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ABSTRACT
Spurious regression analysis in panel data when the time series are cross-section dependent is analyzed
in the article. The set-up includes (possibly unknown) multiple structural breaks that can affect both the
deterministic and the common factor components. We show that consistent estimation of the long-run
average parameter is possible once cross-section dependence is controlled using cross-section averages
in the spirit of Pesaran’s common correlated effects approach. This result is used to design individual and
panel cointegration test statistics that accommodate the presence of structural breaks that can induce
parameter instabilities in the deterministic component, the cointegration vector and the common factor
loadings.
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1. Introduction

The literature on nonstationary panel data has experienced
important developments in recent times, analyzing the proper-
ties of parameter estimation under both spurious regression and
cointegration. One interesting feature of working in a nonsta-
tionary panel data framework is that it is possible to obtain con-
sistent estimates of statistical relationships regardless of whether
there is cointegration or spurious regression—see Phillips and
Moon (1999). The idea behind the consistent estimation of
(the long-run average) parameters in a spurious panel relies on
the fact that panel units add information that lead to detect a
stronger overall signal than that of the pure time series case—
see Phillips and Moon (2000). This article adds to this body
of the panel data literature by defining a model specification
under spurious regression that allows for the presence of mul-
tiple structural breaks affecting the level, trend and/or the slope
parameters of the model, as well as in the factor structure
generating the cross-section dependence. Panel data units are
assumed to be cross-section dependent which is captured by an
approximate common factor model.

There are a number of contributions in the literature that
are relevant for our proposal. Gengenbach, Urbain, and Wester-
lund (2016) and Banerjee and Carrion-i-Silvestre (2017) design
panel data cointegration tests with cross-section dependence,
but without structural breaks. Although the two papers dif-
fer in the degree of heterogeneity that is allowed for in the
potential cointegration vector—the former paper considers a
heterogeneous cointegration vector across the units of the panel,
whereas the latter assumes homogeneity—both follow the spirit
of the common correlated effects (CCE) estimator advocated in
Pesaran (2006) and show that the common factors that drive
the cross-section dependence can be proxied through the use of
cross-section averages of the variables that appear in the model.

CONTACT Anindya Banerjee banerjeeanindya250@gmail.com Department of Economics. University of Birmingham Edgbaston, Birmingham, B15 2TT, UK.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/UBES.

CCE-methodology offers the advantage of avoiding the need to
estimate the number of common factors

(
m0), although m0 is

required to be bounded by the number of observable stochastic
processes (1 + k) that appear in the model specification—the so-
called rank condition, m0 ≤ 1 + k.

Westerlund and Edgerton (2008) and Banerjee and Carrion-
i-Silvestre (2015) define panel data cointegration statistics
accounting for multiple structural breaks—that can affect the
deterministic component and/or the slope parameters of the
model—and cross-section dependence—modeled with a com-
mon factor model. The framework of these papers allows for
complete heterogeneity in the sense that all parameters are panel
unit specific—that is, the break dates, the deterministic compo-
nent and the slope parameters are allowed to be heterogeneous
across units. The common factors are estimated using princi-
pal components as in Bai and Ng (2004) so that it is possible
to estimate the number of common factors using information
criteria. However, it is worth noting that Westerlund and Edger-
ton (2008) assume that all common factors are I(0) stationary,
whereas Banerjee and Carrion-i-Silvestre (2015) allow for a
combination of I(0)/I(1) common factors.

The contribution of the present article can be summarized
as follows. First, the article shows that it is possible to obtain a
consistent pooled estimate of the long-run average coefficient,
which captures a statistical relationship among non-individually
cointegrated variables—see Phillips and Moon (1999). The
model specification allows for the presence of multiple struc-
tural breaks that can affect the long-run average coefficient.
This result is of special relevance from an empirical point of
view, since it implies that practitioners can obtain consistent
estimates of the slope parameters using a panel data pooled
estimator regardless of whether the variables define a cointe-
gration relationship. This is in direct contrast to the findings

© 2024 The Authors. Published with license by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/ ), which
permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. The terms on
which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

https://doi.org/10.1080/07350015.2024.2327844
https://crossmark.crossref.org/dialog/?doi=10.1080/07350015.2024.2327844&domain=pdf&date_stamp=2024-04-08
mailto:banerjeeanindya250@gmail.com
http://www.tandfonline.com/UBES
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 A. BANERJEE AND J. LLUÍS CARRION-I-SILVESTRE

in the papers mentioned in the previous paragraph that assume
heterogeneous potential cointegration vectors and estimate the
parameters unit by unit, which delivers inconsistent estimators
of the parameters under spurious regression. Second, the fact
that the panel cointegration statistic is based on the pooled
estimation of the potential cointegration vector, removes the
presence of the stochastic regressors in the limiting distribution
of the cointegration statistic—that is, we move from a panel
data cointegration analysis framework to a panel data unit root
one. This produces a spin-off contribution, since the statistic
that is proposed here extends the Pesaran (2007) panel data unit
root test by allowing for structural breaks in the same way as
Perron (1990) and Kim and Perron (2009) extended the Dickey-
Fuller framework in time series analysis. Third, our setup also
deals with the case where the factor loadings can be affected
by structural breaks, a situation that has not been previously
investigated in panel data cointegration testing analysis. This
adds more flexibility and increases the interest of the model
from an empirical point of view. Fourth, the common factors
are estimated using the CCE approach which avoids the need
to estimate the number of common factors as long as the rank
condition is satisfied. While the CCE approach does not pose any
problem for the computation of the pooled estimator of the slope
coefficients, we show there are potentially important issues at the
testing stage. This leads us to suggest a conservative testing strat-
egy that mitigates the need to know both the number and order
of integration of the common factors. Finally, the article proves
that in some cases it is possible to obtain a consistent estimate of
the break fraction parameters under spurious regression when
the break dates are unknown. This is an interesting result per
se, adding to the results obtained in Phillips and Moon (1999)
concerning the consistent estimation of the long-run average
coefficient under spurious regression.

Taken together, our article provides a panel cointegration
testing framework that explicitly models the effects of structural
breaks. Westerlund (2018) had argued that an approximate com-
mon factor model—estimated using the CCE approach—can
result in a simple device that might capture unattended struc-
tural breaks. In principle this is an interesting feature that could
act as a model-safeguarding device, avoiding the need to define a
particular deterministic specification, at the risk of violating the
rank condition. We argue however that if the presence of breaks
is a reasonable feature of the data generation process, it would
be better to undertake explicit modeling of these breaks and free
the common factors to capture other potential misspecification
errors and dependences that might affect the model.

The article is organized as follows. Section 2 describes the
model, Section 3 defines the pooled CCE estimator of the slope
parameters and deals with the estimation of the structural break
dates. The consistency of the pooled CCE estimator provides
the ground upon which individual and panel data cointegration
statistics are proposed in Section 4. Section 5 conducts an exten-
sive Monte Carlo simulation experiment to analyse the finite
sample performance of the statistics that have been proposed
in the article. An empirical illustration that focuses on house
prices and per capita disposable income for the U.S. states is con-
ducted in Section 6. Finally, Section 7 concludes. Supplementary
material is collected in the appendices with the proofs, tables of
critical values, and tables and figures that summarize the finite

sample performance of the statistics. A GAUSS code program
is available to implement the proposal that is designed in the
article.

2. The model

Let Yi,t = (yi,t , x′
i,t)

′ be a (1 + k) -vector of I (1) stochastic
processes with data generating process (DGP):

Yi,t = �iDt + πi,tFt + Ui,t (1)
(I − L) Ft = vt (2)

(I − L) Ui,t = ei,t , (3)
where �i is a

(
(1 + k) × (

J0 + 1
))

matrix of coefficients with
rows defined as θi,l = (θi,l,1,1, . . . , θi,l,J0+1,1, θi,l,1,2, . . . , θi,l,J0+1,2),
l = 1, . . . , (1 + k), Dt = (1, DU ′

t , t, DT′
t)

′, DUt = (DU1,t , . . . ,
DUJ0,t)

′, DTt = (DT1,t , . . . , DTJ0,t)
′ with DUj,t = 1(t > T0

j ),
DTj,t = (t − T0

j )1(t > T0
j ), 1 (·) the indicator function, T0

j =⌊
λ0

j T
⌋

the jth break date, λ0
j = T0

j /T the break fraction and �·�
the integer part, j = 1, . . . , J0, with the convention that T0

0 = 0
and T0

J0+1 = T—that is, λ0
0 = 0 and λ0

J0+1 = 1. Throughout
the article, the superscript “0” indicates the true value of the
corresponding figure. The deterministic component covers two
variants: (a) a constant with level shifts—henceforth, constant
case—and (b) a time trend with both level and slope shifts—in
what follows, time trend case. The set of generic break fraction
parameters vector is defined as � = {λ = (λ1, . . . , λJ0)|ε < λ1
< · · · < λJ0 < 1 − ε and |λj − λj+1| > ε}, with ε denoting the
amount of trimming that is specified—popular choices are ε ∈
{0.1, 0.15, 0.2, 0.25}. At this stage, the model set-up assumes that
the number and position of the common structural breaks are
known, but the procedure that can be implemented to estimate
them is discussed below.

To begin with, cross-section dependence in the panel is
defined by Ft which is a m0-vector of observable common factors
and πi,t = πi,j, T0

j−1 < t ≤ T0
j , the

(
(1 + k) × m0) matrix of

factor loadings. Denote by K = σ(F0, . . . , Ft , . . .) the sigma field
generated by the sequence {Ft}∞t=0 so that, conditionally on K,
Ui,t = (

Uyi,t , U ′
xi,t

)′ are independent across i—see Urbain and
Westerlund (2011). Let M < ∞ be a generic positive number,
not depending on T and N, and define the Euclidean norm of
a generic matrix A as ‖A‖ = trace

(
A′A

)1/2. The vector of
stochastic processes Vi,t = (v′

t , e′
i,t)

′, i = 1, . . . , N, t = 1, . . . , T,
is assumed to satisfy the following assumptions—see Bai and Ng
(2004) and Banerjee and Carrion-i-Silvestre (2015).

Assumption 1. (i) vt = CF
j (L) wt , wt ∼ iid

(
0, 	wj

)
, E ‖wt‖4 ≤

M, Tj−1 < t ≤ Tj, and (ii) var (
Ft) = ∑∞
l=0 CF

j,l	wj CF′
j,l > 0,

Tj−1 < t ≤ Tj, (iii)
∑∞

l=0 l
∥∥∥CF

j,l

∥∥∥ < M; and (iv) CF
j (1) has rank

m0
1 ∀j, 0 ≤ m0

1 ≤ m0, j = 1, . . . , J0 + 1.

Assumption 2. (i) For each i, ei,t = CU
i,j (L) εi,t , εi,t ∼ iid(0, σ 2

εi,j),

E
∥∥εi,t

∥∥8 ≤ M,
∑∞

l=0 l
∥∥∥CU

i,j,l

∥∥∥ < M, ω2
i,j = CU

i,j (1)2 σ 2
εi,j > 0 ; (ii)

E
(
εi,tε

′
l,t

)
= τi,l with

∑N
i=1

∥∥τi,l
∥∥ ≤ M for all l, Tj−1 < t ≤ Tj;

(iii) E
∥∥∥ 1√

N
∑N

i=1
[
εi,sε

′
i,t − E

(
εi,sε

′
i,t

)]∥∥∥4 ≤ M, for every (t, s);



JOURNAL OF BUSINESS & ECONOMIC STATISTICS 3

and (iv) CU
i,j (1) is positive definite almost surely for all i and j,

j = 1, . . . , J0 + 1.

Assumption 3. The errors εi,t , wt and loadings πi are three
mutually independent groups across i, t and (1 + k) dimensions.

Assumption 4. E ‖F0‖ ≤ M, and for every i = 1, . . . , N,
E

∥∥Ui,0
∥∥ ≤ M.

Assumption 5. As T0
j → ∞ and T → ∞, T0

j /T → λ0
j , j =

1, . . . , J0, with 0 < λ0
1 < · · · < λ0

J0 < 1.

Assumptions 1–5 ensure that the central limit theorem (CLT)
holds for Vi,t , so that, for the most general specification that is
considered in this article, we have:

T−1/2
[rT]∑
t=1

Vi,t ⇒
j−1∑
k=1

[
Ci,k (1) − Ci,k+1 (1)

]
Wi

(
λ0

k
)

+ Ci,j (1) Wi (r) ; r ∈
[
λ0

j−1, λ0
j

]
,

as T → ∞ for all i, where Wi (r) is a
(
m0 + 1 + k

)
-vector of

standard Brownian motion on r ∈
[
λ0

j−1, λ0
j

]
, and

�i,j = Ci,j (1) Ci,j (1)′ =
[

CF
j (1) CF

j (1)′ CF
j (1) CU

i,j (1)′

CU
i,j (1) CF

j (1)′ CU
i,j (1) CU

i,j (1)′

]
,

is the long-run conditional covariance matrix with expected
value E

(
�i,j

) = �j, j = 1, . . . , J0 + 1, the so-called long-
run conditional average covariance matrix—see Lemma 1 in the
appendix. The matrix �i,j can be partitioned to define �Ui,jUi,j =
CU

i,j (1) CU
i,j (1)′, �Uxi,j Uxi,j

= CUx
i,j (1) CUx

i,j (1)′ and �Uxi,j Uyi,j
=

CUx
i,j (1) CUy

i,j (1)′, j = 1, . . . , J0 + 1.
The model considers the case where xi,t are assumed to be

either cross-section independent—imposing all, but the first,
rows of πi,t to be equal to zero—or cross-section dependent
with dependence driven by Ft . Furthermore, it is possible to
assume that the set of observable common factors affecting the
endogenous variable yi,t is different from those affecting xi,t , a
situation that is covered if we define πi,t to be a block-diagonal
matrix.

Despite the presence of the operator (I − L) in (2), Ft can be
I(0), I(1), or a combination of both, depending on the rank of
CF

j (1), j = 1, . . . , J0 + 1. Let m0
0 and m0

1 be the number of I(0)
and I(1) common factors, respectively, so that m0 = m0

0 + m0
1.

If CF
j (1) = 0, then Ft is I(0) and m0

0 = m0. If CF
j (1) is of

full rank, then each component of Ft is I(1) and m0
1 = m0.

If CF
j (1) �= 0, but not full rank, then some components of Ft

are I(1) and some are I(0). Following Bai, Kao and Ng (2009)
and Banerjee and Carrion-i-Silvestre (2015), the inclusion of
common factors in the potential long-run relationship implies
a change in the standard concept of cointegration. The usual
definition of cointegration among Yi,t requires Ft to be I(0), so
that Yi,t captures all the common stochastic trends. However,
allowing Ft to be I(1) is also relevant from an empirical point
of view since Ft might be accounting for effects that are not
captured by Yi,t alone. Another interesting feature is that (1)

Table 1. Model specifications.

Model Deterministic component Slope Factor
Constant Trend parameters loadings

A1 μi,j,1 �= μi,j+1,1 ∀j μi,j,2 = 0 ∀j βj = β0 ∀j ηi,j = ηi, 0 ∀j
A2 μi,j,1 �= μi,j+1,1 ∀j μi,j,2 �= μi,j+1,2 ∀j βj = β0 ∀j ηi,j = ηi, 0 ∀j
B1 μi,j,1 �= μi,j+1,1 ∀j μi,j,2 = 0 ∀j βj �= βj+1 ∀j ηi,j = ηi,0 ∀j
B2 μi,j,1 �= μi,j+1,1 ∀j μi,j,2 �= μi,j+1,2 ∀j βj �= βj+1 ∀j ηi,j = ηi, 0 ∀j
C1 μi,j,1 �= μi,j+1,1 ∀j μi,j,2 = 0 ∀j βj �= βj+1 ∀j ηi,j �= ηi,j+1 ∀j
C2 μi,j,1 �= μi,j+1,1 ∀j μi,j,2 �= μi,j+1,2 ∀j βj �= βj+1 ∀j ηi,j �= ηi,j+1 ∀j

specifies time dependent factor loadings so that the structural
breaks can also affect the way in which the common factors
affect panel units. Finally, the DGP also allows for the possibility
that the structural breaks do not affect all elements in Yi,t ,
and also covers intermediate situations where, for instance, the
deterministic component and/or the loadings do not change
across regimes for some of the elements in Yi,t .

The most general model specification that is admitted in our
framework is

yi,t = μ
y
i,j,1 + μ

y
i,j,2(t − T0

j−1) + x′
i,tβj + η

y
i,jFt + ξ

y
i,t (4)

xi,t = μx
i,j,1 + μx

i,j,2(t − T0
j−1) + ηx

i,jFt + ξ x
i,t , (5)

μi,j,k = (μ
y
i,j,k, μx′

i,j,k)
′, k ∈ {1, 2}, ηi,j = (η

y′
i,j, η

x
i,j)

′, T0
j−1 < t ≤

T0
j , j = 1, . . . , J0 + 1. Combining (4) and (5) we obtain:

(
yi,t
xi,t

)
=

(
β ′

jμ
x
i,j,1 + μ

y
i,j,1 β ′

jμ
x
i,j,2 + μ

y
i,j,2

μx
i,j,1 μx

i,j,2

)
dt

+
(

β ′
jη

x
i,j + η

y
i,j

ηx
i,j

)
Ft +

(
β ′

jξ
x
i,t + ξ

y
i,t

ξ x
i,t

)
,

that is,(
yi,t
xi,t

)
=

(
μ

y∗
i,j,1 μ

y∗
i,j,2

μx
i,j,1 μx

i,j,2

)
dt +

(
π

y∗
i,t

πx
i,t

)
Ft +

(
ξ

y∗
i,t
ξ x

i,t

)
,

(6)
dt = (1, (t − T0

j−1))
′, which corresponds to (1) given that

θi,1,j,k = θ
y
i,j,k = ∑j

l=1 μ
y∗
i,l,k, μ

y∗
i,l,k = β ′

l μ
x
i,l,k + μ

y
i,l,k, θx

i,j,k =∑j
l=1 μx

i,l,k, k ∈ {1, 2}, πi,t = (π
y∗′
i,t , πx′

i,t)
′, π

y∗
i,t = β ′

jη
x
i,j + η

y′
i,l,

πx
i,t = ηx

i,j, and Ui,t = (ξ
y∗′
i,t , ξ x′

i,t )
′, ξ

y∗
i,t = ∑j

l=1 β ′
l ξ

x
i,t + ξ

y
i,t ,

T0
j−1 < t ≤ T0

j , j = 1, . . . , J0 + 1. Although the model
has been written as a pure structural change model in which
all parameters change, we can impose parameter constraints in
(4) to obtain partial structural change specifications. Our article
distinguishes six different model specifications depending on
whether the structural breaks affect the deterministic compo-
nent, the slope parameters and/or the factor loadings. Table 1
summarizes all the cases covered in the article. Model A assumes
that the structural breaks affect only the deterministic compo-
nent, Model B considers that the structural breaks affect both the
deterministic component and the slope parameters and, finally,
Model C permits the structural breaks to affect the deterministic
component, the slope parameters and the factor loadings. For
each model specification we consider the two variants of the
deterministic component—designated by a 1 for the constant
case and by a 2 for the time trend case. This defines Models A1,
A2, B1, B2, C1, and C2.
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The block-orthogonal model specification given by (4) for
each panel unit is:

yi = Dι(λ
0)μ

y
i,1 + Dτ (λ

0)μ
y
i,2 + xl

i(λ
0)β + Fl(λ0)η

y′
i + ξ

y
i , (7)

with l ∈ {A, B, C} denoting the model and yi and ξi being T-
vectors of the dependent variable and disturbance term, respec-
tively, for the ith panel unit. Dι(λ

0) = [Dι,1 · · · Dι,J0+1]T×(J0+1)
= diag(ι1, . . . , ιJ0+1) and Dτ (λ

0) = [Dτ ,1 · · · Dτ ,J0+1]T×(J0+1)= diag(τ1, . . . , τJ0+1) are diagonal matrices defined with the
elements between parentheses, ιj is a

(
T0

j − T0
j−1

)
-vector of

ones, τj = (1, 2, . . . , T0
j − T0

j−1)
′ is the time trend of the jth

regime, and μ
y
i,k = (μ

y
i,1,k, . . . , μy

i,J0+1,k)
′, k ∈ {1, 2}. For Model

A, xA
i (λ0) = xi = [xi,1 . . . xi,k](T×k) and β = β0 is a k-vector of

parameters—subscript “0” denotes that the parameters are not
affected by structural breaks. For Models B and C:

xl
i(λ

0) = [
xi (1) xi (2) . . . xi

(
J0 + 1

)]
(T×k(J0+1)) ;

l ∈ {B, C} , (8)

with xi
(
j
) = [(Dι,j � xi,1

)
. . .

(
Dι,j � xi,k

)] , j = 1, . . . , J0 +
1, where � is the element-wise (Hadamard) product and β =
(β ′

1, . . . , β ′
J0+1)

′. Similarly, Fl(λ0) = F = [F1 . . . Fm0](T×m0),
l ∈ {A, B}, and η

y
i = η

y
i,0 is a m0-row vector of loadings, whereas

for Model C:

FC(λ0) = [
F (1) F (2) . . . F

(
J0 + 1

)]
(T×m0(J0+1)) , (9)

with F
(
j
) = [(Dι,j � F1

)
. . .

(
Dι,j � Fm0

)], j = 1, . . . , J0 + 1,
and η

y
i = (η

y
i,1, . . . , ηy

i,J0+1) is the m0 (
J0 + 1

)
-row vector of

factor loadings. The estimation of β in (7) can be performed
using the panel data pooled estimator, although it would require
both the common factors and the structural break dates to
be known. Certainly, there are some cases where the common
factors can be thought to be observable as discussed in Pesaran
(2015), but this situation is rarely found in practice. The same
applies to the structural break dates, so that the next section
designs an estimation procedure that will allow the empirical
implementation of our proposal when both the common factors
and the structural breaks are unknown—the known common
factors and/or structural breaks situation can be seen as partic-
ular cases.

3. Unknown Common Factors and Structural Breaks

The discussion that is conducted in this section focuses on
Model C2, since the other specifications are obtained as par-
ticular cases. To ease the derivations, at this stage it is assumed
that the number of structural breaks J0 (but not their position)
is known, an assumption that will be relaxed below. We follow
Pesaran (2006, 2007) and use cross-section averages to cap-
ture the unobserved common factors, which can be written in
matrix notation from the block-orthogonal model specification
as Ȳ = D(λ)μ̄′ + F(λ)π̄ ′ + Ū, where D(λ) = diag([ι1, τ1] ,
. . . ,

[
ιJ0+1, τJ0+1

]
), F(λ) = FC(λ), π̄ = (π̄1, . . . , π̄J0+1)

′, Ȳt =
N−1 ∑N

i=1 Yi,t , μ̄ = N−1 ∑N
i=1 μi, π̄j = N−1 ∑N

i=1 πi,j and
Ūt = N−1 ∑N

i=1 Ui,t .

Assumption 6.
(
π̄j

) = m0 ≤ (1 + k) for all N as N → ∞ ∀j,
j = 1, . . . , J0 + 1.

If the rank condition established in Assumption 6 is met, we
have:

F = (
Ȳ − D(λ)π̄ ′ − Ū

)
π̄

(
π̄ ′π̄

)−1 , (10)

with Ūt = Op(T1/2N−1/2) so that Ūt
p→ 0 for (i) fixed T and

N → ∞, and (ii) T → ∞ and N → ∞ with T/N → 0.
Then, the observable cross-section averages h̄t = (Dt , Dι,1,tȲ ′

t ,
. . . , Dι,J0+1,tȲ ′

t)
′ can be used to proxy the unobserved factors.

Adding and subtracting (10) in (7) we have:

yi = Dι(λ)μ
y
i,1 + Dτ (λ)μ

y
i,2 + xi(λ)β + F(λ)π

y′
i

± (
Ȳ − D(λ)π̄ ′ − Ū

)
π̄

(
π̄ ′π̄

)−1
π

y′
i + ξ

y
i

= Dι(λ)μ
y
i,1 + Dτ (λ)μ

y
i,2 + xi(λ)β + Ȳδ

y
i + υi, (11)

with δ
y
i = π̄

(
π̄ ′π̄

)−1
π

y′
i and υi = ξ

y
i + (F(λ) −

Ȳπ̄
(
π̄ ′π̄

)−1
)π

y′
i . This defines an extension of the so-called

cross-section augmented regression model in Holly, Pesaran,
and Yamagata (2010) and Banerjee and Carrion-i-Silvestre
(2017):

yi,t = μ
y
i,j,1 + μ

y
i,j,2

(
t − Tj−1

) + x′
i,tβj + Ȳ ′

tδ
y
i,j + υi,t , (12)

Tj−1 < t ≤ Tj, j = 1, . . . , J0 + 1, where TB = (T1, . . . , TJ0)′ is a
vector of generic break dates. Note that it is implicitly assumed
that m0 = k + 1 since all k + 1 cross-section averages are
included in (12). Let us define the projection matrix M̄(λ) =
I − H̄(λ)

(
H̄(λ)′H̄(λ)

)−1 H̄(λ)′, with H̄(λ) = [D(λ) z̄(λ)], z̄(λ)

= [z̄ (1) . . . z̄
(
J0 + 1

)](T×(k+1)(J0+1)), and z̄
(
j
) = [(Dι,j � x̄1

)
. . .

(
Dι,j � x̄k

) (
Dι,j � ȳ

)], j = 1, . . . , J0 + 1 . Then, the estima-
tion of β in (11) can be done using the pooled CCE estimator
(PCCE):

β̂PCCE(λ) =
( N∑

i=1
xi(λ)′M̄(λ)xi(λ)

)−1 ( N∑
i=1

xi(λ)′M̄(λ)yi

)
.

(13)
Following Bai (2010), Kim (2011, 2014), and Baltagi, Feng,

and Kao (2016, 2019), the estimation of the break dates is carried
out minimizing the global sum of squared residuals (SSR), so
that:

T̂B = arg min
λ∈�

SSR (λ) , (14)

where T̂B = (T̂1, . . . , T̂J0)′, λ̂ = T̂B/T, SSR (λ) =∑N
i=1 SSRi (λ), SSRi (λ) being the SSR for the ith panel unit

associated with the estimation of (12). Thus, the estimation
of the break dates can be obtained carrying out a grid search
over all potential combinations of J0 structural breaks.1 The
following theorem analyzes the consistency of β̂PCCE(λ̂) and λ̂.
For completeness, we also include the known breaks case.

1A GAUSS computer code is available upon request to estimate the break
dates in panel data with up to two structural breaks, although the Bai and
Perron (1998) efficient estimation algorithm which allows global minimizers
of SSR that is of order O(T2) for any J0 ≥ 2 can also be adapted to
our panel data framework. In this regard, Ditzen, Karavias and Westerlund
(2023) extend the Bai and Perron (1998) methodology to panel data with
the development of a toolbox for Stata software using the Bai and Perron
(1998) efficient estimation algorithm adapted to panel data.
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Theorem 1. Let Yi,t be a vector of (1 + k) stochastic processes
with DGP given by (1)–(3) and satisfying Assumptions 1–6.
Then, as (T, N) → ∞:
1. Known break dates case. For Models A, B, and C,
β̂PCCE(λ0)

p→ β = �
−1
UxUx

�UxUy .
2. Unknown break dates case:
2.a. Model A1: (λ̂−λ0) does not converge to zero in probability.
2.b. Models A2, B1, B2, C1, and C2: (i) (λ̂ − λ0)

p→ 0, with
(λ̂ − λ0) = Op

(
T−1/2) for Models A2, B2 and C2, (λ̂ − λ0) =

op
(
N−1/2) for Models B1 and C1, and (ii) β̂PCCE(λ̂)

p→ β =
�

−1
UxUx

�UxUy .

See the companion appendix for the proof. Theorem 1 estab-
lishes that λ̂ is not consistent for Model A1 since the effects of the
structural changes are dominated, in the limit, by the stochastic
trend components,2 whereas it is consistent for the other models.
In addition, it is shown that the PCCE estimator converges
toward the long-run average coefficient β in the known breaks
case for all models, and in the unknown breaks case for the
models for which a consistent break fraction vector estimate
can be obtained. This establishes the basis for the derivation
of our panel data cointegration test. Finally, it is worth noting
that Theorem 1 establishes the consistency of the break frac-
tion estimates for Models A2, B1, B2, C1, and C2. As for the
break dates estimates, the results in Theorem 1 show that it is
not possible to obtain consistent estimates of the break dates
for Models A2, B2, and C2, consistency only applies to break
fraction estimates. For Models B1 and C1, consistent break dates
can be obtained if TN−1/2 → 0 is assumed. Although there are
some contributions in the panel literature that derive consistent
break dates estimation procedures—see Bai (2010), Kim (2011,
2014) and Baltagi, Feng and Kao (2016, 2019), among others—
these approaches assume that the disturbance term of the model
is I(0), whereas here we deal with the novel panel data spurious
regression with structural breaks case. Consequently, the frame-
work under which those results are obtained is not comparable
to our panel data spurious regression set-up.

It is possible to define an alternative estimation of the break
dates that relies on the minimization of the SSR of the model:

yi,t = μ
y
i,j,1 + μ

y
i,j,2

(
t − Tj−1

) + x′
i,tβ̂j + υ∗

i,t , (15)

instead of using (12), where β̂j refers to the jth regime parame-
ters in β̂PCCE(λ) for a generic TB. The alternative estimation of
the break dates is then defined as:

T̃B = arg min
λ∈�

SSR∗ (λ) , (16)

where T̃B = (T̃1, . . . , T̃J0)′, λ̃ = T̃B/T, SSR∗ (λ) =∑N
i=1 SSR∗

i (λ), SSR∗
i (λ) being the SSR for the ith panel unit

associated with the estimation of (15). It is worth noting that
this procedure ignores the common factors in (15), although
they are considered in the estimation of β̂PCCE(λ). Therefore,
this estimator can be seen as an hybrid method in which the
common factors are used in the estimation of β̂PCCE(λ), but not
in the minimization of the SSR of (15). The following theorem
summarizes the main features of this alternative estimator.

2This situation is equivalent to the one found in time series analysis, see
Perron (1990).

Theorem 2. Let Yi,t be a vector of (1 + k) stochastic processes
with DGP given by (1)–(3) and satisfying Assumptions 1–6.
Then, as (T, N) → ∞, (λ̃ − λ0) = op(N−1/4T−1/2) for Models
B1 and C1, and (λ̃ − λ0) = op(N−1/3T−1) for Models A2, B2,
and C2.

The proof is given in the companion appendix. As can be
seen, the rate of convergence of λ̃ is faster than the λ̂ one for a
given model, which suggests that better performance of the for-
mer in finite samples are to be expected. This result is due to the
fact that the alternative estimator avoids projecting the observ-
able variables in the model against the common factors, which
leads us to obtain a stronger signal around the combination of
break dates that minimizes the SSR of (15)—see the appendix.
Finally, consistent break dates can be obtained for Models A2,
B2, and C2—although at a slow rate of convergence—and for
Models B1 and C1 if it is assumed that TN−1/2 → 0. As men-
tioned above, the existing panel data structural break estimation
techniques that have been recently proposed in the literature
assume that the disturbance term of the model is I(0), which
leads to consistent estimates of the break dates with higher rates
of convergence.

The estimation of the number of structural breaks can be
carried out using panel information criteria similar to the ones
proposed in Bai and Ng (2002, 2004). To be specific, let us define
an information criteria of the form:

IC(λ̂, J) = ln σ̂ 2(λ̂, J) + ((1 + J) k) g (N, T) ,

with σ̂ 2(λ̂, J) = N−1T−1 ∑N
i=1

∑T
t=1 
υ̂2

i,t , J = 0, 1, . . . , Jmax,
where υ̂i,t denotes the estimated residuals from (12) and g (N, T)

is the penalty function—one possibility suggested in Bai and Ng
(2002) is the panel BIC that is established with g (N, T) = ln(NT
/ (N + T))(N + T)/NT. Then, Ĵ = arg minJ=0,...,Jmax IC(λ̂, J).
Similarly, we can define J̃ if λ̃ is used instead of λ̂ in the
estimation of (12). The following theorem shows that the sug-
gested information criterion provides consistent estimation of
the number of structural breaks.

Theorem 3. Let Yi,t be a vector of (1 + k) stochastic processes
with DGP given by (1)–(3) and satisfying Assumptions 1–6.
Then, limN,T→∞ Pr(J̊ = J0) = 1, J̊ ∈ {Ĵ, J̃}, if (i) g (N, T) → 0
and (ii) C2

NT g (N, T) → ∞ as (T, N) → ∞, where CNT =
min{√N,

√
T}.

The proof is outlined in the appendix. This result defines a
framework general enough to be able to treat all the elements of
the model in either an endogenous or exogenous way.

4. PCCE-based Cointegration Test Statistic

Following Pesaran (2007), Holly, Pesaran and Yamagata (2010),
and Banerjee and Carrion-i-Silvestre (2017), we design a coin-
tegration statistic that approximates the unobserved common
factors using cross-section averages of the observable variables.
The simplicity of this approach comes at the cost of restricting
the framework defined above since Pesaran (2007) and Pesaran,
Smith and Yamagata (2013) assume that both the common
factor and the idiosyncratic components are I(1) under the null
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hypothesis of unit root—that is, m0 = m0
1. In what follows, this

section focuses on the most general specification given by Model
C2 using λ̂, although the procedure is valid for the other model
specifications and the λ̃ estimator.

Since β̂PCCE(λ̂) is a consistent estimate of β—for all models
except A1—we define ŷi,t = yi,t − x′

i,tβ̂PCCE(λ̂) and base the
testing of the null hypothesis of no cointegration for each unit
on the cross-section augmented ADF (CADF) type regression
equation:3


ŷi,t =
Ĵ∑

j=0
θi,jDUj,t +

Ĵ∑
j=1

γi,jD(T̂j)t +
Ĵ∑

j=0
ϑi,jDTj,t + αi,0ŷi,t−1

+
pi∑

l=1
αi,l
ŷi,t−l +

Ĵ∑
j=0

ϕ′
i,j

(
DUj � A

)
t−1

+
Ĵ∑

j=0

pi∑
l=0

κ ′
i,j,l

(
DUj � 
A

)
t−l + νi,t , (17)

with D(T̂j)t = 1 for t = T̂j + 1, 0 otherwise, j = 1, . . . , Ĵ. Note
that the order of augmentation pi in (17) is heterogeneous, which
can be selected using the modified information criteria in Ng
and Perron (2001)—homogeneous pi as in Pesaran (2007) can
be imposed, if desired. The pseudo t-ratio statistic of α̂i,0 in (17),
tα̂i,0(λ̂), is used to test the null hypothesis of no cointegration.4

The number of common factors that is assumed defines At , so
that At = ŷt for m0 = 1, whereas At =

(
ŷt , x̄1,t , . . . , x̄k,t

)′
for

m0 = 1 + k. For the intermediate cases where m0 < 1 + k, At
will be defined with ŷt and m0 −1 elements of x̄t . The following
theorem provides the limiting distribution of tα̂i,0(λ̂) for both the
known and unknown breaks cases.

Theorem 4. Let Yi,t be a vector of (1 + k) stochastic processes
with DGP given by (1)–(3) and satisfying Assumptions 1–6. The
tα̂i,0(λ̊) statistic, λ̊ ∈ {λ̂, λ̃}, converges sequentially (if N → ∞
first, then T → ∞, that is, ⇒(N,T)seq ) and jointly (if (N, T)

j→
∞ with

√
T/N → 0, that is, ⇒(N,T)j ) to:

tα̂i,0(λ̊) ⇒
∫ 1

0 Wi (r) dWi (r) − ωl
iF

(
λ0)′ Gl

F
(
λ0)−1

π l
iF

(
λ0)(∫ 1

0 W2
i (r) dr − π l

iF
(
λ0

)′ Gl
F
(
λ0

)−1
π l

iF
(
λ0

))1/2

≡ R
(
λ0, l

)
,

where Wi (r) denotes a scalar standard Brownian motion,
ωl

iF
(
λ0), Gl

F
(
λ0) and π l

iF
(
λ0) are functions of a m0-vector of

3For Models A and B the factor loadings are assume to be constant across
regimes so that the sixth and seventh element of the right hand side of (17)

are not affected by the structural breaks—that is,
∑Ĵ

j=0 ϕ′
i,j

(
DUj � A

)
t−1

has to be replaced by ϕ′
i At−1 and

∑Ĵ
j=0

∑p
l=0 κ ′

i,j,l
(

DUj � 
A
)

t−l by∑p
l=0 κ ′

i,l
At−l .
4We abuse notation when using the Hadamard product in the expressions

DUj � A and DUj � 
A that appear in (17) since, in general, the involved
matrices might have different column dimensions. In this case, it should be
understood that for any given Am×n and Bm×o matrices A � B = [(A1 �
B1) . . . (A1 � Bo) . . . (An � B1) . . . (An � Bo)]m×no . This convention applies
throughout the article.

standard Brownian motions associated with the common factors
that are defined in the appendix, with l ∈ {A1, A2, B1, B2, C1,
C2} for the known breaks case (λ̂ = λ̃ = λ0) and, for the
unknown breaks case, l ∈ {B1, C1} when λ̂ is used and l ∈
{A2, B1, B2, C1, C2} when λ̃ is applied.

The proof is given in the appendix and some remarks are
in order. First, the limiting distribution of tα̂i,0(λ̂) and tα̂i,0(λ̃)

depends on the number and position of structural breaks
(
λ0)

and on the number of I(1) nonstationary common factors—note
that it is assumed that m0 = m0

1. If analysts have knowledge—
for example, based on economic theory—about the number of
common factors, one can consider such information when At is
defined. In this regard, we could follow the strategy in Pesaran
et al. (2013) and compute the statistic using all possible combi-
nations of m0 cross-section averages available in the system as
a way of obtaining robust conclusions. When m0 is unknown,
we can follow a conservative strategy and assume that the rank
condition is satisfied with equality. The price that we would pay
if m0 < 1+k, but we impose m0 = 1+k, is to have a test statistic
with empirical size smaller than the nominal size accompanied
by loss of power. The advantage is to allow us to remain agnostic
about the number of integrated stochastic trends driving the
data.5 Second, the appendix shows that the limiting distribution
of tα̂i,0(λ

0) for Models A and B is the same, for each variant of the
deterministic component, whereas it is different for Model C.

Third, for the unknown breaks case and Models B1 and
C1, tα̂i,0(λ̂) converges to the same limiting distribution as for
the known structural breaks case. Unfortunately, this does not
occur for Models A2, B2, and C2. In these cases, we suggest the
implementation of the modified procedure in Kim and Perron
(2009) that relies on the use of trimmed data. In brief, the idea
is based on establishing a window of observations around a
consistent estimate of λ—that is, (λ̂ − λ0) = Op(T−a) for some
0 < a < 1—of length 2ω(T) with ω(T) ≡ κTδ , κ > 0
and −1 < −a < δ < 0. The window defines the set of
observations compressed between T̂l+1 ≡ T(λ̂−ω(T))+1 and
T̂h ≡ T(λ̂ + ω(T)) and has the characteristics of: (i) increasing
slowly enough to be asymptotically negligible relative to T and,
(ii) increasing fast enough to include the true structural break
dates since T̂l − T̂B = T(λ̂ − ω(T)) − Tλ0 = (T−a−δTa(λ̂ −
λ0) − κ)Tδ+1 p→ −∞ and T̂B − T̂h = Tλ0 − T(λ̂ + ω(T)) =
(T−a−δTa(λ0 − λ̂)−κ)Tδ+1 p→ −∞. Once T̂l and T̂h have been
specified, Kim and Perron (2009) define a new dataset as:6

ŷn
i,t = ŷi,t+T̂j−1,h−T̂j−1,l

− S(ŷi,t , j − 1) for T̂j−1 < t ≤ T̂j,

with S
(
ŷi,t , j − 1

) = ŷi,T̂j−1,h
− ŷi,T̂j−1,l

, T̂0,h = T̂0,l = 0 and

S
(
ŷi,t , 0

) = 0—the same transformation applies to obtain An
t

with S
(
At , j − 1

) = AT̂j−1,h
− AT̂j−1,l

. The new dataset removes

5An alternative strategy in the case of unknown number of factors, as fol-
lowed by Pesaran et al. (2013), is to undertake the testing for all permissible
values of m0 (using all combinations of m0 cross-section averages for each
choice of m0). The size properties of such a procedure are not clear nor are
the likely conclusions if one accepts the null hypothesis for some values of
m0 and rejects for others. This is a topic for future research.

6For the empirical implementation of this procedure we can follow Kim and
Perron (2009) and use a trimming window of 6 observations.
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the data points between T̂l + 1 and T̂h and reconnects the
remaining data shifting down the data after the window with
the S

(·, j − 1
)

function. Then, the pseudo t-ratio statistic of α̂i,0
in (17) is computed using the trimmed data ŷn

i,t and An
t with

the break dates given by T̂l. The resulting statistic is denoted as
tα̂i,0(λ̂tr), which limiting distribution is given in the following
corollary.

Corollary 1. Let Yi,t be a vector of (1 + k) stochastic processes
with DGP given by (1)–(3) and satisfying Assumptions 1–6. For
the unknown structural breaks case and as either (N, T)seq or
(N, T)j, tα̂i,0(λ̂tr) ⇒ R

(
λ0, l

)
, l ∈ {A2, B2, C2}.

The proof derives from the developments in Theorem 4.
As can be seen, the limiting distribution of tα̂i,0(λ̂tr) equals
the limiting distribution that is obtained for the known struc-
tural breaks case. Finally, it should be stressed that the limiting
distributions in Theorem 4 and Corollary 1 also correspond
to the distributions obtained for a panel unit root test with
multiple structural breaks that affect the level and/or the slope
of the time trend. Therefore, as side contributions, this article
(i) extends the panel data unit root tests in Pesaran (2007) and
Pesaran, Smith and Yamagata (2013) to the multiple structural
breaks case—affecting the deterministic component and/or the
factor loadings—and (ii) provides an extension of Perron (1989,
1990) and Kim and Perron (2009) unit root tests to panel data
framework.

The limiting distributions in Theorem 4 are approximated
by Monte Carlo simulation. A limited set of critical values for
tα̂i,0(λ

0) are reported in Tables B.1 to B.6 for Models A1, B1, and
C1, and in Tables B.7 to B.12 for Models A2, B2, and C2, with J =
1 and m0 ≤ k+1 ∈ {2, 3, 4} common factors. Pesaran (2007) and
Pesaran, Smith and Yamagata (2013) also propose a truncated
version of the tα̂i,0(λ

0) statistic in order to ensure that the statistic
has finite moments, although these papers provide evidence that
for T > 15 the empirical distributions of the truncated and
untruncated statistics are equivalent. Therefore, in this article we
do not consider the truncated version of tα̂i,0(λ

0).
The combination of the individual test statistics defines

the cross-section augmented ADF panel cointegration statistics
CIPS(λ̊) = N−1 ∑N

i=1 tα̂i,0(λ̊), λ̊ ∈ {λ̂, λ̃, λ̂tr}, as proposed in
Pesaran (2007). This statistic allows us to test the null hypothesis
of no panel data cointegration against the alternative that there
is a fraction of panel units for which cointegration holds. The
critical values for the CIPS(λ0) statistic are presented in Tables
B.13 to B.18 for Models A1, B1, and C1, and in Tables B.19–B.24
for Models A2, B2, and C2, with J = 1 and m0 ≤ k+1 ∈ {2, 3, 4}.
Interestingly, the critical values seem to be symmetrical around
λ0 = 0.5 for large T, a characteristic that is more evident for the
panel data cointegration statistic critical values. This feature has
also been found for the ADF unit root test with one structural
break proposed in Perron (1989, 1990).7

Westerlund, Hosseinkouchack and Solberger (2016) derive
the local-to-unity asymptotic power functions of Pesaran (2007)

7A GAUSS program, available upon request, allows the computation of critical
values for the multiple structural breaks case for both the individual and
panel data cointegration statistics.

type-test statistics, and show that these statistics have non-
negligible power in a neighborhood of T−1 . This is a distinctive
feature of these statistics when compared to other proposals
in the literature, that have been shown to have non-negligible
power in the neighborhood given by N−κT−1, κ > 0—see,
for instance, Moon and Perron (2008). This implies that as
N increases Pesaran (2007) type-test statistics will tend to be
dominated by other panel data tests having non-negligible local
power for κ > 0.

5. Finite Sample Performance

Let us consider the DGP defined by:

yi,t = θi,1DUt + θi,2DTt + x′
i,tς0 + DUtx′

i,tς1 + F′
tϕ

y
i,0

+DUtF′
tϕ

y
i,1 + ui,t (18)


xi,t = 
F′
tϕ

x
i,0 + 


(
DUtF′

t
)
ϕx

i,1 + υi,t ;
Fj,t = ρFj,t−1 + wj,t ;
ui,t = φiui,t−1 + εi,t ,

where θi,1 ∼ N (10, 1), θi,2 ∼ N (0.3, 1), ς0 = 1, ς1 ∈ {1, 5},
ϕ

y
i,0 ∼ U [0, 1], ϕ

y
i,1 ∼ U [0, 2], ϕx

i,0 ∼ U [0, 1], ϕx
i,1 ∼ U [0, 3],

υi,t ∼ N (0, 1), wj,t ∼ N (0, 1), j ∈ {1, 2}, and εi,t ∼ N (0, 1)

are mutually independent groups. Under the null hypothesis
of no cointegration φi = 1 ∀i, whereas under the alternative
hypothesis of cointegration we set φi = 0.9 ∀i. This section
investigates the performance of the proposed statistics con-
sidering one unknown structural break—additional simulation
results for known structural breaks are available upon request.
We distinguish three different cases of interest. Case 1 specifies
a DGP in which both the deterministic component and the
cointegration vector change, but the loadings remain constant
across regimes—that is, ς1 ∈ {1, 5} and ϕ

y
i,1 = ϕx

i,1 = 0 ∀i
in (18). Case 2 uses the Case 1 DGP but the computations are
carried out allowing for a nonexistent change in factor loadings.
This is done to proxy situations where the investigator may
be uncertain about whether there are changes in the factor
loadings and wishes to protect herself (in terms of size of the
test) against this possibility. Finally, Case 3 deals with the pure
structural break case where all parameters (deterministic com-
ponent, cointegration vector and factor loadings) change across
regimes. Note that for each of these cases we consider the two
variants of the deterministic component—that is, the constant
and the time trend cases. The break date is specified at λ0 =
0.5 and we consider up to two common factors, m0 ∈ {1, 2},
with ρ ∈ {1, 0.99, 0.95, 0.9}. The time dimension is set at T ∈
{50, 100, 200} and the cross-section dimension is N ∈ {20, 50}.
The nominal size is set at 5% and the critical values tabulated in
the previous section are used.

5.1. Constant Case

5.1.1. Performance of the Break Fraction and Pooled
Estimators

This section investigates the performance of λ̂ and λ̃ for Models
B and C with the deterministic component given by the constant
case—that is, θi,2 = 0 ∀i in (18). Let us first focus on the λ̂

estimator. Figures C.1–C.4 present histograms of λ̂ for Model B1
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(Case 1) when ς1 = 1 for all possible combinations that consider
that the true number of common factors is m0 ∈ {1, 2} and the
imposed number of common factors is m ∈ {1, 2}. It is worth
stressing that consistency of the λ̂ and λ̃ estimators has been
established under the null hypothesis of spurious regression
situation, but for completeness we also include the histograms
for these estimators under cointegration.

In general and regardless of the order of integration of the
common factors, histograms are concentrated around λ0 with
higher probability as either T or N increases. It is interesting to
note that allowing for m > m0 does not affect the performance
of λ̂, whereas the probability mass of λ̂ around λ0 increases
with m0. As expected, as the magnitude of the structural change
that affect the slope parameters increases, the performance of
λ̂ shows a substantial improvement, with almost all probability
mass located on λ0, regardless of m0, m and the order of integra-
tion of the idiosyncratic and the common factor components—
see Figures C.5–C.8 with the histograms of λ̂ for Model B1 when
ς1 = 5. These features are also found when the results for Cases
2 and 3 are analyzed—see Figures C.9–C.24. The use of the λ̃

estimator produces better results since now, and even for ς1 = 1,
the probability mass of λ̃ around λ0 is higher than the λ̂ one—
see Figures C.25–C.48 that depict the histograms of λ̃ for Cases
1 to 3, m ∈ {1, 2}, m0 ∈ {1, 2} and ς1 ∈ {1, 5}. This simulation
evidence is demonstration of the statement made in Theorems 1
and 2.

Finally, we have also analyzed the performance of β̂PCCE(λ̂)

and β̂PCCE(λ̃) and found evidence that supports that its appli-
cation leads to a consistent estimation of β . To be specific, the
mean squared error (MSE) decreases as N and/or T increase,
and as ρ moves away from one—detailed results are available
upon request.

5.1.2. Empirical Size and Power of the Panel Cointegration
Statistic

Table C.1 summarizes the performance of the CIPS(λ̂) statistic.
When the magnitude of the structural change affecting the slope
is ς1 = 1, we can observe size distortion problems for the panel
cointegration statistic for Case 1 when the order of integration
of both the idiosyncratic and the common factor components
is the same, regardless of the (true and assumed) number of
common factors. These distortions reduce as the model specifi-
cation becomes more flexible—that is, Cases 2 and 3—and even
disappear in some situations—see the results for m0 = m = 1.
As the magnitude of the structural break increases to ς1 = 5, the
empirical size tends to the nominal one in all cases. It is worth
highlighting that the misspecification error of either under-
specifying (0 < m < m0) or over-specifying (m0 < m) the
number of common factors does not cause high size distortion
problems. The panel cointegration CIPS(λ̂) statistic becomes
conservative under the null hypothesis of spurious regression if
the common factor is I(0). This is a consequence of the violation
of the key assumption underlying the design of the statistic—see
Section 4. The empirical power of CIPS(λ̂) increases with N and
T, and as ρ moves away from one. As expected, the more flexible
model specifications—either because the type of model is more
general (Case 2) or because the number of common factors is
over-specified (m0 < m)—show lower empirical power values.

The performance of the statistical inference improves when λ̃

is used. Table C.2 evidences a clear enhancement of the empirical
size figures when ς1 = 1—the exception is found for Case
3 with m0 = m = 2 and T = 200, although the size
distortion almost disappears for ς1 = 5. However and contrary
to what has been found for CIPS(λ̂), the under-specification of
the number of common factors causes mild over-size distortions
for Model C—see the results for Case 3. This results is somehow
to be expected since we are missing the presence of common
factors in the model specification. As above, CIPS(λ̃) becomes
conservative if the assumption of common order of integration
of the idiosyncratic and common components under the null
hypothesis of spurious regression is not satisfied. The CIPS(λ̃)

statistic encompasses CIPS(λ̂) in term of empirical power, since
the former statistic shows similar, if not higher, empirical power
values—note that the higher power shown by CIPS(λ̂) when
ς1 = 1 are due to the mild size distortions that have been
documented.

To the best of our knowledge, there are no other proposals in
the literature that can be used to establish a direct comparison
with the test statistics that are proposed in this article. The clos-
est proposal might the PANIC-based panel cointegration test
statistic that is developed by Banerjee and Carrion-i-Silvestre
(2015). That paper designed a panel data statistic to test the
joint null hypothesis of spurious regression without structural
breaks against the alternative hypothesis of panel cointegration
with structural breaks for large T compared to N. As mentioned
in the introduction, the cross-section dependence was intro-
duced in the specification using an approximate common factor
model. Tables C.3 and C.4 present the empirical size and power
for the panel ADF statistic that is computed for the estimated
idiosyncratic component (Z∗

c ) and the MQc
c statistic to estimate

the number of I(0) and I(1) common stochastic trends. The
simulation results are reported for Cases 1 and 3, considering
m0 ∈ {1, 2} and allowing for up to mmax = 6 common factors—
the number of common factors is estimated using the panel BIC
statistic in Bai and Ng (2004). The Z∗

c statistic shows important
size distortions, the higher the value of ς1, which in fact can be
interpreted in terms of empirical power since this situation is a
mere consequence of the violation of the DGP that is assumed
under null hypothesis that is assumed in this proposal. Thus,
note that the DGP defined in (18) allows for the presence of
structural breaks under the null hypothesis, so that the joint
hypothesis of spurious regression without structural breaks that
is assumed by Banerjee and Carrion-i-Silvestre (2015) is not
fulfilled. The behavior of the MQc

c statistic is also affected by
this feature, although it is fair to note that the MQc

c statistic tries
to capture that misspecification error detecting more common
factors than really exist—in general, it can be shown that the
estimated number of common factors is double the true number.

Finally and following the suggestion in Westerlund (2018),
we have also studied the performance of the CIPS panel coin-
tegration test statistic when the structural breaks are ignored.
Table C.5 summarizes the empirical size and power of the CIPS
proposed in Banerjee and Carrion-i-Silvestre (2017) for Cases 1
and 3, and ς1 ∈ {1, 5}. As can be seen, the CIPS presents size dis-
tortions, the higher the value of ς1. For ς1 = 1 and m0 = 1, the
size distortions can be reduced if we over-specify the number of
common factors, although this desirable feature disappears as ς1
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increases. The violation of the assumption of common order of
integration of the idiosyncratic and common components under
the null hypothesis of spurious regression leads to a conservative
test statistic, but only when ς1 = 1 and m > m0 . For the other
cases, the statistic shows over-rejection distortions. These results
are in line with the literature that shows that the null hypothesis
of panel unit root is rejected when cross-section dependence is
ignored—see Banerjee, Marcellino and Osbat (2005). Here the
cross-section dependence is considered, but to some extent the
omission of common structural breaks might leave one source of
cross-section dependence that links the panel units uncaptured.
This shows that modelling the presence of structural breaks is
required if misleading statistical inference is to be avoided.

5.1.3. Estimation of the Number of Structural Breaks
Table C.10 provides the frequency of the estimated number of
structural breaks that derives from the use of the panel BIC
statistic, considering up to two structural breaks. The ability of
the panel BIC to select the correct number of structural breaks
improves as N, T and ς1 increase, with the statistic that is based
on λ̃ the one that produces better results.

Let us first focus on the results for ς1 = 1. Under the
spurious regression case with ρ = 1, J(λ̂) tends to under-
estimate J for small N and T, with correct number of structural
breaks detection frequencies that range between 0.26 and 0.48
for Model B1, and between 0.48 and 0.6 for Model C1. As can be
seen, J(λ̃) outperforms J(λ̂) with correct frequencies in the range
0.52-0.86 for Model B1, and 0.57–0.7 for Model C1. Further,
note that part of the under-estimation frequency of J(λ̂) moves
to over-estimation as N increases for a given T—this feature
is hardly observed for J(λ̃). When ρ = 0.9, J(λ̂) still shows
a tendency to under-estimate J for Model B1, although this
behavior is attenuated for Model C1. As for the J(λ̃) estimator,
the probability of correct detection remains unchanged as N
increases, regardless of T, with a tendency of reallocate part of
the under-estimation frequency on the over-estimation one as
T increases. Under the cointegration scenario, the behavior of
both J(λ̃) and J(λ̂) statistics improve with correct J estimation
frequencies that tend to one as T increases, and with J(λ̃) out-
performing J(λ̂) in all cases. Finally, when the magnitude of the
structural break increases to ς1 = 5 both estimators provide
good results.

Table C.12 summarizes the performance of the panel BIC
when there are no structural breaks (J0 = 0) affecting the
parameters of the model. The frequency of correct selection
of the number of breaks for both J(λ̃) and J(λ̂) statistics is
similar, and higher than the one obtained for the one structural
break case. In general, higher correct selection frequencies are
obtained for Model C1. This results indicates that the proposed
panel BIC is useful to detect the presence of structural breaks in
our model set-up.

5.2. Time Trend Case

5.2.1. Performance of the Break Fraction and Pooled
Estimators

This section investigates the performance of λ̂ and λ̃ for Models
B and C with the deterministic component given by the time

trend case—that is, θi,1 �= θi,2 �= 0 ∀i in (18). Figures C.49–C.52
depict the histograms of λ̂ for Model B2 (Case 1) when ς1 = 1
for all possible combinations that consider that the true number
of common factors is m0 ∈ {1, 2} and the imposed number
of common factors is m ∈ {1, 2}. In general, we can observe
that the probability mass concentrates around λ0 as T and/or N
increase for a given set of φi and ρ parameters. The probability
around λ0 is slightly reduced for Cases 2 and 3, especially for
small T, although it tends toward one as T and N get large—see
Figures C.53–C.60. Note that when this estimation bias appears,
the estimates are located around λ0. As for the constant case, the
use of λ̃ produces better results, since the probability mass of λ̃

around λ0 is, in general, similar or larger than the λ̂ one—see
Figures C.61–C.72.

The simulation experiment has also studied the performance
of β̂PCCE(λ̂) and has found that the MSE decreases as N and/or
T increase, and as ρ moves away from one—detailed results are
available upon request. All these results reinforce the theoretical
analysis that has been detailed in Theorem 1.

5.2.2. Empirical Size and Power of the Panel Cointegration
Statistic

Table C.6 collects the empirical size and power of CIPS(λ̂tr). The
statistic shows good performance, with an empirical size that is
close to 0.05 when φi = ρ = 1. Under-specification of the num-
ber of common factors does not seem to cause major size distor-
tions for Case 1, although this is not the case for Case 3 and, to
a lesser extent, for Case 2, for large N and T. As for the constant
case, the statistic becomes conservative if the assumption of
common order of integration of the idiosyncratic and common
factor components is not met. The empirical power increases as
T and N increase, and decreases as the model specification gets
more complicated—this is something to be expected due to the
presence of a higher number of parameters to be estimated. For
completeness, we have also included the results that are based
on the badly-behaved CIPS(λ̂) statistic, which behaves similar to
CIPS(λ̂tr). This result might be surprising, but we need to take
into account that the term that invalidates the use of CIPS(λ̂)

in the limit also depends on the magnitude of the change in the
slope of the time trend, so that small values of

∥∥θi,2
∥∥ might have

little effect on the limiting distribution.
We have also analyzed the performance of the statistics under

local-to-zero breaks through the definition of shrinking break
magnitudes for all parameters related to the structural instabil-
ity. To be specific, θi,1, θi,2, ς1, ϕ

y
i,1, and ϕx

i,1 defined above have
been rescaled by T−1/2−δ , δ > 0—we have used an arbitrarily
small positive value of d = 0.01—so that in the limit the effects
of the structural break tend to zero. 8 Table C.8 indicates that the
performance of the CIPS(λ̂tr) statistic under shrinking breaks is
similar to the fixed breaks one—the empirical size is close to the
nominal one, whereas in some cases a mild drop in the empirical
power is observed, although the empirical power equals one as
T gets large.

The finite sample performance of CIPS(λ̃) is investigated in
Table C.7, which reveals a test statistic with an empirical size that

8The specification of the shrinking factor T−1/2−δ , δ > 0, is motivated by the
fact that (λ̂ − λ0) = Op(T−1/2) for Models A2, B2, and C2.
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is close to 0.05 in most cases—with the exception of a mild over-
rejection distortion found for Case 3 when m0 = m = 2 with
large T. The values for the empirical power of CIPS(λ̃) are higher
than the CIPS(λ̂tr) ones—and similar to the CIPS(λ̂) ones—for
a given set of ρ, T, and N values. As for the shrinking breaks
configuration, we observe that the empirical size of CIPS(λ̃) is
close to 0.05, although the empirical power is reduced when
compared to the results that are based on fixed break magni-
tudes. To some extent, this is something to be expected since in
this case, although λ̃ is consistent, the rate at which λ̃ tends to λ0

is reduced—it has been shown that (λ̃ − λ0) = op(N−1/3T−1)
for the fixed breaks case. From this point of view, it seems that
CIPS(λ̂tr) outperforms CIPS(λ̃), although the empirical power
equals one as T gets large.

Contrary to what has been done for the constant case, here
we cannot compare the performance of the statistic with other
existing proposal in the literature, since the case of panel coin-
tegration testing with unknown structural changes that affect
the slope of the time trend have not been previously addressed
in the literature—Banerjee and Carrion-i-Silvestre (2015) only
deal with the unknown breaks date situation for the constant
case. However, we have investigated the properties of the sta-
tistical inference when the structural breaks are ignored with
the computation of the panel cointegration statistic in Banerjee
and Carrion-i-Silvestre (2017), which results are summarized in
Table C.9. Unfortunately, in this case the empirical size is not
controlled since, for instance, for Case 1 with m0 = m = 1,
the empirical size tends toward one as T and N increase. The
size distortion is less noticeable for Case 3 with m0 = m =
1, although it is still important in some cases—see results for
m0 = m = 2 and T = 200. In addition, the violation of the
assumption of common order of integration of the idiosyncratic
and common components under the null hypothesis of spurious
regression does not seem to lead to a conservative test statistic.
Finally, even in those cases where the size distortions are not very
large—that is, Case 1 with m0 = m = 1, N = 20 and T = 50—
the empirical power of the statistic is only slightly above the
empirical size—that is, 0.07 versus 0.09. Again, this suggests that
empirical analyses should include parameter instabilities in the
model specification if there is evidence that structural changes
might have affected the model.

5.2.3. Estimation of the Number of Structural Breaks
Table C.11 provides the frequency of the estimated number of
structural breaks that derives from the use of the panel BIC
statistic, considering up to two structural breaks. The ability of
the panel BIC to select the correct number of structural breaks is
very good, with a correct detection frequency that range between
0.92 and 1 regardless of N, T, φi, and ρ, for both λ̂ and λ̃

based estimators, and model specifications. Table C.12 presents
the frequency of the number of structural breaks estimation
for model specifications that do not include structural breaks
(J0 = 0). For Model B2 the frequency of correct classification
lies in the ranges [0.73, 0.92] for J(λ̂) and [0.69, 0.92] for J(λ̃)

under the null hypothesis of spurious regression. For Model
C2 the classification ranges narrow to [0.93, 0.96] for J(λ̂)

and [0.90, 0.97] for J(λ̃) under the null hypothesis of spurious
regression. Under the alternative hypothesis of cointegration,

the frequency of correct estimation of the number of structural
breaks equals one for both J(λ̂) and J(λ̃) statistics. This leads
us to suggest the use of the panel BIC statistic in empirical
applications.

6. Empirical Illustration

A well-functioning housing market has been shown to be very
relevant for the proper evolution of credit and financial markets,
which in turn has effects on macroeconomic variables such as
output, fiscal deficit and unemployment. The empirical evidence
that analyses the potential relationship between housing prices
and real disposable income per capita is mixed, and depends
both on the scope (national or regional) and on the period
of analysis. Following Holly, Pesaran and Yamagata (2010), we
focus on the US economy considering the 48 contiguous U.S.
States and the District of Columbia (N = 49 ) using annual
data between 1975 to 2019 (T = 45)—see Holly, Pesaran and
Yamagata (2010) for the sources of the statistical information—
with the model:

hpi,t = αi + βyi,t + ui,t , (19)

where hpi,t denotes the logarithm of the real housing prices
index and yi,t is the logarithm of the real disposable income per
capita. They argue that the use of panel data cointegration anal-
ysis can provide better statistical inference given the short time
period of the available information. The preliminary analysis
conducted in their paper reveals that cross-section dependence
is present in the dataset.

As discussed in Holly, Pesaran and Yamagata (2010), the
boom house prices started in early 2000 in the United States
and accelerated during 2003–2006, something that has been
interpreted in the literature as a housing price bubble. Figures
C.73 and C.74 depict the variables, which show hump-shaped
behavior in some of the house price time series during mid-
eighties and in the middle of the first decade of 2000. If this is
the case, it is safe to assume that the potential long-run relation-
ship between housing prices and disposable income per capita
might have been affected. This in turn implies that parameter
instabilities should be accounted for in the model. The empirical
specification that is used here generalizes the one in (19) by
considering the effects of structural breaks as follows:

hpi,t = μi,j,1 + βjyi,t + Ȳ ′
tδ

y
i,j + υi,t Tj−1 < t ≤ Tj, (20)

with Ȳt =
(

hpt , ȳt
)′

, hpt = N−1 ∑N
i=1 hpi,t , ȳt = N−1 ∑N

i=1 yi,t

and j = 1, . . . , J.
Table 2 summarizes the results that are based on both break

dates estimation procedures discussed in Section 3, although
it has to be born in mind that T̃B clearly outperforms T̂B, so
that more weight should be imposed on the conclusions drawn
from the former estimator. The order of augmentation pi in (17)
is selected using the modified Akaike’s information criterion
(MAIC) in Ng and Perron (2001) and Perron and Qu (2007) for
each panel unit with up to five lags, and the trimming is set at
ε = 0.2. Let us first focus on the specification that considers one
structural break. As can be seen, there is strong evidence of panel
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Table 2. Parameter estimates and CIPS panel cointegration test statistic.

Panel CIPS
J Model T̂B T̃B β̂ BIC m = 1 m = 2

0 1.23 −6.28 −2.76** −2.82**
1 B1 1984 (0.78, 0.87)′ −6.00 −2.87** −3.39**
1 C1 1991 (0.62, 0.69)′ −6.14 −1.79 −2.99**
1 B1 1985 (0.91, 0.89)′ −5.98 −2.50** −3.09**
1 C1 1986 (0.27, 0.73)′ −6.29 −2.26 −2.87**
2 B1 (1984, 1993)′ (0.77, 0.94, 0.90)′ −5.81 −2.58 −2.71
2 C1 (1988, 2004)′ (0.43, 0.82, 0.45)′ −6.07 −3.15** −1.99
2 B1 (1984, 2009)′ (0.86, 0.91, 0.77)′ −5.76 −3.58** −3.20**
2 C1 (1986, 2003)′ (0.27, 0.70, 0.54)′ −6.04 −3.12** −3.02

** and * denote rejection of the null hypothesis at the 5% and 10% significance levels, respectively

cointegration for Model B1, since the null hypothesis of spurious
regression is rejected at the 5% significance level regardless of m.
Evidence of cointegration is also found for Model C1, although
only when m = 2. This situation illustrates the potential effect
on the empirical power of CIPS when m < m0, which can be
reduced if a nonstationary common factor is not accounted for.
Although the estimated break date—T̂B = 1984 and T̃B = 1985
for Model B1, and T̂B = 1991 and T̃B = 1986 for Model C1—is
not located around the 2003–2006 housing price bubble period
mentioned above, it does reflect important changes that expe-
rience the U.S. real state market—that is, the deregulations of
the mortgage market, the development of a secondary mortgage
market and the increasing role of the government-sponsored
enterprises that affected the U.S. economy during the first half
of the eighties; see Gerardi, Harvey and Willen (2010) and
Ahamada and Diaz-Sanchez (2013). It is interesting to note that
all estimated elasticities are below one, with the major change
observed for Model C1 with T̃B.

The conclusions that are obtained for the two structural
breaks depend on the break estimation procedure. Evidence
of panel cointegration is quite weak when using T̂B—that is,
the null hypothesis of spurious regression is only rejected for
Model C1 with m = 1—and is stronger when using T̃B—panel
cointegration is found except for Model C1 with m = 2. It is
worth noting that for the latter, the first estimated break date
detects the policy changes that experienced the U.S. housing
market during the eighties, whereas the second break date is
close to the global financial crisis (Model B1) or to the housing
prices bubble discussed above (Model C1). As for the param-
eter estimates, income elasticity shows a mild (large) increase
from the first to the second regimes Model B1 (Model C1), to
experience a decrease from the second to the third regimes for
both models.

Finally, we have also reported the value of the panel BIC
statistic that has been proposed in the article as a way to estimate
the number of structural breaks. The model specification that
minimizes the panel BIC is the one given by Model C1 with J = 1
and T̃B. This result reinforces the analysis the overall discussion
about the existence of a long-run relationship between the log-
arithm of the real housing prices index and the logarithm of the
real disposable income per capita for the U.S. States, a conclusion
that is robust to the accommodation of one unknown structural
break.

7. Conclusions

The article has shown that a consistent estimate of the long-run
average coefficient can be obtained when cross-section depen-
dence is present among the panel data units. The type of cross-
section dependence that is considered in the article is strong,
which is accounted for using an approximate common factor
model. The model specification is quite flexible and allows for
multiple structural breaks that can affect the deterministic com-
ponent, the cointegrating vector and/or the loadings of the com-
mon factors. The estimation procedure that is applied is based
on the CCE approach in Pesaran (2006), which approximates the
unobserved common factors using cross-section averages of the
observable variables of the model. Our result contributes to the
literature of nonstationary panel data analysis, where consistent
estimation of the parameters of the model is feasible in a spu-
rious regression framework. The article conducts an extensive
simulation exercise to study the finite sample performance of the
estimator and test statistic that has been proposed in the article.

The application of the procedures that are designed in the
article is illustrated with a model that defines a potential rela-
tionship between housing prices and real disposable income per
capita. The analysis builds upon the use of U.S. regional data that
covers a long time period. The main conclusion that is drawn
indicates that robust evidence on the existence of a long-run
relationship between housing prices and real disposable income
per capita can be obtained once the presence of structural breaks
that capture relevant events for the U.S. housing market are
allowed for in the model specification.

Supplementary Materials

Appendix A. Mathematical appendix: Collects the proofs of the theorems.
Appendix B. Tables of critical values: Presents the tables of critical

values for the individual and panel data cointegration test statistics, con-
sidering one structural break.

Appendix C. Monte Carlo experiment and empirical illustration:
Pooled CCE estimator, break fraction histograms and empirical size and
power of the panel cointegration statistics. Plots of the variables used in the
empirical application.
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