a diameter of 300 µm mounted on a force transducer 

(Model 405A, Aurora Scientific Inc., Canada) was positioned perpendicular to the glass slide. The dried 

microcapsules or calcium shellac microparticles were placed on the glass slide, and observed through side 

and bottom-view cameras. A single microcapsule or calcium shellac microparticle was compressed by the 

glass probe travelling at 2 µm/s. The voltage output generated by the force transducer because of 

compression of the microcapsules or calcium shellac microparticles was recorded through a data 

acquisition card in a personal computer. From the sensitivity of the transducer, the voltage was converted to 

force and used to determine the rupture force of the microcapsules or calcium shellac microparticles. 

To determine oil encapsulation efficiency and leakage rate of the microcapsules, a Trace 2000 series 

gas chromatogram with a flame ionization detector and ZB5 Inferno column (30 m×0.32 mm) was used. 

Analysis was performed using a Dionex Chromeleon Workstation. The injection volume of each sample 

was 1 μL. The injection port temperature was 250 °C. The temperature ramp for the column was increased 

by 10 °C/s from 50–300 °C, and held at 300 °C for 35 min. The detection temperature was 300 °C. Helium 

was used as the carrier gas. 



    

To the resulting aqueous dispersion of microcapsules, hexane was added (30 mL), which was stirred 

for 10 min. A hexane aliquot (1 μL) was then removed and analyzed by gas chromatography to determine 

the amount of oil. Further aliquots (1 μL each) were removed at various time intervals between 1 to 20 d. 

Before each sample was removed, the dispersion was stirred for 10 min to ensure oil transfer to the hexane 

layer. 

3. Results and discussion 

3.1. Size and morphology 

The mean particle size and size distribution of the primary and composite microcapsules are shown in 

Fig. 1. The primary microcapsules A and B had average diameters of 13.1 and 13.8 μm, respectively. After 

re-encapsulated in the CS shell, the average diameters of A-CS and B-CS increased to 83.0 and 84.0 μm, 

respectively. By comparison, the average diameter of a CS microparticle was 42.6 μm. It is worth noting 

that both CS and the composite A-CS and B-CS presented bimodal distribution curves. The first peak in 

these curves was small and might be caused by the formation of small droplets during emulsification. These 

droplets would then solidify to form CS microparticles in the shell formation step. For the microcapsules 

made from MF, the small peak was caused by MF polymer particle formation during the polymerization 

step. 

Fig. 1 

Optical and electron microscopy were used to examine the structures and morphologies of the 

composite microcapsules A-CS and B-CS and the microparticle CS (Fig. 2). A comparison of the optical 

microscopy images (Fig. 2(a), (c), and (e)) showed that microcapsules A and B were encapsulated in the 

irregularly shaped CS matrix, and had rough surfaces (Fig. 2(b) and (d)). FIB/SEM was used to examine 

the inner structure of the B-CS composite microcapsules (Fig. 2(d)) and CS microparticles (Fig. 2(f)). In 

agreement with an earlier report (Xue & Zhang, 2009; Hamad et al., 2012), SEM imaging revealed that the 

CS microparticles had a solid interior (Fig. 2(f)). By contrast, the B-CS composite microcapsules contained 

voids (hollows), and the core oil was leaking from the bottom edge of the hollow (Fig. 2(d)). The hollow in 

the image (Fig. 2(d)) had a diameter of approximately 30 µm, which is within to the diameter range of the 

B microcapsules (4–37 µm). This suggests that the vacant hollow was occupied by the primary 

microcapsule B. 

Fig. 2 

3.3 Mechanical properties 

The mechanical properties of microcapsules A, A-CS, B, B-CS, and microparticles CS were evaluated 

using a micromanipulation technique that is based on compression of single microcapsules at a given speed 



    

to rupture (Zhang et al., 1999). A typical force vs. distance curve is presented in Fig. 3 for all the 

microcapsules. There was only one peak in this curve for the primary microcapsules A and B, whereas 

multiple peaks were observed in the curves for the CS particles and the composite microcapsules A-CS and 

B-CS. The multiple peaks reflect multiple rupture events during compression of the microcapsules. For the 

composite microcapsules, these multiple peaks might correspond to cracking of the stiff CS shell during the 

initial breaking, subsequent compression of the debris, and then rupture of the encapsulated primary 

microcapsules. 

Fig. 3 

For the microcapsules and microparticles showing multiple peaks, the rupture force corresponding to 

the first peak was calculated. The deformation at rupture and rupture stress are summarized in Table 1. A 

large difference in the deformation at rupture, which is defined by the ratio of the displacement at rupture to 

initial diameter, between microcapsules A (24.9±1.5)% and B (7.5±0.4)% was observed. However, after 

encapsulation in the CS matrix, the deformations at rupture of composite microcapsules A-CS (25.7±1.0)% 

and B-CS (26.7±1.9)% were very similar. The nominal rupture stress results gave a similar picture. The 

average nominal rupture stress results for A and B were 1.30±0.10 and 0.22±0.03 MPa, respectively. 

Whereas those for A-CS and B-CS were 21.00±2.37 and 21.84±1.43 MPa, respectively. These results 

suggest that the mechanical properties of the composite microcapsules are dominated by the CS matrix, and 

are not affected by the type of microcapsule that is encapsulated in the CS. The nominal rupture stress is a 

reflection of the mechanical strength of a material, and a large increase (16- and 109-fold for A and B, 

respectively) in the nominal rupture stress from primary microcapsules A and B to composite 

microcapsules A-CS and B-CS was observed. This indicates that the CS composites can endure greater 

external force, and in doing so, protect the encapsulated microcapsules from mechanical stress. This 

increase in the rupture stress of the composite microcapsules is in agreement with a previous report by 

Leick et al. (2011), who found that the addition of shellac to liquid-filled pectinate capsules increased the 

strength and stiffness of the capsule wall compared to the pure pectinate capsules. The bare CS 

microparticles showed lower displacement at rupture (20.9±1.8)% and lower nominal rupture stress 

(14.1±0.6 MPa) than the composite A-CS and B-CS microcapsules. This indicates that the incorporation of 

the primary microcapsules A and B enhances the mechanical strength compared with that of CS alone. This 

result is in agreement with a previous study (White et al., 2001). 

Table 1 

3.4 Leakage 

Oil leakage from microcapsules A, B, A-CS, and B-CS was monitored over 20 d and the release 

curves are presented in Fig. 4. The microcapsules B had the highest leakage over 20 d (10.3±0.42)%, 

followed by A (6.8±1.5)%. Composite microcapsules B-CS showed a large reduction in leakage 

(0.76±0.02)% compared with A and B, and the lowest level of leakage was observed from A-CS 



    

(0.18±0.02)%. However, because of the differences among the average sizes of the microcapsules (A=13.1 

µm, B=13.8 µm, A-CS=83.0 µm, and B-CS=84.0 µm), the effect of microcapsule surface area and volume 

on leakage should be considered. 

Fig. 4 

Diffusion of a solute molecule from a sphere to a surrounding liquid is described by the following 

equation (Crank, 1975): 

2 2

t

2 2 2
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1 exp ,
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M Dn t
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       (1) 

where Mt is the amount of the solute released at time t, M∞ is the total amount of solute in the microcapsule, 

D is the diffusivity of the solute in the microcapsule, and a is the radius of the microcapsule. For ratios of 

Mt/M∞ less than 40%, the relationship between Mt/M∞ and (Dt)
1/2

/a is approximately linear (Ritger & 

Peppas, 1987) and given by the following equation: 

 
0.5

t 3 .
DtM

M a

          (2) 

In the present study, Eq. (2) was applied to evaluate the diffusivity of perfume from the different 

microcapsules, and it was assumed the leakage mechanism was dominated by Fickian diffusion. 

From Eq. (2), Mt/M∞vs. t
1/2

 was plotted, and the relationship is shown in Fig. 5. Deff can be obtained 

from the slope of the line. Theoretically, if the microcapsules have a size distribution that is not very 

narrow, then Eqs. (1) and (2) need to be corrected. However, for small ratios of Mt/M (<10%) the effect of 

the size distribution of spheres on the relationship is negligible. Therefore, the mean microcapsule diameter 

was used to determining Deff. 

Fig. 5 

The results showed that after taking the diameter into consideration, composite microcapsules A-CS 

gave the smallest Deff (3.310
−18

 m
2
/s), followed by B-CS (5.910

−17
 m

2
/s). By comparison, the values of 

Deff for microcapsules A and B were 1.410
−16

 and 3.810
−16

 m
2
/s, respectively. The smaller diffusivities 

for composite microcapsules A-CS and B-CS compared with the primary microcapsules A and B indicate 

that the flow of core content from the microcapsules to the outside environment is slower for the composite 

than the primary microcapsules. This proves that the CS matrix effectively reduces leakage of core oil 

through diffusion inhibition. 

4. Conclusions 



    

Composite microcapsules A-CS and B-CS were successfully prepared. The average nominal rupture 

stresses of the composite microcapsules A-CS and B-CS were 21.0±2.4 and 21.8±1.4 MPa, respectively. 

The former is approximately 16-fold greater than that of microcapsules A, and the latter was 109-fold 

greater than that of microcapsules B. Leakage tests showed a 37-fold reduction in leakage after 

microcapsules A were encapsulated in composite microcapsules (A-CS), and a 14-fold reduction after 

microcapsules B in composite microcapsules B-CS. After normalizing the sizes of both the microcapsules, 

composite microcapsules A-CS and B-CS showed much smaller Deff values than microcapsules A and B. 

This reduction in leakage and enhancement in mechanical strength provides good evidence that CS is an 

effective carrier that protects the primary microcapsules from rupture. CS provides an additional barrier for 

diffusion of the encapsulated active ingredients to surrounding aqueous environment. 

Because CS slowly dissolves under alkaline conditions (pH>7), these composite microcapsules could 

be used for double release. For example, instant release of encapsulated A and B microcapsules from the 

matrix with dissolution of CS, followed by further prolonged release of the core oil by diffusion through 

the primary microcapsule walls. Furthermore, these composite microcapsules show greater mechanical 

strength over conventional microcapsules, and they could meet the strength requirements for a wider range 

of applications. 
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Table 1 Mechanical properties of microcapsules A, B, A-CS, B-CS, and microparticles CS 

Microcapsules or 

microparticles 
Diameter (μm) 

Deformation at rupture 

(%) 

Nominal rupture stress 

(MPa) 

A 13.11.1 24.91.5 1.300.10 

B 13.81.5 7.50.4 0.220.03 

A-CS 83.01.7 25.71.0 21.002.37 

B-CS 84.01.4 26.71.9 21.841.43 

CS 42.61.6 20.91.8 14.101.60 

 

 

 

 

 

Scheme 1. Schematic representation of formation of the composite microcapsules: Step 1, emulsification of 

shellac ammonium aqueous solution with melamine formaldehyde microcapsules (A) or CaCO3 

nanoparticles stabilized microcapsules (B) in sunflower oil to form water-in-oil emulsion; Step 2, addition 

of calcium chloride to the emulsion formed in Step 1 to form composite microcapsules A-CS or B-CS with 

the solidified calcium shellac matrix wall. The cross-section shows the encapsulated primary microcapsules 

(in purple) and the encapsulated perfume oil (in yellow). 

  



    

 

Fig. 1. Average size and size distribution of microcapsules A and B, composite microcapsules A-CS and B-

CS, and CS microparticles. 

  



    

 

Fig. 2. Optical microscopy and SEM images of the composite microcapsules A-CS ((a) and (b)), B-CS ((c) 

and (d)) and CS microparticles ((e) and (f)). In images (d) and (f), B-CS and CS were sliced using a 

focused ion beam technique and observed by SEM. 



    

 

 

 

Fig. 3. Typical force vs. distance curves for microcapsules. (a), (b) Microcapsules A and B. (c) Calcium 

shellac microparticles CS, where a–c are the cracking or breakage points. (d) Composite microcapsules A-

CS, where a–d are the cracking or breakage points. (e) Composite microcapsules B-CS, where a–d are the 

cracking or breakage points. 



    

 

Fig. 4. Leakage profile of microcapsules A, B, A-CS, and B-CS over 20 d. The lines are a guide but not 

lines of best fit. 

  



    

 

Fig. 5. Linear plots for calculation of Deff for microcapsules A and B, and composite microcapsules A-CS 

and B-CS. 

 

 


