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Abstract

We extend Breitung�s (2000) panel data unit root test to the case of �xed time (T )
dimension while still allowing for heteroscedastic and serially correlated error terms.
The analytic local power function of the new test is derived assuming that only the
cross section dimension of the panel grows large. It is found that, if the errors are
serially correlated, the test has non-trivial power. Monte Carlo experiments show that
the suggested test is more powerful when the number of cross section units is moderate
or large, regardless of the number of time series observations.
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1 Introduction

To improve the power performance of panel data unit root tests in the presence of hetero-

geneous individual linear trends, known as incidental trends, Breitung (2000) proposed a

statistic based on an orthogonal transformation of the individual series of the panel. The

test does not require an inconsistency adjustment of the estimator of the autoregressive pa-

rameter ' as opposed to other tests in the literature, see e.g., Baltagi (2013) for a survey.

Although it was found to be consistent and have superior power in small samples for values

of ' not far from unity (e.g., ' = 0:95), its asymptotic local power in a T�1N�1=2 neigh-

bourhood of unity is trivial and equivalent to that of the asymptotically bias corrected tests

(see, Moon et al (2007)).

In this paper, we extend Breitung�s (2000) test in two directions. First, we allow the time

dimension T of the panel to be �nite (�xed) while allowing for heterogeneity, heteroscedas-

ticity, and serial correlation in the error terms. Second, we derive the �xed-T asymptotic

local power function of the new test. These extensions make the application of the test valid

in cases of short-T panels, often met in practice, and under higher than �rst order serial

correlation. The paper provides a number of interesting results. First, it shows that the

�xed-T version of the test can further improve its small sample size and power performance

in short panels, compared to its large-T version. Second, the new test also has trivial asymp-

totic local power in a N�1=2 neighbourhood of unity when the error terms are independently

distributed over time, which explains analytically Breitung�s (2000) �ndings in his Monte

Carlo experiment. Third, when the error terms are serially correlated, the estimator of '

becomes inconsistent and thus, the test needs an inconsistency correction. Fourth, there are

forms of serial correlation of the error terms for which the test has non-trivial asymptotic

local power.

The paper is organized as follows. Section 2 introduces the new test and provides its local

power function. Section 3 presents the results of our Monte Carlo exercise, while Section 4

concludes the paper. All proofs are relegated to the Appendix.

2 The test statistic and its asymptotic local power

Consider the following AR(1) panel data model with individual e¤ects and incidental trends:

yi = 'yi�1 + (1� ')aie+ '�ie+ (1� ')�i� + ui; i = 1; 2; :::; N; (1)

where yi = (yi1; :::; yiT )0 and yi�1 = (yi0; :::; yiT�1)0 are T � 1 vectors, ui is the T � 1 vector
of error terms uit, and ai and �i are respectively the individual e¤ects and the slopes of
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incidental trends of the model. The T � 1 vectors e and � have elements et = 1 and � t = t
for t = 1; :::; T . Next, de�ne the autoregressive coe¢ cient ' as 'N = 1� cp

N
(see also Madsen

(2010)). Then, the null hypothesis of a unit root in ' against its alternative of stationarity

(i.e., ' < 1) can be respectively written as

H0: c = 0 and H1: c > 0,

where c is the local to unity parameter. The asymptotic distribution of the extension of

Breitung�s (2000) test statistic is derived under the following assumption.

Assumption A
(i) fuig; i 2 f1; 2; :::; Ng, are independent random vectors with means E(ui) = 0 and

heterogeneous variance-covariance matrices �i � E(uiu0i) � [i;ts], where i;ts = E(uituis) =
0 for t < s and s = t+p+1; :::; T: The maximum order of serial correlation in ui is p = T �2.
All 4 + " mixed moments are �nite.

(ii) � = limN
1
N

PN
i=1 �i is a �nite, positive de�nite matrix and limN(N�)

�1�i = 0, for

all i. �i are independent across i with �nite 4 + " moments and with limN
max(E(�2i ))

(
PN
i=1 E(�

2
i ))
= 0:

(iii) uit are independent of yi0; ai and �i;while yi0 and ai are independent across i and

have �nite 4 + � moments.

Assumption A allows us to derive the distribution of the �xed-T version of Breitung�s

(2000) panel unit root test statistic under H0. Condition (i) determines the order of serial

correlation of uit and together with condition (ii) provide the necessary assumptions for the

application of the Lindeberg-Feller CLT. Condition (iii) is needed for the derivation of the

local power function.

Breitung�s (2000) test is based on the forward orthogonal deviations transformation of

the individual series of model (1), yit; which removes individual e¤ects and incidental trends.

In a �rst step, the initial observations yi0 are subtracted from yit, i.e., zit = yit � yi0. Then,
de�ne the following (T � 1)� T matrices:

A =

 
01�T

GH

!
and B =

 
01�(T�2) 0 0

IT�2 0(T�2)�1 � 1
T
�T�2

!
; where

G =

0BBBBBB@

q
T�2
T�1 0q

T�3
T�2

. . .

0
q

1
2

1CCCCCCA and H =

0BBBBBBB@

1 � 1
T�1 � � � � � � � � � � 1

T�1
. . . � 1

T�2 � 1
T�2

. . .
...

1 �1
2

�1
2

� � � � � � � � � 0 1 �1

1CCCCCCCA
;
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with dimensions (T�2)�(T�2) and (T�2)�T respectively, and vector �T�2 = (1; 2; :::; T�
2)0. In the case that uit � IID(0; �2), multiplying �zi with matrix A and zi with matrix B
implies the following orthogonal moment conditions under H0: c = 0:

E(z0iB
0A�zi) = 0: (2)

These can be tested based on the following least squares estimator of ':

'̂FOD = 1 +

 
NX
i=1

z0iB
0Bzi

!�1 NX
i=1

z0iB
0A�zi

!
,

which is equal to Breitung�s (2000) estimator plus 1. This estimator is consistent under

H0: c = 0, i.e., p limN '̂FOD = 1. In the more general case where � 6= �2IT , estima-

tor '̂FOD becomes inconsistent and its asymptotic bias is equal to p limN('̂FOD � 1) =
tr((�+IT )

0B0A�)
tr((�+IT )0B0B(�+IT )�)

, where � is a T � T matrix which has unities at its lower than its main
diagonals, and zero elsewhere, and IT is a T � T identity matrix.1 Thus, to test moment
conditions (2), '̂FOD needs to be corrected for its inconsistency (see, e.g., Harris and Tzavalis

(1999)).

Theorem 1 Let conditions (i) and (ii) of Assumption A hold and N !1; then under H0 :
c = 0 we have

UBT =
p
NV �1=2�̂

 
'̂FOD � 1�

b̂

�̂

!
d�! N(0; 1);

where b̂

�̂
= tr(�p�̂)

1
N

PN
i=1 z

0
iB

0Bzi
, �̂ = 1

N

PN
i=1�zi�z

0
i, �p = 	p � e0	pe

e0Me
M with 	p a T � T

matrix having in its diagonals f�p; ::; 0; :::pg the corresponding elements of matrix � =

(� + IT )
0B0A, and zero elsewhere, M is a T � T selection matrix with elements mts = 0,

if ts 6= 0, and mts = 1, if ts = 0, and V = vec(�0 � �0p)0�vec(�0 � �0p) where � =

1
N

XN

i=1
V ar(vec(�zi�z

0
i)).

2

The bias correction of '̂FOD, assumed by Theorem 1, relies on selection matrices 	p
and �p. 	p selects the non-zero elements of � (estimated by �̂ = 1

N

PN
i=1�zi�z

0
i), i.e.,

i;ts = E(uituis) 6= 0, for t; s < p, to correct for the bias of the numerator of '̂FOD coming
from the serial correlation e¤ects in uit. Since, under H0, �̂ is not a consistent estimator of

� due to the nuisance parameter e¤ects of incidental trends, i.e. p limN �̂ = � + �2ee0 by

1This happens because tr((� + IT )0B0A) = 0 and tr((� + IT )0B0A�) 6= 0:
2An alternative speci�cation of UBT for uit � NIID(0; �2) is UBT;2 =

p
NV

�1=2
2 ('̂FOD�1)

d�! N(0; 1),

where V2 =
2tr(A2

�)
tr((�+IT )0B0B(�+IT ))2

; with A� = 1
2 (� + �

0):

4



condition (ii) where �2 = p limN
1
N

PN
i=1E(�

2
i ); the limiting distribution of '̂FOD�1 must be

also corrected for these e¤ects, de�ned �2. This is done by premultiplying �̂ with �P . The

latter adjusts 	p by tr
�
M �̂

�
=e0Me, which is a consistent estimator of �2. Implementing

test statistic UBT requires a consistent estimator of variance V . Under H0, this is given

as V̂ = vec(�0 � �0p)0�̂vec(�0 � �0p) where �̂ = 1
N

PN
i=1 (vec(�zi�z

0
i)vec(�zi�z

0
i)
0). The

main di¤erence between UBT and Breitung�s statistic is the replacement of a T -consistent

variance estimator of ui with a N -consistent one.

To study the asymptotic power of UBT under H1: c > 0, we will rely on a "slope"

parameter de�ned in local power functions of form �(za+ ck) as k, where � is the standard

normal cdf and za denotes the �-level percentile. Since � is strictly monotonic, a larger k

means greater power for the same value of c. If k > 0, then test statistic UBT will have

non-trivial power. If k = 0, it will have trivial power, which is equal to a. Finally, if k < 0,

it will be biased. In the next theorem, we derive the limiting distribution of UBT under H1.

Theorem 2 Under Assumption A and H1: c > 0, we have

UBT =
p
NV �1=2�̂

 
'̂FOD � 1�

b̂

�̂

!
d�! N(�ck; 1); (3)

as N !1, where

k =
tr(�0B0A��) + tr(B0A��) + tr(�0B0A�) + tr(F 0B0A�)� tr(�0�p�)� tr(�p��)p

V
; (4)

where F is de�ned in the Appendix.

The result of Theorem 2 implies that UBT can have non-trivial power, as k can be

positive. For instance, this can happen when uit follows MA(1) process uit = "it + �i"it�1

with �i < 0. It can be attributed to the fact that the individual series of the panel yit will

look similar to those generated by model (1) with a common linear trend for all i. In this

case the incidental trends problem does not apply (see Moon et al (2007)). However, power

becomes trivial if uit are serially uncorrelated. Then, UBT su¤ers from the problem of zero

local power due to incidental trends, noted by Moon et al (2007) for large-T panel unit root

tests.3 This explains Breitung�s (2000) Monte Carlo �ndings. Note that k also depends

on the moments of nuisance parameters �i, entering its denominator k through variance

function V . For instance, if uit and �i are zero-mean normally distributed random variables,

3The limiting distribution of UBT;2 under H1: c > 0 becomes UBT;2 =
p
NV

�1=2
2 ('̂FOD � 1)

d�!
N(�ck2; 1), where k2 = 0, which means that the test has trivial power.
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then V is given as V = 2tr((AFOD� + �
2AFODee

0)2), where AFOD = 1
2
(� + �0 � �p � �0p)

(see proof of Theorem 1).

3 Simulation Results

The aim of our simulation study is twofold: �rst, to examine if the small sample size and

power performance of the �xed-T test statistic UBT is satisfactory compared to its large-T

version and, second, to investigate if the asymptotic local power function of the test can

approximate its actual power. In our analysis, we assume that uit are generated as uit =

"it+�"it�1, with "it � NIID(0; 1) and � 2 f�0:8;�0:4; 0; 0:4; 0:8g. We set yi0 = 0 and ai = 0,
without loss of generality as these parameters do not appear in the local power function.
For �i, we consider �i = 0 and �i � NIID(0; 1), while ' 2 f1; 0:95g, N 2 f20; 50; 100g and
T 2 f7; 10; 15; 20; 50g. Rejection frequencies are computed based on 10000 replications at
5% signi�cance level.

N 20 50 100

'=T 10 20 50 100 10 20 50 100 10 20 50 100

UBT 1 0.093 0.104 0.110 0.114 0.077 0.087 0.088 0.093 0.070 0.070 0.073 0.080

0:95 0.061 0.083 0.267 0.840 0.065 0.106 0.582 0.997 0.074 0.158 0.854 1

UB 1 0.082 0.074 0.063 0.061 0.079 0.069 0.066 0.057 0.075 0.066 0.059 0.057

0:95 0.055 0.069 0.291 0.886 0.059 0.101 0.547 0.998 0.064 0.138 0.823 1

Table 1: Size and size-adjusted power of test statistics UBT and UB, for � = 0 and p = 0:

Table 1 presents the size and the size-adjusted power of UBT and Breitung�s statistic,

denoted UB. This is done for � = 0 and �i = 0, for all i (see also Breitung (2000)). The

results of the table indicate that both the size and power of UBT are satisfactory (see De

Blander and Dhaene (2012)). Its power increases with N or T , but faster with T than N .

For small N and large T , UB has better size and more power than UBT . However, as N

increases UBT improves its size and is more powerful than the UB test irrespective of T .

This quali�es application of UBT also in cases where both dimensions N and T of the panel

are large.

Table 2, which presents size and power of statistic UBT for non-zero �, indicates that
positive serial correlation (� > 0) in error terms uit increases considerably the power of UBT ,

even for very small values of T and N . Also, the size performance of UBT is una¤ected when

uit are negatively correlated (� < 0). To see how well the asymptotic theory approximates
the local power of UBT , Table 3 presents power values when ' = 1 � c=

p
N , for c = 1,
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N 2 f50; 100; 300; 1000g, T = 10 and two cases of �i: �i = 0 and �i � NIID(0; 1). The

results of Table 3 indicate that the estimates of the power obtained by our Monte Carlo

experiment tend to approximate their theoretical values (TV ). For � < 0, the test has non-

trivial local power while for � > 0, it is biased. Finally, the power losses for �i � NIID(0; 1)
are not very large. They become minimal for � = 0, where �i does not a¤ect the local power

function.

N 20 50 100

� '=T 10 20 50 100 10 20 50 100 10 20 50 100

-0.8 1 0.054 0.054 0.057 0.054 0.051 0.057 0.054 0.057 0.053 0.054 0.056 0.051

0:95 0.061 0.073 0.099 0.114 0.070 0.086 0.128 0.164 0.075 0.105 0.173 0.246

-0.4 1 0.051 0.059 0.066 0.080 0.050 0.055 0.066 0.071 0.054 0.054 0.059 0.061

0:95 0.062 0.091 0.252 0.711 0.074 0.115 0.435 0.695 0.077 0.138 0.656 0.998

0.4 1 0.079 0.096 0.113 0.111 0.070 0.084 0.082 0.089 0.061 0.069 0.082 0.079

0:95 0.092 0.161 0.489 0.950 0.093 0.181 0.728 0.999 0.093 0.216 0.924 1.00

0.8 1 0.074 0.097 0.111 0.122 0.068 0.078 0.090 0.090 0.064 0.073 0.080 0.078

0:95 0.095 0.168 0.496 0.958 0.090 0.185 0.747 0.999 0.100 0.219 0.927 1.00

Table 2: Size and power of the �xed-T panel root test statistic UBT when � 6= 0 and p = 1:

�i= 0; i = 1; :::; N �i� N(0; 1); i = 1; :::; N
�nN 50 100 300 1000 TV �nN 50 100 300 1000 TV

�0:8 0.125 0.123 0.113 0.096 0.067 �0:8 0.091 0.086 0.084 0.076 0.059

�0:4 0.142 0.132 0.109 0.099 0.059 �0:4 0.089 0.086 0.075 0.068 0.054

0 0.222 0.182 0.115 0.086 0.050 0 0.203 0.154 0.105 0.081 0.050

0:4 0.286 0.213 0.132 0.088 0.045 0:4 0.173 0.138 0.102 0.077 0.047

0:8 0.308 0.233 0.147 0.096 0.044 0:8 0.191 0.154 0.111 0.079 0.046

Table 3: Local power values of statistic UBT for T = 10, when uit= "it+�"it�1 and p = 1.

4 Conclusions

This paper extends Breitung�s (2000) panel unit root test to the case of �xed-T time dimen-

sion and derives its local power. It shows that the new test can further improve its small

sample size and power performance in short panels, compared to its large-T version. In
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addition to this, allowing for serial correlation in error terms leads to a test which can have

non-trivial local power in the presence of incidental trends. Monte Carlo analysis con�rms

the asymptotic results provided by the paper.
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5 Appendix

Theorem 1: Under H0: c = 0; we have zi = zi�1+�ie+ui and zi�1 = �e�i+�ui. Then, the
numerator of '̂FOD�1 becomes 1

N

PN
i=1 z

0
iB

0A�zi =
1
N

PN
i=1(z

0
i�1+�ie

0+ui)B
0A(�ie+ui) =

1
N

PN
i=1(u

0
i(�

0+IT )+�i�
0)B0A(�ie+ui) =

1
N

PN
i=1 u

0
i(�

0+IT )B
0Aui, since (�+IT )e = � and

� 0B0 = 01�T ; B
0Ae = 0T�1 by construction. By Chebyshev�s Weak Law of Large Numbers:

1

N

NX
i=1

u0i(�
0 + IT )B

0Aui =
1

N

NX
i=1

u0i�ui
p�! tr(��): (5)
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To see how tr(��) can be estimated by b̂, write

tr(�p�̂) = tr(	p�̂)� tr(	pee0)
tr(M �̂)

e0Me
.

This has

p lim
N
tr(�p�̂) = tr

�
	p
�
� + �2ee0

��
� tr(	pee0)

tr(M
�
� + �2ee0

�
)

e0Me

= tr (	p�) + tr (	pee
0) �2 � tr(	pee0)

tr(M�) + tr(Mee0�2)

e0Me
= tr (	p�) + tr (	pee

0) �2 � tr(	pee0)�2

= tr (	p�) = tr(��);

because tr(M�) = 0. Similarly, it can be shown that the denominator of '̂FOD � 1 has the
following limit:

1

N

NX
i=1

z0iB
0Bzi =

1

N

NX
i=1

u0i(�
0 + IT )B

0B(� + IT )ui
p�! tr((�0 + IT )B

0B(� + IT )�): (6)

The relationships (5) and (6) imply that the inconsistency of '̂FOD is given as p limN('̂FOD�
1) = tr(��)

tr((�0+IT )B0B(�+IT )�)
: Thus '̂FOD becomes unbiased, if tr(��) = 0, i.e. � = �2IT .

Combining the above, the limiting distribution of UBT can be derived as follows:

p
N�̂
�
'̂FOD � 1� b̂=�̂

�
=

p
N

 
1

N

NX
i=1

u0i(�
0 + IT )B

0Aui �
1

N

NX
i=1

�z0i�p�zi

!
=

1p
N

NX
i=1

�z0i(�� �p)�zi

since�z0i��zi = u
0
i�ui, whereE(�z

0
i(���p)�zi) = 0 by construction of�p and V ar(�z0i(��

�p)�zi) = vec(� � �p)0V ar(vec(�zi�z0i))vec(� � �p): The result follows by applying the
Lindeberg-Feller CLT. If ui and �i are zero-mean normally distributed random variables,

then �zi is normal with V ar(�z0i(�� �p)�zi) = 2tr(
�
AFOD

�
�i + E(�

2
i )ee

0��2):
Theorem 2: To prove the theorem, we will employ the following relationships:

zi = 'Nzi�1 +X� i + ui; i = 1; 2; :::; N (7)

zi�1 = 
X� i + 
ui + (w � e)yi0; (8)

and �zi = ('N � 1)zi�1 +X� i + ui; (9)

9



where � i =

 
(1� 'N)(ai � yi0) + '�i

(1� 'N)�i

!
, X = (e; �), w = (1; 'N ; '

2
N ; :::; '

T�1
N )0 and


 =

0BBBBBBBBBBB@

0 : : : : : 0

1 0 :

'N 1 : :

'2N 'N : : :

: : : : :

: : 1 0 :

'T�2N 'T�3N : : 'N 1 0

1CCCCCCCCCCCA
. Note that, for 'N = 1, we have 
 � �: The �rst

order Taylor expansions of 
 and w yield


 = � + F ('N � 1) + o(1) and w = e+ f('N � 1) + o(1), (10)

respectively, where F = d

d'N

j'N=1 and f =
dw
d'N

j'N=1(see also Madsen (2010)). � i can be
written more compactly as

� i =
cp
N
�i + �ie2, (11)

where cp
N
= (1� 'N), �i = (ai � yi0 � �i; �i)0 and e2 = (1; 0)0. The following equalities also

hold:

tr(�) = 0 and tr(�0B0A) = �tr(B0A);
e0� = 01�T and �e = 0T�1;

B0AXe2 = 0T�1;

�2e02X
0�0B0A�Xe2 = e02X

0�0B0AX~e;

�2e02X
0B0A�Xe2 = e02X

0B0AX~e;

�2e02X
0�p�Xe2 = e02X

0�pX~e;

�2e02X
0�0�pXe2 = ~e0X 0�pXe2; (12)

where ~e = E(�i�i): Consider the following formula of test statistic UBT :

p
N�̂

 
'̂FOD � 'N �

b̂

�̂

!
= (13)

=
p
N�̂

 
1 +

1
N

PN
i=1 z

0
iB

0A�zi
1
N

PN
i=1 z

0
iB

0Bzi
� 'N �

1
N

PN
i=1�z

0
i�p�zi

1
N

PN
i=1 z

0
iB

0Bzi

!
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=
c

N

NX
i=1

z0iB
0Bzi +

1p
N

NX
i=1

z0iB
0A�zi �

1p
N

NX
i=1

�z0i�p�zi = (I) + (II) + (III):

The limiting distribution of the above statistic is derived by taking limits of (I), (II) and

(III), for N !1. To derive the limit of (I), we will employ (7). Then, (I) can be written as
c
N

PN
i=1 z

0
iB

0Bzi =
c
N

NX
i=1

'2Nz
0
i�1B

0Bzi�1+'Nz
0
i�1B

0BX� i+'Nz
0
i�1B

0Bui+'N�
0
iX

0B0Bzi�1+

� 0iX
0B0BX� i + �

0
iX

0B0Bui + 'Nu
0
iB

0Bzi�1 + u
0
iBB

0X� i + u
0
iB

0Bui. Using (8) and (10) and

(11), the �rst term of the last relationship can be written as c
N

PN
i=1 '

2
Nz

0
i�1B

0Bzi�1 =
c
N

PN
i=1 z

0
i�1B

0Bzi�1 + op(1) =
c
N

PN
i=1(�ie

0
2X

0�0 + u0i�
0)B0B(�Xe2�i + �ui) + op(1): Since

the sum is multiplied by 1
N
; any summand coming from the expansion of it which is also

multiplied by 1
N
, or 1p

N
, will be asymptotically negligible, op(1). By CWLLN and stan-

dard results on quadratic forms (see Schott (1996)), we can show that c
N

PN
i=1(�ie

0
2X

0�0 +

u0i�
0)B0B(�Xe2�i+�ui)

p�! c
�
�2e02X

0�0B0B�Xe2 + tr(�
0B0B��)

�
: Following analogous

arguments to the above, it can be shown that

(I) :
c

N

NX
i=1

z0iB
0Bzi

p�! c

264 tr(�
0B0B��) + tr(�0B0B�) + tr(B0B��) + tr(B0B�)

+�2e02X
0�0B0B�Xe2 + �

2e02X
0�0B0BXe2

+�2e02X
0B0B�Xe2 + �

2e02X
0B0BXe2

375 (14)

Similarly, we can show

(II) :
1p
N

NX
i=1

z0iB
0A�zi

p�! N(c�1; V(II)) (15)

where �1 = c

264 �tr(�
0B0A��)� tr(�0B0A�)� tr(B0A��)� tr(F 0B0A�)
��2e02X 0�0B0A�Xe2 + e

0
2X

0�0B0AX~e+

��2e02X 0B0A�Xe2 + e
0
2X

0B0AX~e

375+ tr(�0B0A�)+
tr(B0A�) and

(III) : � 1p
N

NX
i=1

�z0i�p�zi
p�! N(c�2; V(III)) (16)

where �2 = c

264 tr(�0�p�) + tr(�p��)

+�2e02X
0�0�pXe2 + �

2e02X
0�p�Xe2

�e02X 0�pX~e� ~e0X 0�pXe2

375 � tr(�p�): Summing up the results
in (14), (15) and (16) and using the results of equations (12), we can prove the result of
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Theorem 2 because

p
N�̂

 
'̂FOD � 'N �

b̂

�̂

!
d�! N(�c(�(I)� (II)� (III)); V )

p
N�̂

 
'̂FOD � 1�

b̂

�̂

!
d�! N(�c(��1 � �2); V ):

Note that the variance functions of the limiting distributions of quantities (I) and (II):

V(II) and V(III), as well as their covariance do not need to be calculated, given that they are

equal to variance V of the test statistic UBT , under H0: c = 0. This happens because these

functions are independent of c (see also Breitung (2000)).
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