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Abstract
Klebsiella pneumoniae is a Gram-negative Enterobacteriaceae that is classified by the World Health Organisation 
(WHO) as a Priority One ESKAPE pathogen. South and Southeast Asian countries are regions where both healthcare 
associated infections (HAI) and community acquired infections (CAI) due to extended-spectrum β-lactamase 
(ESBL)-producing and carbapenem-resistant K. pneumoniae (CRKp) are of concern. As K. pneumoniae can also 
exist as a harmless commensal, the spread of resistance genotypes requires epidemiological vigilance. However 
there has been no significant study of carriage isolates from healthy individuals, particularly in Southeast Asia, and 
specially Malaysia. Here we describe the genomic analysis of respiratory isolates of K. pneumoniae obtained from 
Orang Ulu and Orang Asli communities in Malaysian Borneo and Peninsular Malaysia respectively. The majority of 
isolates were K. pneumoniae species complex (KpSC) 1 K. pneumoniae (n = 53, 89.8%). Four Klebsiella variicola subsp. 
variicola (KpSC3) and two Klebsiella quasipneumoniae subsp. similipneumoniae (KpSC4) were also found. It was 
discovered that 30.2% (n = 16) of the KpSC1 isolates were ST23, 11.3% (n = 6) were of ST65, 7.5% (n = 4) were ST13, 
and 13.2% (n = 7) were ST86. Only eight of the KpSC1 isolates encoded ESBL, but importantly not carbapenemase. 
Thirteen of the KpSC1 isolates carried yersiniabactin, colibactin and aerobactin, all of which harboured the rmpADC 
locus and are therefore characterised as hypervirulent. Co-carriage of multiple strains was minimal. In conclusion, 
most isolates were KpSC1, ST23, one of the most common sequence types and previously found in cases of K. 
pneumoniae infection. A proportion were hypervirulent (hvKp) however antibiotic resistance was low.
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Introduction
For indigenous communities across the globe there is no 
doubt that there continues to exist disparities in suscepti-
bility to, and burden from various diseases [1]. Marginali-
sation, resulting in inadequate access to health and social 
care infrastructure, often results in these communities 
being at risk of higher infant mortality and reduced life 
expectancy [1]. Whilst the term ‘indigenous’ is not pro-
scribed as a term to encompass all such peoples, exam-
ples of ongoing burden in Canadian First Nations, Métis, 
and Inuit communities [2] and Australian Aboriginals [3] 
are all too easy to find. The Orang Ulu and Orang Asli 
are considered the indigenous peoples of Malaysia, liv-
ing traditional lifestyles with similar socio-economic and 
health burdens [4, 5]. Typically, these communities live in 
poverty which translates into a life expectancy difference 
of ∼ 20 years compared to the rest of the Malaysian popu-
lation [6]. Given the distinct challenges that indigenous 
communities encounter, it is therefore critical that spe-
cific and targeted attention is given to them with respect 
to the infectious disease burden they may face [7]. To that 
end we draw our attention to Klebsiella pneumoniae.

K. pneumoniae is a Gram-negative Enterobacteria-
ceae that is classified by the World Health Organisation 
(WHO) as a Priority One ESKAPE pathogen [8]. As a 
major threat to public health, it remains a common noso-
comial pathogen causing serious healthcare associated 
infections (HAI) including bacteraemia, pneumonia, and 
sepsis. Similarly to many infectious diseases the burden is 
shouldered most by those at the extremes of age, as well 
as the immunocompromised [9].

The K. pneumoniae species complex (KpSC) comprises 
seven phylogroups, based on genomic relatedness: K. 
pneumoniae (KpSC1), K. quasipneumoniae subsp. qua-
sipneumoniae (KpSC2), K. variicola subsp. variicola 
(KpSC3), K. quasipneumoniae subsp. similipneumoniae 
(KpSC4), K. variicola subsp. tropica (KpSC5), K. qua-
sivariicola (KpSC6), and K. africana (KpSC7) [10, 11]. 
Whilst KpSC1 is the predominant phylogroup respon-
sible for global disease [12], this diversity in the spe-
cies complex has hampered efforts to generate effective 
vaccines and therapeutics. Moreover, the emergence of 
multidrug resistance to carbapenems, broad-spectrum 
β-lactams, fluoroquinolones, and aminoglycosides pose 
a significant challenge. Consequently, genomic surveil-
lance, to monitor for example the spread of problem-
atic clonal complexes such as CC258 [13], is an absolute 
requirement for this important human pathogen.

As K. pneumoniae can also exist as a harmless com-
mensal, the prevalence of resistant genotypes within 
these reservoirs also requires epidemiological vigilance. 
To date there has been no significant study of respira-
tory carriage isolates from healthy individuals in South-
east Asia, and especially Malaysia. However, broadly, 

South and Southeast Asian countries are regions where 
both HAI and community acquired infections (CAI) due 
to extended-spectrum β-lactam (ESBL)-producing and 
carbapenem-resistant K. pneumoniae (CRKp) are of par-
ticular concern [14–16]. A recent study of blood stream 
infections, involving seven major hospitals in South and 
Southeast Asian countries, found 17% of K. pneumoniae 
strains were carbapenemase producers and 47% of the 
strains carried markers for ESBL. Additional concerns 
were raised due to the high prevalence of aerobactin syn-
thesis locus (iuc) in association with ESBL and/or car-
bapenemases [14].

Here we report the genomic epidemiology of K. pneu-
moniae that were taken during an all-age, upper respira-
tory tract carriage study in partnership with Orang Ulu 
communities in Sarawak, Malaysian Borneo and Orang 
Asli communities in Peninsular Malaysia.

Methods
Study population
Isolation of K. pneumoniae was done during an all-age, 
Orang Ulu community carriage study in April 2016 in 
Sarawak, Malaysian Borneo (isolates collected between 
09/04/2016 and 01/05/2016) and a similar study in Orang 
Asli communities in Peninsular Malaysia in August 2017 
(isolates collected between 01/08/2017 and 05/08/2017). 
These studies have both been published separately with-
out the data presented herein [17, 18]. Briefly, in Sarawak, 
the largest state in Malaysian Borneo, four rural long-
house communities and one village were visited. These 
varied in both isolation and affluence, from Rumah Bana 
the most affluent and only 30  km from a nearby town, 
to Ba Marong which was located in dense forest 157 km 
from Long Lama. The reported ethnicities of the total 
population recruited for the initial study (n = 140) encom-
passed Iban, Kelabit, Kenyah and Penan. In Terengganu, 
situated in the north-east of peninsular Malaysia two vil-
lages were visited from which n = 130 participants were 
recruited. All participants were reported as Orang asli. 
There were no exclusion criteria for recruitment. Partici-
pants were asked to complete a questionnaire requesting 
demographic data and medical history such as recent 
respiratory tract infections, and any history of use of 
antimicrobials and immunisation status.

Klebsiella sp. isolates
Participants received whole mouth (WMS), oropha-
ryngeal (OP), nasopharyngeal and/or nasal swabbing 
(N). Swabs were either rayon tipped Transwab® Perna-
sal Amies with charcoal (Medical Wire and Equipment, 
Corsham, UK) for paediatric NP, or viscose tipped sterile 
Amies swabs with charcoal (Deltalab, Chalgrove, UK) for 
WMS, OP and N. Initial culture, performed at the Uni-
versity of Southampton (UK) following transportation, 
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was done as outlined previously [17, 18], but briefly 
swabs were plated onto multiple media for the purposes 
of isolating common respiratory pathobionts. These 
included: CBA (Columbia blood agar with horse blood), 
CHOC (Columbia blood agar with chocolated horse 
blood), CNA (Columbia Blood Agar with Colisitin and 
Naladixic Acid), BACH (Columbia Agar with Chocolated 
Horse Blood and Bacitracin), GC (Lysed GC Selective 
Agar) and Pseudomonas CFC Selective agar (all Oxoid, 
UK). Suspected K. pneumoniae, those being mucoid 
coliforms on CBA plates, were sub-cultured onto CLED 
agar (Oxoid, UK) for confirmation using matrix-assisted 
laser desorption ionization time-of-flight mass spectrom-
etry (MALDI-TOF) using a Microflex® LRF (Bruker, UK). 
Where multiple isolates were taken from one individual 
these were included regardless of the niche from which 
they were taken i.e., if a Klebsiella sp. was isolated from 
the nose and mouth of a participant, both were stored. 
These were used to determine frequency of multi-strain 
carriage based on genomic analyses.

Antibiotic susceptibility
K. pneumoniae was spread over Mueller-Hinton agar 
plates (MH, Oxoid, UK). Antibiotic discs (Oxoid, UK) 
were added before pates were incubated at 35 ± 1°C for 
18  h (± 2  h). K. pneumoniae were tested with cefotax-
ime (5 µg), ciprofloxacin (5 µg), meropenem (10 µg) and 
ceftazidime (10  µg) antibiotic discs. Susceptibility was 
determined against EUCAST Clinical Breakpoint guide-
lines v6.0.

DNA extraction
DNA was extracted from a sweep of growth using a 
QIAmp DNA Mini kit (Qiagen, UK), as per the manufac-
turer’s instructions. The concentration of genomic DNA 
was determined using Qubit 2.0 fluorometric quantifica-
tion (Thermo-Fisher, UK).

Whole Genome Sequencing: Library preparation was 
done using the Nextera XT DNA kit (Illumina, UK) fol-
lowing the manufacturer’s instructions. Briefly DNA 
was quantified with Qubit fluorometric quantification 
(ThermoFisher, UK) and diluted to 0.2 ng/µl. Following 
dilution, 1 ng DNA was tagmented with the Nextera XT 
transposome. Tagmented libraries were amplified with 12 
cycles of PCR and dual-indexed primers. Libraries were 
cleaned and size selected using 0.5× volume AMPure XP 
beads (Beckman Coulter™, Fisher Scientific). Library con-
centrations were normalised using the bead-based nor-
malisation protocol implemented in the Nextera XT kit, 
then normalised libraries were pooled in equal volumes. 
Sequencing to generate 2 × 250 bp paired end reads was 
done on a MiSeq (Illumina, UK) using the 500 cycle v2 
reagent kit.

Sequence quality control and assembly
FASTQC v0.11.3 (https://github.com/s-andrews/
FastQC) with MULTIQC v1.9 [19] was used to perform 
quality assessment on paired-end reads. Kraken v7.3.0 
[20], a kmer-based taxonomy classification tool, was 
used to check for contamination and confirm the isolates 
were K. pneumoniae. Paired-end reads were trimmed 
using trimmomatic v0.39 [21] and de novo assembled 
using SPAdes v3.14.1 [22]. Assemblies were iteratively 
improved using pilon v1.23 [23] and then Quast v5.0.2 
was used to evaluate the assemblies [24].

Phylogenomics
Snippy v4.4.1 (https://github.com/tseemann/snippy), 
using snippy-multi, was used to generate a core SNP-
based alignment using Klebsiella pneumoniae subsp. 
pneumoniae Ecl8 (accession: GCA_000315385.1) as a 
reference. The subsequent alignment was character-cor-
rected using snippy-clean before recombination regions 
were identified and removed using the accompanying 
run_gubbins.py and snp-sites scripts, before FastTree 
was used to generate a phylogenetic tree using the GTR 
model of nucleotide substitution.

MLST, virulence and antibiotic gene identification/
detection
Kleborate v1.0.0 [25, 26] was used to define K. pneu-
moniae species complex (KpSC), MLST, serotype predic-
tions of K (capsule) and O antigen as well as a range of 
ICEKp and plasmid associated virulence loci in addition 
to antimicrobial resistance determinants.

Data analysis
All analysis was done in R version 3.6.0 (2019-04-26) 
using RStudio version 1.2.1335 [27, 28] with graphics 
built using the grammar of graphics package, ggplot [28]. 
The phylogenetic tree was visualised using the r package 
treedataverse, specifically ggtree [29].

Results
K. pneumoniae colonised participants
A total of sixty-seven isolates (from forty-eight individu-
als) were isolated from the two previously described 
carriage studies. Participant demographics and loca-
tion of those from whom K. pneumoniae were isolated 
are shown in Table  1. Children represented only 8.4% 
(n = 4/48) of this cohort, with most isolates recovered 
from those between the ages of 18 and 64 (35.4%; n = 17). 
There were more female participants (54.2%) than male. 
Forty-two participants came from the locations in Sar-
awak, with the majority (37.5%; n = 18) taken during the 
visit to Rumah Numpang, an isolated longhouse commu-
nity located in Sebauh, Bintulu.

https://github.com/s-andrews/FastQC
https://github.com/s-andrews/FastQC
https://github.com/tseemann/snippy
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Genomics of K. pneumoniae isolates

Eight isolates were excluded from genome analysis after 
failing assembly quality checks. Four had N50s < 1Mbp, 
three had N50s < 1Mbp and genome sizes > 6Mbp and a 
final isolate had a genome size > 6Mbp and the assembly 
was highly fragmented (> 1000 contigs). Of the remain-
ing fifty-nine isolates the majority (89.8%; n = 53) were 
KpSC1 K. pneumoniae, with four Klebsiella variicola 
subsp. variicola (KpSC3) and two Klebsiella quasipneu-
moniae subsp. similipneumoniae (KpSC4).

Twenty-six unique MLSTs were identified (Fig. 1). The 
majority of the STs were only observed once, with most 
isolates (n = 29/59, 49.2%) belonging to only three STs: 
ST23 (n = 16, 27.1%), ST86 (n = 7, 11.9%) and ST65 (n = 6, 
10.2%). ST5584 and ST5585 were novel to this study.

Fourteen capsule (K) types were identified. Of these 
KL1 accounted for most at 27.1% (n = 16/59), followed 
by KL2 (18.6%, n = 11/59) and KL3 (8.5%, n = 5/59). For 
twelve (20.3%) isolates no accurate capsule locus could 
be identified. It is likely these ‘unknown’ loci were due to 
lack of assembly contiguity or low/absence of coverage 
given that on average the locus evidence was present on 
between six and seven contigs and was typically missing 
between five to six genes.

Table 1 Demographics of participants from whom K. 
pneumoniae were isolated

Group N (%)
Age (Years) < 5 1 (2.1)

5–17 3 (6.3)
18–49 17 (35.4)
50–64 16 (33.3)
65+ 10 (20.8)
NA 1 (2.1)

Gender M 16 (33.3)
F 26 (54.2)
NA 2 (4.2)

Location
Peninsular Malaysia Kampung Sungai Pergam 4 (8.4)

Kampung Berua 2 (4.2)
Sarawak Rumah Numpang 18 (37.5)

Rumah Bana 12 (25.0)
Long Nen 5 (10.4)
Long Kerangan 3 (6.3)
Ba Marong 2 (4.2)
Kampung Sebir 2 (4.2)

Fig. 1 Minimum-spanning tree generated using goeBurst and MLST. Node numbers are STs and edge numbers represent allelic differences. Node size is 
proportional to number of isolates belonging to that ST and are coloured by location of isolation
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Virulence and antibiotic resistance
Acquired virulence gene and resistance scores are shown 
in Fig.  2. Only eight isolates, three of which were ST13 
KL3, had a resistance score (Fig.  2A), and these were 
all ‘1’ indicating they were ESBL producers but with-
out carbapenemases. This is in keeping with the pheno-
typic antibiotic resistance testing where all isolates were 
susceptible to all antibiotics tested. Resistance scores 
(Fig. 2B) were more varied. Those with the highest scores 
(5; indicating the presence of yersiniabactin, colibactin 
and aerobactin) were KL1 ST23 (n = 10: ybt 1 ICEKp10, 
clb 2, iuc 1) and KL2 ST65 (n = 2: ybt 17 ICEKp10, clb 3, 
iuc 1).

The distribution of O serotypes is shown in Fig.  3. 
O1/02 serotypes accounted for 66% of isolates (n = 39) 
and were found associated with six capsule types (K1, K2, 
K3, K24, and K109).

Phylogeny of K. pneumoniae isolates
The three KpSCs, KpSC1, 3 and 4, are clearly visible on 
the isolate phylogeny with KpSC1 being the largest clus-
ter (Fig.  4). No distinction between geographic location 
or body site sampling can be seen. All isolates which had 
a virulence score of 5 (indicated by black squares for yer-
siniabactin, colibactin and aerobactin) also harboured the 
rmpADC locus (n = 13) conferring a hypermucoid phe-
notype and would therefore be classified as hyperviru-
lent K. pneumoniae (hvKp). These isolates in particular 
only harboured the chromosomally encoded β-lactamase 
(B.broad column, Fig.  4) and are therefore not consid-
ered a problem with respect to antimicrobial resistance. 
Moreover, the presence of resistance genes overall was 
very limited. Only eight isolates had ESBL of which only 
two (both KL24 ST661) had any of the virulence genes, 
which in this case was ybt. We also note the high propor-
tion of isolates generally encoding rmpA/A2 (n = 29/60). 
All were KpSC1, with KL1 (n = 16), KL2 (n = 11) and KL57 

Fig. 2 Antibiotic resistance (A) and acquired virulence (B) scores for isolates with known capsular types. Resistance scores are on a scale of 0 (low) to 
3 (high), and virulence 0 (low) to 5 (high). Resistance scores of 0 indicates no ESBL and no carbapenemase, 1 indicates the presence of an ESBL but still 
without carbapenemase, 2 indicates the presence of a carbapenemase without colistin resistance and 3 a carbapenemase with colistin resistance. Scores 
of 0/1 are irrespective of colistin resistance with scores of 2/3 irrespective of the presence of an ESBL. Virulence scores are based on the presence of yer-
sinibactin (ybt), colibactin (clb) and/or aerobactin (iuc). A score of 0 indicates none of these genes were found with a score of 5 showing all three were 
present. Scores of 1–4 indicate the following: 1 - yersiniabactin only, 2 - yersiniabactin and colibactin (or colibactin only), 3 aerobactin only, 4– aerobactin 
and yersiniabactin. Bars are ordered by frequency of capsule type
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(n = 2) being the only capsule locus types associated. All 
KL1 were ST23, whereas KL2 was split reasonably evenly 
between ST86 (n = 7) and ST65 (n = 4). All isolates were 
from adults, with the majority (n = 22/29, 76%) coming 
from those over the age of 50-years-old. There was no 
gender separation with those coming from females and 
males in the same proportion (1:1.6) mirroring study 
recruitment. All but two isolates were from oropharyn-
geal/whole mouth swabs.

Carriage of multiple K. pneumoniae strains
We were particularly interested in the question of mul-
tiple strain carriage. Of the 18 participants from whom 
multiple isolations of K. pneumoniae were made, nine 
had isolates from both WMS and OP swabs, three from 
both OP and N and two from a N and NP sample. This 
excludes four participants for whom the genome assem-
blies of one or both isolates were not analysed as outlined 
above. Of those remaining, only two participants exhib-
ited a multiple-strain carriage phenotype: an 80-year-old 
female from Rumah Bana had an ST86 KL2 in her OP 
sample and an ST17 with unknown capsule type in her 
nasal sample, and a 48-year-old female from Long Nen 

harboured a ST1800 KL109 and a ST268 unknown cap-
sule type in OP and WMS samples respectively.

Discussion
Countering the spectre of rising antimicrobial resistance 
in K. pneumoniae requires continued genomic epidemi-
ological vigilance. Whilst there are efforts to fill the gap 
in knowledge regarding strains of this important human 
pathogen from Malaysia, specifically carbapenemase 
producers isolated in clinical settings [30, 31], there is a 
paucity of information related to carriage. Therefore, to 
add to this burgeoning field, we present the first genomic 
study of K. pneumoniae isolates from respiratory tract 
carriage, with a focus on an understudied and margin-
alised community of Malaysia. We highlight the high fre-
quency of hypervirulent strains with, at the present time, 
minimal repertoires for antimicrobial resistance.

With limited regional data it is difficult to compare 
our isolates either with those from elsewhere in Malay-
sia, or within the Southeast Asian region, particularly 
with respect to respiratory carriage. Nevertheless, there 
are useful comparisons which may be made. For exam-
ple, our finding that 19% of our isolates were hvKp is 

Fig. 3 Correlation between capsule (K) and serotype (O) loci. Each point displays the number of isolates within each K/O group. Most isolates were char-
acterized by O1 or O2 polysaccharide which were found in KL1, KL2, KL3, KL109 and KL124 (bottom left quadrant)
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reasonably similar to the ∼ 10% identified in studies of 
gut colonisation in a Taiwanese hospital setting and a 
study of healthy Chinese adults [32, 33]. In the latter 
study, KL1 and KL2 were also the most frequent capsule 
types observed, and that included in those Chinese adults 
residing in Malaysia [34]. This dominance of KL1/2 has 
also been noted in Singapore [35]. In keeping with the 
Singaporean epidemiology, the most common sequence 
type from our study was also ST23, which has been found 
to be associated with hypervirulence and antimicrobial 
resistance of K. pneumoniae in South East Asia [36] and 
previously identified as a common cause of disease in a 
collection of isolates from a Malaysian teaching hospital 
[37]. There are however important contrasts to note from 
the latter clinical study. There, hvKp accounted for a sig-
nificantly greater proportion of isolates (38%), and MDR/
ESBL was also more prevalent (31.9 and 27.8% respec-
tively) [37]. Indeed, whilst ST23 was shared, ST22 and 
ST412, the next two most common STs were not found 
in the present study [37]. The increased proportion of 

ESBL-producers in clinical samples was also observed in 
a two year study of hospital blood stream infections [38]. 
Here, 53% of isolates were classed as ESBL-producers 
(n = 45/303) [38]. Our study provides a further stark con-
trast to the 87% prevalence of carbapenem-resistant K. 
pneumoniae clinical isolates that were observed over the 
course of one year at the University Malaya Medical Cen-
tre, Kuala Lumpur [31]. Our study is however in keep-
ing with the global picture of associations between hvKp 
and antimicrobial resistance, in that those isolates which 
would be classed as hvKp only had limited resistance, 
genotypically, to β-lactamas without ESBL and carbapen-
emases [25]. This reflects perhaps an important differ-
ence between carriage and clinical strains, as according 
to the most recent National Antibiotic Resistance Sur-
veillance Report from 2020, antibiotic resistance has 
been rising in clinical strains in Malaysia [39]. Regard-
less of these distinctions, a recent surveillance study of 
MDR and hvKp within low- and lower-middle income 
countries raised the importance of strain convergence 

Fig. 4 Phylogeny of K. pneumoniae. Phylogenetic tree based on core-genome SNPs and constructed using FastTree (GTR + GAMMA). Leaves are colored 
by ST. The presence of virulence genes are shown in black, with antibiotic resistance markers in blue (white indicates absence). Virulence: Ybt yersiniabac-
tin, Clb colibactin, Iuc aerobactin, Iro salmochelin, Rmp and RmpA2 hypermucoidy. Antibiotics: Agly aminoglycosides, Col colistin, Fcyn Fosfomycin, Flq 
fluoroquinolones, Gly glycopeptides, MLS macrolides, Ntmdz nitroimidazoles, Phe phenicols, Rif rifampin, Sul sulfonamides, Tet tetracyclines, Tgc tigecy-
cline, Tmt trimethoprim, Omp osmoporin mutations, Bla beta-lactamases, Carb carbapenemase, ESBL extended spectrum beta-lactamases, ESBL(inhR) 
extended spectrum beta-lactamases with resistance to beta-lactamase inhibitors, B.broad beta-lactamases, B.broad.inhR beta-lactamases with resistance 
to beta-lactamase inhibitors
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[40]. This phenomenon whereby a hypervirulent and 
carbapenem-resistant strain arises was noted in 2015 in 
China [41]. As such, and for other examples since, Asia 
was flagged as a region where convergence was of par-
ticular concern [40]. Whilst Malaysia was not one of the 
three countries highlighted, the circulation of both hvKp, 
as shown here, with the many examples above of clini-
cal carbapenemase/ESBL-producing strains is cause for 
concern.

There are several limitations to this study. Firstly, the 
use of Illumina short-read sequencing and the resulting 
inability to accurately reconstruct K loci for all isolates 
would have been negated using long-read approaches. 
Further, no phenotypic analysis of capsule production 
was undertaken which would have clarified these dis-
crepancies. The lack of accurate medical records makes 
extrapolation between the low AMR observed in these 
isolates and antibiotic use in these populations difficult. 
Our primary focus was respiratory carriage and therefore 
we do not know the carriage prevalence in the gut. This 
would be an important additional epidemiological refer-
ence point for future studies. Finally, our demographic 
is skewed towards an older population in only two loca-
tions. Despite these issues, perhaps the most important 
strength of our study is the focus on a marginalised, 
indigenous community. It is well documented that simi-
lar communities across the world are at increased risk 
of respiratory disease. Such examples include from the 
epidemiology of severe community acquired pneumonia 
in Australian Aboriginals [42] to increased incidence of 
invasive Group A Streptococci in First Nations popula-
tions in Alberta Canada [43] and Staphylococcus aureus 
disease in Native American individuals, where burden is 
many times the national average [44]. Whilst we have not 
determined K. pneumoniae disease burden in our Orang 
Ulu and Asli populations, this study is an important step 
in future attempts to do so.

In conclusion, we present the first study of carried 
respiratory K. pneumoniae from Malaysia. Currently, 
whilst there is clearly a reservoir of strains capable of 
causing disease, they at present do not harbour the genet-
ics for resistance to therapeutic interventions.
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