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Abstract Kaon physics is at a turning point – while the
rare-kaon experiments NA62 and KOTO are in full swing,
the end of their lifetime is approaching and the future experi-
mental landscape needs to be defined. With HIKE, KOTO-II
and LHCb-Phase-II on the table and under scrutiny, it is a very
good moment in time to take stock and contemplate about
the opportunities these experiments and theoretical develop-
ments provide for particle physics in the coming decade and
beyond. This paper provides a compact summary of talks and
discussions from the Kaons@CERN 2023 workshop, held in
September 2023 at CERN.
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1 Introduction

The NA62 experiment at CERN and KOTO at J-PARC Japan
are the only two experiments worldwide fully dedicated to
the study of rare kaon decays. NA62 is planned to conclude
its efforts in 2025, and both experiments are aiming to meet
important milestones on that time scale. The future experi-
mental landscape for kaon physics beyond this date has not
taken shape yet, but there is a strong and engaged community
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committed to continuing these investigations in the coming
years. Proposals for next-generation experimental facilities
HIKE [1] at CERN and KOTO-II [2] at J-PARC are on the
table and under scrutiny. With this background, the aim of
this workshop was to bring together theoretical and exper-
imental kaon physicists to reflect on the present situation,
future challenges and the main goals of the community.

Kaons, the mesons containing one strange and either a
lighter up or down quark, have historically played a central
role in developing and establishing the Standard Model (SM)
of elementary particle physics. Many of the SM’s salient fea-
tures were discovered through the study of kaons. For exam-
ple, parity violation was hinted at in kaon decays [3], kaons
were central to the development of the Cabibbo theory of
flavour [4], and the absence of flavour-changing neutral cur-
rents (FCNCs) at tree level led to the postulation of a fourth
(the charm) quark [5]. CP violation, one of the three neces-
sary ingredients to justify the baryon asymmetry of the Uni-
verse, was discovered in its direct and indirect incarnations
in kaon decays [6–8]. It was incorporated in the “new” SM
by Kobayashi and Maskawa [9] by introducing a third gen-
eration of quarks before its experimental discovery [10]. The
Cabibbo–Kobayashi–Maskawa (CKM) quark-mixing matrix
describes all quark decays and is the subject of a major par-
ticle physics experimental programme.

The full particle content of the SM was later experimen-
tally established at CERN with the Higgs discovery [11,12]
in 2012. Since then, the outlook for particle physics has
changed considerably. While the observed baryon asymme-
try, the question about the origin of neutrino masses and the
patterns of quark and lepton masses and mixings, or the pres-
ence of dark matter in the universe, are still lacking a micro-
scopic and confirmed understanding within or beyond the
SM (BSM), clear indications of the direction of journey, like
hitherto the Higgs particle, are also currently lacking.

Kaon physics plays a very special role in this context.
The study of rare kaon decays provides a unique sensitivity
to New Physics (NP), than reached by collider experiments.
In the SM, the rare decay of a charged or neutral kaon into
a pion plus a pair of charged or neutral leptons is hugely
suppressed. This is due to the absence of tree-level FCNC
interactions (e.g., s → d) in the SM. Such a transition can
only proceed at loop level involving the creation of at least
one very heavy (virtual) electroweak (EW) gauge boson. Two
ingredients lead to a massive suppression of the decay rate:
the Glashow–Iliopoulos–Maiani (GIM) mechanism, which
leads to a suppression of the transition by the heavy-mass
scale of the gauge bosons, and the smallness of the involved
combination of CKM-matrix elements. Both make rare kaon
decays even more suppressed than the rare B-meson decays
currently studied at LHCb and Belle-II.

While this suppression constitutes a formidable experi-
mental challenge in identifying the decay products amongst

a variety of background signals, NP, with mass scales much
heavier than the EW scale, could leave a significantly measur-
able imprint through tree-level or loop contributions. Despite
these challenges, nature has been kind to us: rare kaon decays
are one of the theoretically cleanest places to search for the
effects of NP – one could even say that they constitute a
standard candle of the SM. This is on the one hand due
to the limited number of possible decay channels of kaons
and pions and, as a result, the relatively clean experimental
environment. More importantly, and very much in contrast
to rare B-meson decays, there are “gold-plated” rare decay
modes amongst the rare-kaon decays, which are purely short-
distance dominated and therefore allow for very precise the-
ory predictions. These are the rare decays of charged and neu-
tral kaons into pions and a pair of neutrinos, K+ → π+νν̄

and KL → π0νν̄.
The charged-kaon decay is currently being studied at the

NA62 experiment at CERN, and a measurement of its branch-
ing ratio with a precision of 15% is expected by 2025. How-
ever, to substantially improve this measurement, thereby sub-
stantially increasing the likelihood of a discovery, the exper-
imental precision will need to be reduced further to the level
of the theory prediction, i.e., 5%. This can only be achieved
with a next-generation experiment. The HIKE experiment, a
future high-intensity kaon factory at CERN currently under
approval, will reach the 5% precision goal on the measure-
ment of K+ during its first phase of operation. Afterwards,
a second phase with a neutral KL beam aiming at the first
observation of the very rare decays KL → π0�+�− is fore-
seen. KOTO-II, a planned but not yet funded evolution of
KOTO, aims to measure the branching ratio of KL → π0νν̄

with a precision of 25%.
With the setup and detectors optimised for the measure-

ment of the most challenging rare-decay processes, HIKE
phase 1 and 2 as well as KOTO-II will be able to reach
unprecedented precision on many other K+ and KL decays
as well, many of which are also extremely interesting in
view of the possibility to provide a window on NP contri-
butions. The LHCb experiment will also contribute to kaon
physics, especially with studies of KS decays. What makes
them now less appealing than the golden modes, is the fact
that long-distance effects are more relevant or in some cases
even dominating, so that NP effects may be hidden behind
poorly understood hadronic effects. But significant progress
is happening on that front too. For instance, the communities
working on lattice QCD, effective field theory and dispersive
approaches have, over the last decades, continued sharpening
their tools motivated in part by the wealth of experimental
information on kaon decays, which calls for a deep and pre-
cise theoretical understanding of the hadronic contributions.
The prospects for further improving our control over non-
perturbative effects on the same time scale as the planned
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new experiments are very good, as presentations and discus-
sions during the workshop have made clear.

This workshop summary aims to present a concise
overview of the current status of experimental and theoretical
kaon physics, to discuss opportunities and expectations for
future developments and improvements in precision and to
provide entry points into the vast literature on the subject, and
is structured as follows. Section 2 is dedicated to experimen-
tal aspects and provides an overview of current experiments
and of planned future ones. Section 3 summarises the current
situation and prospects for improvement of our understand-
ing of kaon decays within the SM. It briefly touches upon
the remarkably broad spectrum of quantum field theory tools
which have been developed and have to be used in connection
with kaon decays. Section 4 is dedicated to a discussion of the
huge potential of rare kaon decays for the discovery of NP, in
light of the current situation and the future prospects of indi-
rect searches at B factories and direct searches at the energy
frontier. The complementarity with these searches provides a
strong motivation for carrying out this programme. In Sect. 5,
general conclusions and an outlook are provided.

2 Experimental kaon physics

The three major experiments performing kaon physics are:
the NA62 fixed-target decay-in-flight experiment at the
CERN north area working with a K+ beam, the KOTO exper-
iment at the J-PARC Hadron Experimental Facility (HEF)
working with a KL beam, and the LHCb experiment at the
Large Hadron Collider at CERN with particular sensitivity
to KS and hyperons.

At the CERN north area the HIKE programme is pro-
posed to continue fixed-target decay-in-flight experiments,
with much increased beam intensity and a new detector setup,
with both K+ and then KL beams in a multi-phase project.

At J-PARC, KOTO-II, the evolution of KOTO, is being
discussed as a part of the HEF extension project, to reach the
sensitivity required to detect tens of KL → π0νν̄ decays.

The LHCb experiment has already undergone a major
upgrade, which includes a paradigm shift to using a software
trigger. This is crucial for the KS and hyperon programme
since previously hardware triggers, not designed for kaon
studies, were highly inefficient, while now software triggers
can be developed to fully exploit the high luminosity avail-
able.

2.1 Dedicated kaon experiments at CERN

2.1.1 The NA62 experiment: present status

The main aim of the NA62 experiment is the precise measure-
ment of the ultra-rare decay K+ → π+νν̄ using a decay-in-

flight technique. NA62 exploits the CERN SPS 400 GeV/c
primary proton beam, that impinges on a beryllium target
and produces a 75 GeV/c secondary beam made of posi-
tively charged particles of which approximately 6% are K+.
The experimental signature of a K+ → π+νν̄ decay is
an incoming K+ and an outgoing π+ with missing energy
in the final state. The signal is kinematically discriminated
from other kaon decays using the squared missing mass
mmiss = (pK − pπ )2 variable, where pK and pπ are the
4-momenta of the kaon and of the downstream charged par-
ticle respectively, in the pion mass hypothesis.

The experiment has taken data in 2016–2018 (Run 1) [13].
NA62 recorded about 3 × 1018 protons on target in Run 1,
and at least twice this value is expected in Run 2. The analy-
sis of Run 1 data led to the observation of 20 K+ → π+νν̄

signal candidates (with about 10 SM signal and 7.03+1.05
−0.85

background events expected). The measured branching ratio
B(K+ → π+νν̄) = (10.6+4.0

−3.4|stat ±0.9syst)×10−11 is com-
patible with the SM prediction within one standard devi-
ation, and corresponds to an observational significance of
3.4σ [14]. This is the most precise measurement of the
K+ → π+νν̄ branching ratio to date and provides the
strongest evidence so far for the existence of this extremely
rare process.

Data taking has resumed with Run 2 in 2021, and is
approved until long shutdown 3 (LS3). Several detector
upgrades have been implemented during LS2. A first pre-
liminary analysis of the data collected in 2022 exhibits a
sensitivity similar to that of the whole Run 1. A measurement
of B(K+ → π+νν̄) with a precision of 15% is achievable
by LS3, assuming a beam delivery similar to that of 2022 in
the upcoming years [15].

2.1.2 HIKE phase 1 and 2: experimental design and
physics reach

HIKE is a world-leading comprehensive programme of kaon-
decay experiments, which follows a staged approach and
includes several phases [1]. The programme focuses on sev-
eral ultra-rare “golden” kaon-decay modes, which are very
clean from the theory point of view (providing unique closure
tests of the CKM paradigm), and are exceptionally difficult
to measure. The primary goal of Phase 1 is a measurement of
the K+ → π+νν̄ branching ratio to a 5% precision (match-
ing the precision of the SM calculation), while the main goal
of Phase 2 is the first observation of the KL → π0�+�−
decays with a significance above 5σ . The experimental lay-
out for both phases is shown in Fig. 1. HIKE will use K+ and
KL beams of record intensity, and will therefore collect the
world’s largest samples of K+ and KL decays using a flexible
software trigger and detectors with higher performance than
those of NA62 and other previous experiments. As a result,
HIKE will significantly improve the precision of measure-
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Fig. 1 HIKE phase 1 (top) and phase 2 (bottom) layouts, with an aspect ratio of 1:10

ments over a wide range of kaon decay channels, providing
unique results of long-lasting scientific value. Table 1 lists a
selection of the many unique measurements that HIKE can
perform. The challenges to be addressed in the HIKE detec-
tors are in synergy with or go beyond to current efforts for
LHC-experiment upgrades after Long Shutdown 4, and will
help in making a significant step towards the needs for FCC
detectors. Further in the future, a third phase would address
KL → π0νν.

The primary objective for the first phase of HIKE will be
measuring the branching ratio of K+ → π+νν̄ with about
5% precision, improving by a factor of approximately 3 on
the NA62 projected precision of about 15% when using the
full NA62 dataset. The statistics required to reach the HIKE
Phase 1 goal, which corresponds to about 9 times the NA62
one, will be collected in about 4 years thanks to an increase
of a factor 4 in the beam intensity and an increase in the
signal acceptance of a factor > 2 thanks to new, more gran-
ular/performant detectors. To be able to stand the intensity
increase, the timing for all the detectors needs to be improved
by at least a factor 4 (see Fig. 2). Despite the higher rate, other
key performances such as kinematic rejection, photon rejec-
tion, and particle identification efficiency must at least be
kept equal to the NA62 ones to maintain background rejec-
tion under control. In addition to the precise measurement of
its branching ratio, the increased statistics will allow inves-
tigating the nature of the K+ → π+νν̄ decay, i.e., vector

(SM) vs. scalar or tensor (BSM) contributions, that implies
testing the fundamental nature of neutrinos.

HIKE precision measurements of other K+ rare decays
will allow studies of the kinematic distributions and form
factors with unprecedented precision. For K+ → π+�+�−
decays at least 5 × 105 events in both the � = μ and
� = e channels will be collected allowing lepton-flavour-
universality tests from total rates, and form factor and angular
observables measurements (such as those in the equivalent B-
physics channel, with a complementary physics reach). For
K+ → π+γ γ a branching-ratio precision of a few per-mille
will be achieved, to match a similar theory expected pre-
cision. In addition, precision studies of chiral perturbation
theory (ChPT) predictions can be performed investigating
the details of the γ γ spectrum, including the near-the-cusp
effect, to extract low-energy constants (LECs) (cf. Sects. 3.3
and 3.4).

HIKE Phase 2 will use a KL beam and will allow a general-
purpose investigation of KL decays, especially those with
charged particles in the final state - exploiting precision track-
ing and particle identification systems, which will mostly be
maintained from HIKE Phase 1. The primary goal of HIKE
Phase 2 will be KL → π0�+�−, with l = e, μ. The study of
KL → π0e+e−, π0μ+μ− will allow their observation for
the first time, and then their measurement with at least 20%
precision. This decay gives unique access to short-distance
BSM effects in the photon coupling via the tau loop [16], as
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Table 1 Summary of HIKE sensitivity for flavour observables. The K+ decay measurements will be made in phase 1, and the KL decay measure-
ments in phase 2. The symbol B denotes the decay branching ratios

K+ → π+νν̄ σB/B ∼ 5% BSM physics, LFUV

K+ → π+�+�− Sub-% precision on form-factors LFUV

K+ → π−�+�+, K+ → πμe Sensitivity O(10−13) LFV / LNV

Semileptonic K+ decays σB/B ∼ 0.1% Vus , CKM unitarity

RK = B(K+ → e+ν)/B(K+ → μ+ν) σ (RK )/RK ∼ O(0.1%) LFUV

Ancillary K+ decays % – ‰ Chiral parameters (LECs)

(e.g. K+ → π+γ γ , K+ → π+π0e+e−)

KL → π0�+�− σB/B < 20% Imλt to 20% precision,

BSM physics, LFUV

KL → μ+μ− σB/B ∼ 1% Ancillary for K → μμ physics

KL → π0(π0)μ±e∓ Sensitivity O(10−12) LFV

Semileptonic KL decays σB/B ∼ 0.1% Vus , CKM unitarity

Ancillary KL decays % – ‰ Chiral parameters (LECs),

(e.g. KL → γ γ , KL → π0γ γ ) SM KL → μμ, KL → π0�+�−

Fig. 2 Numbers of selected K+ → π+νν̄ events per spill as a function
of the instantaneous beam intensity. The blue shaded area shows the
number of events from a data-driven model of the NA62 signal yield.
The black shaded area represents the same model but with detector time
resolutions improved by a factor of 4 with respect to NA62, assuming
also a software trigger. The red shaded area represents the final HIKE
phase 1 signal yield model with all improvements included. The width of
the shaded areas illustrates the uncertainty in the intensity dependence
model

well as giving access to the CKM CP-violating parameter η.
Many other KL modes will also be measured, that in general
can only be studied at HIKE Phase 2. One notable example is
KL → μ+μ−. Its SM prediction exhibits sizable uncertain-
ties due to long-distance contributions, but theoretical efforts
are actively ongoing to improve their determination, both in
lattice QCD, see Sect. 3.2.5, and with continuum methods,
see Sect. 3.7. In view of these developments, an improved
measurement of the branching ratio, as expected at HIKE, is
highly motivated, and will enhance the sensitivity to BSM
scenarios.

Across HIKE Phases 1 and 2, precision measurements of
the most common K+ and KL decays can allow new global
fits to be performed which will help to clarify the current
Cabibbo anomaly tensions. Searches for heavy neutral lep-
tons can also be performed at HIKE, in both phases, reaching
1–2 orders of magnitude better sensitivity than NA62, includ-
ing searches for dark neutrinos, which will reach the see-saw
line. Besides, searches for the K+ → �+N decay can mea-
sure the coupling directly: while the analysis of beam-dump
data depends on the assumption of decay couplings and needs
benchmarks for its interpretation, the production studies are
benchmark independent.

A full investigation of a range of feebly interacting par-
ticles (FIPs) will be performed at HIKE, during both stan-
dard kaon data-taking and dump-mode operation, where all
the benchmarks set by the Physics Beyond Colliders initia-
tive will be investigated [1], with the exception of BC3. The
most promising channels for FIPs searches in kaon mode
are: K+ → π+X , KL → π0X , K → ππX , where X can
be a dark scalar (e.g., the BC4 model), an axion-like parti-
cle (ALP) (BC9, BC10) or, if it is very light, an axiflavon;
K+ → �+N where � = e, μ and N is a heavy neutral lepton;
and K+ → π+π0 followed by π0 → γ A′ where A′ is a dark
photon (BC1, BC2). In addition studies of K+ → π+γ γ ,
with a guaranteed SM physics measurement outcome, can
also be used to search for BSM physics, in this case scanning
the mγ γ invariant mass spectrum to search for evidence of an
ALP decaying to two photons, X → γ γ (see also the theory
contributions in Sect. 4.2).

Further details of the physics case and experimental setup
can be found here [1].
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2.2 Dedicated kaon experiments at J-PARC

2.2.1 The KOTO experiment: present status

The KOTO experiment at the J-PARC 30 GeV Main Ring is
dedicated to the search for the rare decay K 0

L → π0νν̄. This
mode directly breaks CP symmetry and is highly suppressed
in the SM. In addition, the theoretical uncertainty of this
decay is only a few percent. These features make this decay
one of the best probes to search for NP beyond the SM.
However, due to experimental difficulties, only an upper limit
of 3.0 × 10−9 is set by the KOTO experiment with the 2015
data set [17].

In the analysis of data taken in 2016–2018, three signal
candidate events were observed with an expected background
of 1.22 ± 0.26 events. The number of observed events was
statistically consistent with the background expectation [18].
The main contribution was the charged kaon contamination
in the neutral beam and halo K 0

L → 2π0 events, where
KL mesons are scattered at the surface of the collimators
and enter the decay region with a large angle. Those back-
ground events were newly revealed in the analysis. A new
charged veto counter called UCV was installed in 2021 to
detect charged kaons and develop new analysis methods to
reduce the halo K 0

L → 2π0 background.
The latest analysis is focused on the 2021 data set, because

the UCV reduces K± background (BG) events by a factor
of 13 with a 97% signal efficiency. The halo background is
also reduced by a factor of 8 with 92% signal efficiency by
analysis methods newly implemented. Therefore, the num-
bers of those BG events are reduced to be less than 0.1. Sev-
eral other analysis methods were implemented to estimate
background events more accurately.

The single event sensitivity (SES) of the 2021 data analy-
sis is 8.7×10−10 while the SES of the previous analysis was
7.2 × 10−9. Table 2 summarises the numbers of the back-
ground events expected in the signal box. The largest con-
tribution comes from the upstream π0 background events,
where a π0 is generated by neutrons in the beam halo region
in a detector located at the upstream region. The second
largest contribution comes from the K 0

L → 2π0 background
events. The total number of BG events expected in the signal
box is estimated to be 0.255 ± 0.058+0.053

−0.068. Figure 3 shows
the scatter plot of reconstructed PT vs Zvt x for the 2021 data
set: the region inside the red line is the signal region. No can-
didate event was observed in the signal region. An upper limit
is therefore set on the branching ratio of the K 0

L → π0νν̄

decay to be 2.0 × 10−9 at 90% CL with Poisson statistics.
This latest result was presented at the workshop.

KOTO still has 2019–2020 data already collected but not
yet finalised in the analysis. Measures to reduce the K± back-
ground events are needed for this sample, because only a pro-
totype detector of UCV was present in 2020 and there was

Table 2 Preliminary summary of the numbers of background events in
the signal region for the 2021 data

Source Number of events

Upstream-π0 0.064 ± 0.050 ± 0.006

KL → 2π0 0.060 ± 0.022 +0.051
−0.060

K± 0.043 ± 0.015 +0.004
−0.030

Hadron-cluster 0.024 ± 0.004 ± 0.006

Halo KL → 2γ 0.022 ± 0.005 ± 0.004

Scattered KL → 2γ 0.018 ± 0.007 ± 0.004

η production in CV 0.023 ± 0.010 ± 0.006

Total 0.255 ± 0.058 +0.053
−0.068

Fig. 3 Scatter plot of reconstructed PT vs Zvt x for the 2021 data set.
The region inside the red line is the signal region

no detector to detect K± in 2019. For the future run, KOTO
plans to collect 10 times more protons on target (POT) in
4–5 years to achieve a sensitivity below 10−10.

2.2.2 KOTO II prospects and plans

The KOTO-II experiment, planned at the extended Hadron
Experimental Facility of J-PARC, is designed to measure the
branching ratio of the decay KL → π0νν̄ (Fig. 4).

The KL mesons produced at the T2 target are guided to the
KOTO-II detector behind the dump with a 43-m long beam-
line including two collimators and two magnets. The extrac-
tion angle of KL is 5◦ with a solid angle of 4.8 μsr. The KL

production at the target within the same solid angle is 5 times
larger in KOTO-II compared to KOTO. The long beamline
is designed to reduce short-lived particles; the length of the
beamline is 43 m for the KOTO II, and 20 m for the KOTO.
The two magnets sweep charged particles out, and the two
collimators are designed to suppress beam-halo particles. In
total, the KL flux at the entrance of the detector is 2.4 times
larger for KOTO II than for KOTO.

The KOTO II detector (Fig. 5) starts at 44 m from the T2
target, which is the origin of the axis system. The z-axis is
along the beam axis pointing downstream. The signal decay
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Fig. 4 Layout of the extended Hadron Experimental Facility at J-
PARC. The KOTO II detector is behind the dump downstream of the
T2 target

Fig. 5 Conceptual design of the KOTO II detector

Fig. 6 Cutaway view of realistic KOTO-II detector

region is defined by 3 < z < 15 m, that is 6 times larger
than that in KOTO. An electromagnetic calorimeter is 3 m
in diameter (1.5 times larger than in KOTO) and located at
z = 20 m. Veto counters surround the decay region hermet-
ically. Two photons from the π0 in the signal KL → π0νν̄

process are detected with the calorimeter. The decay vertex
of the π0 is reconstructed on the z-axis assuming the invari-
ant mass of the two photons to be the nominal π0 mass.
The transverse momentum of the π0 (pT ) is reconstructed
using the vertex position. Events are vetoed if extra particles
are detected other than the two photons from the π0 in the
calorimeter.

Including kinematic event selections, the expected num-
ber of signal events is 35 if the SM value for the branching
ratio is assumed, with a running time of 3×107 s with a 100-
kW beam incident in the T2 target. The expected number of
total background events is 40. Distributions of the signal and
background simulated events in the z–pT plane are shown
in Fig. 7. The signal can be observed with 5.6σ significance.
The branching ratio can therefore be measured with a sta-
tistical error of 25%, resulting in a precision of the CKM

parameter η of 12%. Deviations of the branching ratio by
40% from the SM value would indicate NP at 90% CL.

The design of the KOTO-II detector is progressing towards
a realistic geometry, see Fig. 6. Based on the size and the
weight from the realistic geometry, and a radiation shielding
simulation, the surrounding detector area is under design.
Prototyping of a modular barrel detector and of a calorimeter
with photon incident angle determination capabilities are on-
going. A shashlyk counter is considered for the outer region
of the calorimeter. A low-gain avalanche photodiode detector
is being considered for the in-beam charged veto counter.
The option of a straw-tube tracker behind the charged veto
detector to measure charged tracks is being evaluated. The
Collaboration plans to submit a proposal for KOTO II in JFY
2024, in order to realise the KOTO II experiment in the 2030s.

2.3 Kaon physics from other experiments: LHCb and
its upgrade 2

The LHCb experiment [19] at the LHC is optimised pri-
marily for the study of decays of the short-lived beauty
and charm hadrons. In addition to its primary objectives,
LHCb has proven to be suitable to investigate strange physics,
despite the very low O(100 MeV/c) transverse momentum
(pT ) of the decay products of kaons and hyperons. In the
past, the main bottleneck for strange physics at LHCb was
the trigger system, which was selecting only events with
pT > O(GeV) at the hardware level, resulting in a trig-
ger efficiency of εtrig ∼ 1% in Run 1 (2010–2012). In
Run 2 (2015–2018), a significantly modified software trigger
enabled an improvement of the trigger efficiency, especially
for channels with muons in the final state, by about an order
of magnitude εtrig ∼ 18% with further improvements lim-
ited by the hardware trigger system. In Run 3, which started
in 2022, the upgraded LHCb detector is equipped with an
entirely software-based trigger system which will boost the
sensitivity to kaon and hyperon decays with trigger efficien-
cies close to 100%. The possibility of fully exploiting the data
will therefore rely only on the capability of strange hadrons
triggers to cope with the allowed rates, which for most of
the channels mentioned here should be feasible. The large
improvement in trigger efficiency will enable LHCb to fully
profit from the large data sets that will become available in
the coming years. The data collected so far by LHCb in Run
1 and 2 correspond to 10 fb−1. About 50 fb−1 are expected
to be collected after LHCb Run 3 and 4 and there is inter-
est in continuing the experiment at high luminosity with a
future Upgrade, possibly reaching 300 fb−1 [20] after Run
5 and 6. Furthermore, the huge strangeness production cross
section at the LHC, two to three orders of magnitude larger
than that of heavy flavours, makes strange-hadron physics an
increasingly strong research line at LHCb [21], with several
results already published and more in the pipeline. LHCb has
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Fig. 7 KOTO-II distributions of the signal and backgrounds in the z–pT plane (simulation)

published the strongest bound on the branching fraction of
K 0

S → μ+μ− decays [22], the first 4.1σ evidence for the
rare 
+ → pμ+μ− decay [23], and the best upper limit on
the branching fraction of K 0

S(L) → μ+μ−μ+μ− reaching

O(10−12) level for the K 0
S mode [24].

Detailed sensitivity studies show that improvements of at
least an order of magnitude are possible with LHCb Upgrade
2 data [21]. Focusing first on rare decays, the LHCb exper-
iment will be able to constrain the KS → μ+μ− branch-
ing fraction down to about the SM level of ∼ 5 × 10−12.
This channel is CP violating and provides access to the
CKM parameter η. One of the most interesting decays in
the short term will be the K 0

S → π0μ+μ− decay. The
form factor aS , governing the K 0

S → π0μ+μ− process can
be extracted from a measurement of the K 0

S → π0μ+μ−
branching fraction. A precise measurement of aS is crucial
for the prediction of its long-lived partner K 0

L → π0μ+μ−
decay, which is a very sensitive probe of physics beyond the
SM. The KS mode is currently known to only about 50%
precision from measurement by the NA48/1 collaboration,
BSM(K 0

S → π0μ+μ−) = (2.9+1.5
−1.2 ± 0.2) × 10−9 [25].

A more precise measurement of this branching fraction will

result in an improved prediction of K 0
L → π0μ+μ− and ulti-

mately in improved BSM constraints that can be derived from
it. The sensitivity of LHCb to K 0

S → π0μ+μ− decays has
been studied, demonstrating that significant improvements
are possible depending on the trigger efficiency already with
10 fb−1 of Upgrade data [26]. This puts LHCb in a unique
position to provide more information about this decay mode.
The analysis of K 0

S → π0μ+μ− decays can also be extended
to other decays such as K 0

S → γμ+μ−, K 0
S → Xμ+μ−,

K 0
S → Xπμ, where X is a scalar or vector particle. The

search of lepton-flavour-violating KS → μe decays can also
be addressed by LHCb providing world-best limits for that
mode.

A second group of decays which is gradually becom-
ing more promising is the set of 4-body leptonic decays of
the neutral kaon. No experimental constraints are present
on the K 0

S modes except for the recent limit on the K 0
S →

μ+μ−μ+μ− mode provided by LHCb [24]. Even though the
rates for these decays are expected to be very low in the SM
(B(K 0

S → e+e−e+e−) ∼ 10−10, B(K 0
S → μ+μ−e+e−) ∼

10−11, B(K 0
S → μ+μ−μ+μ−) ∼ 10−14), any sensitivity

approaching the SM rates would be a test of NP, for example
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probing dark photons models. The prospects for such decays
at LHCb will allow us to scan most of the allowed range in
BSM models and get very close to the SM sensitivity if no
signal is found.

Semileptonic hyperon decays can also be studied at LHCb.
These decays profit from the relatively-high branching frac-
tions, around B ∼ O(10−4), which, coupled with the large
strange hyperon production rates at the LHC, results in huge
yields at LHCb. More comprehensive studies assessing the
prospects for measurements with strange hadrons at LHCb
can be found in Ref. [21], using approximate simulations of
the LHCb detector. A range of decays have been studied from
K 0

S to hyperons, showing that LHCb will be in a position to
give significant contributions to strange-hadron physics in
the near future.

2.4 Discussion: current and future experiments

HIKE

The measurement of B(K+ → π+νν̄) with a precision
matching the core theoretical component of about 5% (cf.
Sect. 3.1) is uniquely interesting since it allows access to very
high energy scales and can constrain or reveal several BSM
models (see Sect. 4). Beyond the branching ratio measure-
ment, the nature of the decay can be established by studying
the kinematic distributions of signal candidates. Any BSM
(scalar or tensor) contribution would not interfere with the
SM contribution and therefore would manifest itself in an
additive way. This means the measured kinematic distribu-
tions should be a sum of the SM plus BSM contributions.
The investigation of the nature of the decay can probe fun-
damental properties of the SM. For example if the neutri-
nos are purely left-handed, as predicted by the SM, then the
K+ → π+νν̄ decay should be purely vector in nature, how-
ever if there is evidence of a different nature of the decay this
indicates the presence of BSM, almost certainly including
lepton-number-violating operators (see Sect. 4.3).

Regarding other rare K+ decays, the measurement of form
factors in K+ → π+�+�− decays is addressed also by theo-
reticians, with the foreseen lattice precision on form factors
being about 10% (cf. Sect. 3.2) on the timescale of HIKE.
The angular distribution analysis of these decays is also of
theoretical interest, in relation to the corresponding one in
the equivalent B-physics channel. Generally, there is a defi-
nite theory interest in the differential studies of decay modes,
for example the mee, mμμ and mγ γ spectra (the latter from
K+ → π+γ γ ) since they, including cusp effects, could give
access to BSM including exotica (see Sect. 4.2).

The study of the KL → π0�+�− decay is also important
since it gives access to short-distance BSM effects in the
photon coupling via the tau loop [16] that are not already
included in K → πνν̄, see Sect. 4.1. Besides, the study of

KL decays will allow HIKE to measure essentially all of
the interesting decays. Sensitivity studies will be performed
for HIKE Phase 2 for comprehensive set of decays. Similar
studies at KOTO II are ongoing to see if some complementary
investigations may be performed at J-PARC.

In HIKE, since both kaon and dump modes are foreseen,
FIPs can be studied both in production and decay mode and
could lead to independent self-contained identification of
FIPs (without the need of further experiments). The HIKE
programme in particular offers an important opportunity to
study FIP signatures since it has precision tracking and PID
detectors. In contrast, if a FIP signature were discovered at a
dedicated beam dump experiment, in principle a fixed-target
experiment with tracking and PID would be needed to char-
acterise it.

Besides, in addition to the most promising channels,
very rare decays such as K+ → π+�+�−γ can be stud-
ied at HIKE, with very good possibilities to search for
evidence of ALPs, with potentially different couplings.
Other relevant channels to look for FIPs are KL →
2γ, 4γ, 2e, 4e, ππee, ππγ, 2γ 2e (see Sect. 4.2).

The rare-kaon decays investigated by HIKE offer the pos-
sibility to search for BSM physics with a global-fit tech-
nique, for example, in the context of lepton flavour univer-
sality (LFU) tests [27]. In the SM, the three lepton flavours
(e, μ and τ ) have exactly the same gauge interactions and
are distinguished only through their couplings to the Higgs
field and hence the charged lepton masses. BSM models, on
the other hand, do not necessarily conform to the lepton-
flavour-universality hypothesis and may thereby induce sub-
tle differences between the different generations that can-
not be attributed to the different masses. Among the most
sensitive probes of these differences are rare kaon decays
with electrons, muons or neutrinos in the final state. For
BSM scenarios with LFU violating effects, focusing on the
case where the NP effects for electrons are different from
the those for muons and taus, bounds to Wilson coefficients
from individual observables in the kaon sector are shown
in Fig. 8 (left). A combined fit of all the decay modes is
then performed [27,28]. Projections based on the fits require
assumptions for both the possible future measured (central)
values as well as the experimental precision. For the latter,
the expected long-term experimental precision is considered,
while for the central values two scenarios are assumed: pro-
jection (A) where predicted central values for observables
with only an upper bound available are taken to be the same
as the SM prediction while for measured observables the cur-
rent central values are used; projection (B) where the central
values for all of the observables are projected with the best-fit
points obtained from the fits with the existing data. The result
of a combined fit of all the decay modes [28,29] is shown in
Fig. 8 (right). It is evident that the combined measurements
foreseen at HIKE, when taken together, have a larger poten-
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Fig. 8 Bounds on LFU violating new physics contributions to Wilson
coefficients from individual observables in the kaon sector (left). See
Fig. 7 in Ref. [27] for further information. Global fits in the Wilson
coefficients plane with current data (purple contours) and the full pro-
jected scenarios (green regions) at the end of HIKE phases 1 and 2

(for one choice of the two possible signs of the LD contributions to
KL → μ+μ−). The blue dotted curve represents the NA62 projection
at the end of 2025. For further details of the theory approach, and the
full list of inputs, see Refs. [27–29]

tial to show a clear deviation from the SM or to strongly
constrain the parameter space available to BSM physics than
the single measurements taken in isolation.

KOTO and KOTO II

As mentioned in the KOTO and KOTO II talks, the achievable
sensitivities for the KL → π0νν̄ search will be better than
10−10 in KOTO (around (5−8) × 10−11, depending on the
running time and the beam power) and 8 × 10−13 with the
running time of 3 × 107 s and the beam power of 100 kW in
KOTO-II. Although KOTO and KOTO II are designed and
optimised for the flagship mode KL → π0νν̄, the physics
programme can be extended to the following channels. It
should be noted that the KOTO setup has no tracker and
therefore the programme is basically focused on KL decays
into photons. Another feature is the hermetic veto system,
which enables one to search for the decay modes including
invisible particles.

2 photons + invisible particle(s) A natural extension in
KOTO and KOTO II is the KL → π0X inv search, where
X inv represents any invisible particles. The sensitivity
will be almost the same as that of the KL → π0νν̄ search.
Given the reconstruction method and the expected sen-
sitivity, the KL → π0X inv search in KOTO II would be
limited by the backgrounds coming from KL → π0νν̄

decays.
4 photons In KOTO, the search for KL → XX , X →

γ γ was performed using data taken in 2018 [30]. The
upper limit, depending on the X mass (mX ), was set to

be (1−4) × 10−7 for 40 < mX < 110 MeV/c2 and
(1−2) × 10−6 for 210 < mX < 240 MeV/c2 at 90%
confidence level.

4 photons + invisible particle(s) A search for KL →
π0π0X inv was performed in the KEK E391a experiment,
which is the predecessor of KOTO, conducted at the
KEK 12 GeV proton synchrotron. The upper limit for
the branching ratio of KL → π0π0νν̄ was set to be
8.1×10−7 at 90% confidence level [31]. The upper limit
on KL → π0π0X inv was also set varying from 7.0×10−7

to 4.0×10−5 for the mass of X ranging from 50 MeV/c2

to 200 MeV/c2. In order to improve this limit, a signifi-
cant reduction of KL → 3π0 backgrounds is needed.

6 photons KL → π0π0X , X → γ γ corresponds to a peak
search in the m56 distribution, where m56 represents the
invariant mass of the photon pair other than 2π0. Events
in the region other than the π0 mass peak also come from
KL → 3π0 due to wrong combinations of photons in
the event reconstruction. In KEK E391a, the search was
done in a particular X mass region, and the upper limit
was set to be (0.2−1) × 10−6 at 90% confidence level
for 194 < mX < 219 MeV/c2 [32]. A feasibility study
in KOTO is under way.

3 photons KOTO performed the first search for the KL →
π0γ decay, which is forbidden by Lorentz invariance,
using data taken in 2016–2018. With a single event sen-
sitivity of 7.1 × 10−8, the upper limit was set to be
1.7 × 10−7 at 90% confidence level [33]. The number of
backgrounds was estimated to be 0.34, dominated by the
KL → 2π0 contribution, and thus further background
reduction is needed to improve the limit.
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4 electromagnetic particles
Even though KOTO has neither a tracker nor a spec-
trometer, there is a possibility that a decay mode whose
final state includes only electromagnetic particles can be
reconstructed by using the energy and position informa-
tion measured by the calorimeter. One of the interest-
ing decay modes is KL → π0e+e−. The vertex recon-
struction can be done by the same method as used in the
KL → π0νν̄ analysis with an assumption that two pho-
tons come from a π0 decay, four-momentum reconstruc-
tion of electron and positrons can be done with the energy
and hit position in the calorimeter, and then the invariant
mass of two photons and e+ and e− can be calculated.
KOTO is planning to collect a dataset for a feasibility
study. Additional constraints will be needed to reject the
KL → γ γ e+e− background. In KOTO II, a feasibility
study to install a straw tracker behind the charged-particle
veto detector in front of the calorimeter is under discus-
sion; in this case, the vertex is reconstructed with hits
from the straw tracker. The addition of a magnet isn’t
under consideration at the moment, because of design
complications since the bore size of the magnet should
be larger than the diameter of the barrel veto in order to
avoid dead material in front of the veto detector.

LHCb and its upgrade 2

The LHCb experiment is currently unique in being sensi-
tive to KS and hyperons [21]. In principle the experiment is
sensitive also to K+ and KL decays, however their long life-
time reduces their acceptance considerably by three orders
of magnitude.

On hyperons, LHCb can probe 
+, �,  and � decays.
LHCb will be able to measure not only the 
+ → pμ+μ−
integrated and differential branching fraction but also the
CP violation asymmetry and the forward backward asym-
metry. In a complementary way, the 
+ → pe+e− decay
will allow the study of 
+ → pγ . In addition, all the other
s → d�� transitions in the mentioned hyperons will be
probed. Besides, �S = 2 decays (e.g.,  → pπ ) can be
probed and offer sensitivity to models not yet constrained by
kaon mixing.

In addition to rare decays, a programme of semileptonic
measurements can be performed, starting from KS → πμν

and � → pμν, where recent measurements from KLOE and
BESIII have significantly improved the precision. Semilep-
tonic hyperon decays can be studied in detail at LHCb and
its Upgrades. An improved measurement of these modes
will be challenging due to the high levels of contamina-
tion from physics backgrounds but will offer high sensitiv-
ity to helicity-suppressed NP contributions [34]. Despite the
challenges, LHCb is expecting to achieve precision mea-
surements of the branching fraction of � → pμ−νμ,

− → �μ−νμ, and − → 
0μ−νμ decays, as well
as to perform sensitive searches for 0 → π+π−X and
0 → μ+μ−π−X decays.

The possibility of studying the interference of the KS and
KL in dimuon decays seems at the moment out of reach
experimentally, but a future dedicated experiment could be
thought about.

2.5 Discussion: complementarity between experiments

HIKE and LHCb are complementary, with HIKE studying
K+ and KL and LHCb being primarily sensitive to KS and
hyperons, and synergic in such that KS parameters can give
input for theory calculations of key KL decays.

HIKE phase 2 and KOTO II both study KL decays but with
complementary physics goals: the former primarily investi-
gating KL → π0�+�− decays using a detector with precise
tracking information, and the latter highly optimised to study
the KL → π0νν̄ decay mode. While KOTO II is studying
sensitivity to other KL modes, it is highly likely the specific
design of the experiment and the crucial optimisation for
the challenging decay KL → π0νν̄ will make it difficult to
reach the precision HIKE Phase 2 can achieve. Nevertheless,
in some modes some complementary and competitive mea-
surements may be made to strengthen the cross validation
of results in the community. HIKE has a unique advantage
for channels with charged particles, in its powerful tracking
and PID system which are essential to reach the precision
necessary for the observation of KL → π0l+l− including
background suppression. Besides, a possible HIKE Phase
3 for KL → π0νν̄ in a longer-term future could enhance
the complementary to KOTO-II, in the sense that if KOTO-
II were to obtain a value in disagreement with the Standard
Model HIKE could contribute with further experimental con-
firmation.

2.6 Monte Carlo/QED contributions to the simulation
and measurements of kaon physics

When extracting information on strong or weak interaction
dynamics from data, the particle spectra are affected by elec-
tromagnetic interactions among the particles involved in the
studied process, as well as the real emission of additional
photon quanta. These distorted spectra can be corrected by
means of the so-called radiative corrections.

The extra photons above the given experimental sensi-
tivity threshold can be simulated in the Monte Carlo (MC),
and the effects of the soft photons can be accounted for by
using corrections to the spectrum of the non-radiative pro-
cess. All relevant contributions at the given order should be
identified and calculated explicitly since approximate calcu-
lations tend to miss delicate cancellations among contribu-
tions. The overall size of the QED effects in a given case can
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be estimated by integrating over the allowed energy range
and emission angles of the additional photon(s), obtaining
thus the (one-photon-)inclusive radiative corrections. Need-
less to say, taking care of the radiative effects (tails) at the
MC level leads to a desired agreement between data and MC
and stable analyses with respect to the applied cuts.

Although the effect of the QED radiative corrections can
seem negligible at first sight, being typically at the intu-
itive ∼ 1% level in the case of the integral decay width,
this is no longer true for invariant-mass spectra or extracted
hadronic parameters. By studying one-photon-inclusive cor-
rections to differential decay widths (or, in particular, Dalitz
plots), one can easily encounter effects that are O(10%).
Since the hadronic parameters like form-factor slopes can
be comparable in size with the QED effects, corrections
O(100%) are not rare to occur. The Dalitz decay of the neu-
tral pion (π0 → e+e−γ ) is a prominent example. One half
of the slope of the next-to-leading-order (NLO) QED inclu-
sive radiative corrections (given in terms of the normalized
electron–positron invariant mass squared), which gives, in
turn, an estimate on the size of the correction to the form-
factor slope aπ � M2

π/M2
ρ ≈3%, amounts to about twice its

size, approximately −6%, and would need to be subtracted
from the uncorrected measured value [35,36]. One finds cor-
rections of similar size in processes like η → e+e−γ [37] or

0 → �e+e− [38].

Naturally, the above considerations apply also to the kaon
sector. With increasing precision in the measurement of
K+ → π+�+�− form-factor parameters, lepton-flavour uni-
versality can be tested. The QED contribution to the electron
channel is expected to be rather large as compared to the
muon channel, and ignoring these effects could lead to mis-
interpretation of the results. Since the difference of the form-
factor parameters obtained from respective channels directly
relates to the associated LECs [39], the QED part must be
subtracted appropriately to obtain correct bounds.

It has been historically proven that similar care should be
taken in the case of K�3 decays. Particularly, the measure-
ment of |Vus | is another example in which the role of radiative
corrections has traditionally been very important: These are
again O(1%) effects and, therefore, comparable in size with
the percent precision with which the K�3 branching ratios
are measured [40]. The unsatisfactory situation regarding the
pre-2004 unitarity deficit thus naturally improved once the
corrections became available [41–43]. Needless to say, the
local significance of radiative effects in certain regions of the
K�3 Dalitz plots is much greater. And since the consistency of
the measurements of form-factor parameters has been histor-
ically less than satisfactory, the improper treatment of radia-
tive corrections might have been one of the reasons.

The persisting tension in the K+ → π0e+νγ (Ke3γ )

decay [44] may be also related to the underestimated size
of the radiative corrections in the theoretical estimate of

the inclusive ratio R = B(Ke3γ (γ ), E∗
γ > 30 MeV, θ∗

eγ >

20◦)/B(Ke3(γ )) = 0.640(8)% [45–47] since there is no rea-
son to expect that the intuitive ∼ 1% correction would apply
for the limited phase space occurring in the numerator, the
cuts there being designed to suppress the effects of the dom-
inating inner-bremsstrahlung part. The effects of radiative
corrections are expected to be suppressed in the muon mode,
which is related to the fact that the structure-dependent part
becomes more important compared to the Ke3γ case [48].
It would be thus interesting to look at the ‘exclusive’ mea-
surement of the Ke3γ decay or study the Kμ3γ mode. On the
experimental side, the MC simulation of the extra photons
can be improved by providing the K�3γ γ generator.

3 Kaon physics in the Standard Model

Rare kaon decays proceed through FCNCs that are sup-
pressed in the SM [5]. They thus offer unique possibil-
ities to discover indirect evidence of degrees of freedom
that describe physics beyond the SM, and therefore remain
a very active and exciting field of research for both the-
ory and experiment. The neutral- and charged-kaon decay
modes K → πνν̄ stand out among this class of processes,
being entirely dominated by the contributions from short-
distance scales. This allows for very precise SM predictions
as detailed in Sect. 3.1. The situation also looks promising
for the class of radiative kaon decays, like K → γ (∗)γ (∗),
K → πγ (∗), K → πγ (∗)γ (∗), . . . , where the photon(s)
can be either real or virtual, and in which case long-distance
hadronic effects represent an important contribution. To pre-
dict them in the SM one uses simulations of lattice QCD
(Sect. 3.2), ChPT and dispersion theory (Sects. 3.3 and 3.4).
A kaon factory naturally also produces a flux of pions and
the option of studies of its decay channels is addressed in
Sect. 3.5. Strategies for finding observables, e.g., KS–KL

interferences in the time dependence of the decay probabil-
ity, that are free from the uncertainties due to hadronic con-
tributions can be devised (cf. Sect. 3.6). Their experimen-
tal implementation remains challenging. Section 3.7 sum-
marises some of the reflections made in the discussion ses-
sion on kaons in the SM, including the interplay between lat-
tice QCD, Sect. 3.2, ChPT, dispersion relations, and short-
distance constraints, Sects. 3.3 and 3.4, using as example
promising new insights into resolving the long-distance con-
tributions in the rare KL → �+�− decay.

3.1 Theory calculations for the gold-plated modes in the
SM

The rare kaon decays K+ → π+νν̄ and KL → π0νν̄ are
among the cleanest probes of physics beyond the SM. They
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are generated by highly virtual EW box and Z -penguin dia-
grams that can be calculated to high precision in perturbation
theory. The leading decay matrix elements can be extracted
from precisely measured semileptonic kaon decays, while
GIM suppressed light-quark contributions are tiny and cal-
culable both in ChPT and on the lattice. The leading contri-
bution to the two rare K → πνν̄ decays is captured by the
effective Hamiltonian [49]

Heff = 4GF√
2

α

2π sin2 θw

∑

�=e,μ,τ

(
λcX

� + λt Xt

)

× (s̄LγμdL)(ν̄�Lγ μν�L) + h.c., (3.1)

where the dependence on the relevant CKM matrix elements
appears as the coefficient λi = V ∗

isVid in front of the short-
distance Wilson coefficients X� and Xt .

The top-quark contribution Xt is a function of xt =
mt (μt )

2/M2
W and has been calculated including two-loop

QCD [50,51] and EW [52] corrections. All perturbative cor-
rections to Xt only involve the scale μt , where αs is small.
This suggests an excellent convergence of the perturbation
series, which is confirmed by the preliminary results of the
three-loop calculation [53].

The analytical expressions for Xt , as well as the numerical
value ofmt and MW , depend on the QCD and EW renormali-
sation schemes. The MS scheme is the natural choice regard-
ing QCD. The numerical value mt (mt ) = 162.83(67) GeV
is obtained from the top-quark pole mass (see Ref. [54] for
further details). A numerical value for Xt is obtained by cal-
culating a mean value of the QCD contribution, XQCD

t , by
varying μt ∈ [60, 320] GeV and adding the EW corrections.
In total, one finds at NLO in QCD and two-loop EW

Xt = 1.462 ± 0.017QCD ± 0.002EW. (3.2)

The theory uncertainty associated with the QCD corrections
is given by the difference of the central value and the min-
imal / maximal value in the μt interval. This uncertainty is
expected to reduce even further at next-to-next-to-leading
order (NNLO) in QCD.

The charm-quark contribution X� is a function of the neu-
trino flavour �, while the parameter Pc = λ−4( 2

3 X
e + 1

3 X
τ )

comprises the charm-quark contribution to K+ → π+νν̄,
which involves a sum over all neutrino flavours. Pc has been
calculated at NNLO in QCD [55] and at NLO in the EW
interactions [56]. The hard GIM mechanism ensures that it is
xc = mc(μc)

2/M2
W suppressed and its numerical value has

recently been updated [54] to Pc = (0.2255/λ)4×(0.3604±
0.0087). The computation of Pc involves double insertions of
charged-current operators that are matched onto the operator
of Eq. (3.1). Current conservation ensures that perturbative
corrections are absent below the charm scale at this order of
the expansion. The effects of dimension-eight operators at the

charm threshold, as well as additional long-distance contribu-
tions arising from up- and charm-quarks, have been estimated
in Ref. [57], leading to the correction δPc,u = 0.04(2). These
effects can be computed using lattice QCD in the future, as
discussed in Sect. 3.2.2.

The branching ratio of the charged mode is then given by

B (
K+ → π+νν̄(γ )

) = κ+(1 + �EM)

×
[(

Imλt

λ5
Xt

)2

+
(

Reλc
λ

(
Pc + δPc,u

)+ Reλt
λ5

Xt

)2 ]
,

(3.3)

where the hadronic matrix element is contained in the param-
eter κ+. It is extracted from K�3 decay including higher-order
chiral corrections [58,59]. The NLO QED corrections [58]
are parameterised by �EM = −0.003 in Eq. (3.3).

The remaining parametric input is contained in the CKM
factors λt and λc, defined above. In the numerical evalu-
ation, these parameters are expanded in λ, including the
quadratic corrections [54]. The leading order expansion
Imλt = A2η̄λ5, Reλt = A2λ5(ρ̄ − 1) and Reλc = −λ

already involves all Wolfenstein parameters. The PDG [40]
quotes two different sets of numerical values for these param-
eters, which are based on the methods of the CKMfitter [60]
and UTfit [61] collaboration, respectively. They read

λ =
{

0.22499(67)

0.22500(67)
A=

{
0.833(11)

0.826+0.018
−0.015

ρ̄ =
{

0.159(10)

0.159(10)

η̄ =
{

0.348(9) UTfit

0.348(10) CKMfitter.
(3.4)

For these CKM parameters the following prediction for the
charged mode in the SM are obtained:

B(K+ → π+νν̄)

=
{

8.38(17)(25)(40) × 10−11 UTfit input

8.19(17)(25)(53) × 10−11 CKMfitter input
. (3.5)

The errors in parentheses correspond to the remaining short-
distance, long-distance, and parametric uncertainties, with
all contributions added in quadrature. In more detail, one
finds for UTfit CKM input the leading contributions to the
uncertainty as

1011 × B(K+ → π+νν̄)

= 8.38 ± 0.14XQCD
t

± 0.01XEW
t

± 0.11Pc ± 0.25δPcu

±0.04κ+ ± 0.14λ ± 0.31A ± 0.12ρ̄ ± 0.03η̄

±0.05mt ± 0.15mc ± 0.06αs , (3.6)

where the combined error is 6%. With huge efforts under way
on reducing the dominant residual parametric uncertainties,
we expect this error to reduce further over the coming years.
Theory uncertainties are already smaller and future theoreti-
cal calculations will considerably reduce both the short- and
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long-distance uncertainties. Here we note the excellent idea
to form a ratio of the charged decay mode and εK [62,63] that
cancels large parts of the parametric uncertainties. This ratio
is also theoretically very clean, given recent progress [64–
67] in the theory prediction of εK , and leads to a precision of
about 5% for both the charged and neutral kaon decay with
consistent central values. The cancellation of CKM uncer-
tainties, in particular for the ratio involving the neutral kaon
decay, indicates that �F = 2 processes have a crucial impact
on the determination of CKM parameters in global fits.

The branching ratio of the neutral mode is computed from

B
(
KL → π0νν̄

)
= κLrεK

(
Imλt

λ5
Xt

)2

, (3.7)

and it depends to a good approximation only on the top-quark
function Xt discussed above. The hadronic matrix element is
again extracted from K�3 decay including higher-order chiral
corrections [58], while rεK parameterises the small impact of
indirect CP violation [68]. Xt and all remaining parametric
input have been discussed above in the context of the charged
mode. The SM prediction for the neutral mode then reads

B(KL → π0νν̄)

=
{

2.87(7)(2)(23) × 10−11 UTfit input

2.78(6)(2)(29) × 10−11 CKMfitter input
. (3.8)

Again, the errors in parentheses correspond to the remaining
short-distance, long-distance, and parametric uncertainties,
with all contributions added in quadrature. In more detail,
the leading contributions to the uncertainty for UTfit CKM
parameters are

1011 × B(KL → π0νν̄)

= 2.87 ± 0.07XQCD
t

± 0.01XEW
t

± 0.02κL

±0.15η̄ ± 0.15A ± 0.07λ ± 0.03mt . (3.9)

3.2 Lattice QCD for non-perturbative contributions in
kaon decays

As experimental uncertainties decrease, improving the pre-
cision of theoretical calculations becomes crucial to perform
reliable tests of the SM. Lattice QCD provides a powerful
means for non-perturbative, first-principle determinations of
several hadronic observables through extensive Monte Carlo
simulations.

3.2.1 Theory and general methodology

As the community plans the next generation of studies of
rare kaon decays, it may be interesting to reflect on the long
timescales required, not only to perform the experiments but
also to develop the theoretical methods and carry out the
computations. In the history of kaon physics this is nicely

illustrated by K → ππ decays, processes in which both indi-
rect and direct CP violation were first discovered. It is only
within the last decade that quantitative results for the ampli-
tudes in lattice computations have been obtained [69–72],
and in particular for the �I = 1/2 rule (after more than half
a century) and the direct CP-violation parameter ε′/ε (after
more than two decades). The latest lattice QCD result for
the �I = 1/2 rule is Re A0/Re A2 = 19.9(2.3)(4.4), where
the values in parentheses give the statistical and systematic
errors respectively, to be compared to the experimental value
of Re A0/Re A2 = 22.45(6). As we now understand thanks
to the lattice results, the surprisingly large value results from
a variety of QCD effects including a suppression of Re A2 as
well as an enhancement of Re A0 [72]. Here A0 and A2 are
the decay amplitudes for decays into two-pions with total
isospin 0 and 2, respectively. For ε′/ε the lattice result is
Re(ε′/ε) = 0.00217(26)(62)(50)IB [72] to be compared to
the experimental value of 0.00166(23) [40,73,74]. For the
lattice result the first and second error are again statistical
and systematic, respectively, and the error with the subscript
IB corresponds to the uncertainty due to isospin-breaking
effects which are amplified because of the �I = 1/2 rule, for
which the central value of the result obtained using ChPT was
taken [75]. The emphasis now is on reducing the computa-
tional and theoretical uncertainties. We note that the authors
of Ref. [76], using the dual QCD approach had also found an
enhancement of Re A0 and the suppression of Re A2 (see also
Ref. [77] for an updated analysis). The dual QCD approach
gives a value for ε′/ε of 0.0005(2) [78,79], below both
the experimental result of 0.00166(23) and the above lat-
tice result of 0.00217(26)(62)(50) [72]. A recently updated
estimate, based on analytical techniques for both short- as
well as long-distance effects, gives 0.0014(5) [80].

In the last decade or so the range of physical quantities and
processes for which the non-perturbative hadronic effects can
be computed using lattice QCD has been extended very sig-
nificantly. This includes the possibility of evaluating matrix
elements of bi-local operators of the form
∫

d4x〈 f |O1(x) O2(0)|K 〉, (3.10)

where O1,2 are weak or electromagnetic local operators.
Applications include the KL–KS mass difference �MK ≡
MKL − MKS [81–83], the long-distance contributions to the
indirect CP-violating parameter εK [84,85], the rare kaon
decays K → π�+�−, where � = e or μ [86–89], and the
long-distance contribution to the golden mode K+ → π+νν̄

[90–93]. By “long-distance” we mean a separation between
the operators greater than the inverse charm-quark mass and
the lattice computations are therefore performed in four-
flavour QCD. This allows us to exploit the GIM mechanism
where appropriate to reduce, or even avoid, the additional
ultraviolet divergences which potentially arise when x → 0.
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In addition, the precision of the perturbative matching calcu-
lation relating the matrix element of operators renormalised
non-perturbatively to the Wilson coefficients calculated in
the MS scheme is improved at larger momentum scales, in
this case above mc.

For �MK = 3.483(6) MeV and εK = 2.228(11) ×
10−3 [40], for which O1 and O2 are the �S = 1 effective
weak Hamiltonians, it is likely not possible for lattice QCD
computations to reach the experimental precision in the next
decade. Nevertheless errors of O(5%), or perhaps smaller,
can be achieved on �MK and the long-distance contribution
to εK with adequate computing resources (and in the latter
case with improved determinations of Vcb). At this level of
precision, a comparison of the theoretical and experimental
results for these very small FCNC quantities will provide
significant tests of the SM and constraints on its extensions.

3.2.2 K → πνν̄ decays

While these decays are short-distance dominated, lattice
QCD computations can provide a first principles determi-
nation of the long-distance effects in K+ → π+νν̄ decays
with controlled errors. The contribution of these effects to
the branching ratio is expected to be O(5%) (they are neg-
ligible for KL → π0νν̄ decays). For these decays, one of
the operators in Eq. (3.10) is a �S = 1 weak operator from
the effective Hamiltonian and the other is a �S = 0 weak
operator corresponding to the emission of either a virtual
W -boson or a virtual Z -boson. The theoretical framework
has been developed [90] and been implemented in a num-
ber of exploratory numerical studies with unphysical quark
masses [91–93]. In the latest study [93] it was found that
the momentum dependence of the amplitude was very mild,
so that it may be sufficient to compute the amplitude at a
limited number of kinematic points, and that the contribu-
tion from the two-pion intermediate state can be evaluated
but is small (less than 1%). The next step is a computation
on a 643 × 128 lattice with near-physical meson masses
(Mπ = 135.9(3) MeV and MK = 496.9(7) MeV) with a
target uncertainty on the long-distance contribution of 30%.
Further reductions in the error, towards one of O(10%) or
less, will require computations at several lattice spacings and
are achievable in the next 5–10 years.

3.2.3 KL → π0μ+μ− decays

Measuring this partially CP-violating decay is a target of
the second phase of HIKE and making a SM prediction
for this process will be possible with current lattice QCD
methods in the same time frame. As explained, for exam-
ple, in Ref. [94] there are three contributions to this decay
of approximately equal size: (i) the rare second-order-weak

short-distance process which is the target of these studies, (ii)
indirect CP violation proportional to εK and the amplitude
for the KS → π0μ+μ− decay and (iii) the CP-conserving
process in which the final state μ+μ− pair is produced by
two photons. An accurate result for contribution (ii) will be
an automatic outcome of the lattice QCD calculations of the
amplitude for KS → π0�+�− decays, for which the frame-
work enabling lattice computations of the parameters aS and
bS has been developed [87] and it is expected that they will
be evaluated with uncertainties below the 10% level within
the next 5–10 years. In particular the sign of aS will be deter-
mined. While not yet thoroughly studied, contribution (iii)
should also be calculable in lattice QCD, using the methods
being developed for the KL ,S → μ+μ− decays discussed
in Sect. 3.2.5, with 10% accuracy – a plausible objective in
5–10 years.

3.2.4 K+ → π+�+�− decays

The framework for lattice calculations of the amplitude
for K+ → π+�+�− decays (� = e, μ) has been devel-
oped [87] and exploratory numerical studies have been per-
formed [88,89]. For these decays, one of the operators in
Eq. (3.10) is the �S = 1 weak Hamiltonian and the other
is an electromagnetic current. The emphasis will now be on
a reduction of both the statistical and systematic errors with
the expectation that the parameters a+ and b+ will be deter-
mined with uncertainties below the 10% level within the next
5–10 years.

3.2.5 KL,S → �+�− decays

The framework for the computation of the contribution from
the two-photon intermediate state to the complex amplitudes
of KL → μ+μ− and KS → μ+μ− decays is being devel-
oped [95]. An important first step was a full computation of
the complex amplitude of the related decay π0 → e+e− [96].
This calculation was performed on 5 gauge ensembles with
inverse lattice spacing ranging from 1.015 GeV to 2.36 GeV,
so that the continuum limit can be taken, resulting in a result
with a precision better that 10% for both the real and imag-
inary parts of the amplitude. A second step has been the
exploratory numerical study of the decay KL → γ γ with
the aim of controlling the subtraction of unphysical expo-
nentially growing terms in the time separation between the
weak Hamiltonian and the emission of the first photon [97].
The focus now is on the calculation of KL → μ+μ− and a
first result for the quark-line connected part of this process
was presented in Ref. [98]. A result with 10% accuracy is
expected within 5 years. The presence of the ππγ interme-
diate state introduces a systematic error believed to be below
5% that will require new 3-body methods to remove.
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3.2.6 Lattice QCD+QED

Over the past decade, the precision of lattice calculations
has advanced to a point where previously neglected sublead-
ing effects now demand careful consideration [99]. These
effects include the corrections due to electromagnetic inter-
actions and those related to the up and down quark mass
difference, which are both expected to be of O(1%). The
inclusion of such isospin-breaking effects in lattice sim-
ulations is conceptually and computationally challenging,
mainly due to the difficulty of defining QED in a finite vol-
ume with periodic boundary conditions. Many prescriptions
have been formulated over the years [100–105] and applied
to the calculation of many different observables. The cur-
rently observed 3σ tensions with unitarity in the first row of
the CKM matrix [40,99,106] motivated lattice calculations
of isospin-breaking corrections to leptonic decay rates of
light mesons, with the aim of determining |Vus | and the ratio
|Vus/Vud | with sub-percent precision. A theoretical frame-
work for lattice QCD+QED calculations of leptonic decay
rates has been first developed by the RM123+Soton collab-
oration in Ref. [107]. This has been successfully applied to
the decay rates of pions and kaons into muon-neutrino pairs
by the RM123+Soton group [108,109] and more recently by
the RBC/UKQCD collaboration [110], providing results in
agreement with each other and with previous ChPT calcu-
lations [111]. The results of Ref. [110] highlighted the rele-
vant role of finite-volume effects in this kind of calculations,
which scale only as inverse powers of the lattice size and
can be potentially sizeable. Work is in progress to tame such
systematic uncertainty [112,113], with the goal of reaching a
precision on |Vus/Vud | below half percent in the next couple
of years. This sets a milestone in precision calculations on the
lattice and further progress is expected in the near future. A
third lattice calculation is in fact currently ongoing, follow-
ing an alternative method recently proposed in Ref. [105].
This method differs in the treatment of long-distance QED
corrections to the decay amplitudes: as a consequence finite-
volume effects are expected to be exponentially suppressed,
rather than power-like.

Applications of lattice QCD+QED are not limited to kaon
leptonic decays though, but extensions of this framework
to processes with hadrons in the final state are currently
under study. This new frontier of calculations includes kaon
semileptonic decays, K → π�ν, which can provide an inde-
pendent estimate of |Vus |, and hadronic kaon decays like
K → ππ , which is crucial for the study of CP violation in
the SM. In both cases a new issue arises, which is related
to the analytic continuation from Euclidean to Minkowski
space-time of those correlation functions where a photon is
exchanged between two particles in the final state. A first
theoretical study of QED corrections to K → π�ν on the
lattice has been done in Ref. [114], and more recently in

Ref. [105]. Given the current interest in the topic and the
impressive recent progress in the field, first lattice results
could appear in the next few years. The inclusion of QED
corrections in K → ππ , and hence Re(ε′/ε), is even more
complicated because of the possible mixing of the final-state
ππ channels with total isospin 0 and 2. Initial studies on this
have been done in Refs. [115–117], marking the start of a
challenging research avenue that will extend over the next
decade.

3.3 ChPT, short-distance constraints, and large Nc

Besides ab initio calculations provided by numerical simula-
tions of QCD on a discretised space-time (cf. Sect. 3.2), ChPT
remains a fundamental tool to study kaon decays in gen-
eral [94]. In this section, we focus on radiative kaon decays
such as K → γ (∗)γ (∗), K → πγ (∗), K → πγ (∗)γ (∗), . . . ,

where the photon(s) can be either real or virtual. In the latter
case it materialises as a lepton–antilepton pair, γ ∗ → �+�−,
� = e, μ. The presence of a real or virtual photon generates
a contribution to the decay amplitude from long-distance
physics, i.e., from QCD in the non-perturbative regime,
which dominates over the short-distance part where NP could
potentially hide.

This class of radiative decays displays specific features
that makes the interplay with large-Nc arguments and short-
distance constraints particularly important. That is, due to
electromagnetic gauge invariance, the lowest-order contri-
bution to the amplitude often starts only at NLO in the low-
energy expansion [118,119]. Moreover, the full structure of
the amplitude and/or its dependence with respect to the kine-
matic variables is then only revealed at NNLO. Making pre-
dictions for these processes thus requires a theoretical under-
standing and a numerical evaluation of the corresponding
LECs. Unfortunately, this knowledge is lacking at present
and this makes predictions difficult.

In the strong sector of ChPT the LECs can be estimated by
resonance saturation [120–122], which finds its justification
in the ’t Hooft large-Nc limit of QCD, Nc → ∞, αs Nc →
const. [123]. In the weak sector, the limit Nc → ∞ has been
proposed quite some time ago [124] for non-leptonic decays.
But a systematic study of the large-Nc limit applied to the
case of rare kaon decays has not been undertaken yet. It is
important to stress here that the large-Nc limit is not being
considered in order to provide an adequate description of the
whole amplitude. It would certainly fail to do so, since chiral
loops, whose contribution to the decay distribution is clearly
visible in the experimental decay distribution in, for instance,
K± → π±e+e−, are suppressed in this limit. Rather, it is
only meant to be used to get a possible handle on the values of
the LECs that contribute to a given amplitude [75,125–127].

In this respect, there are two main differences between
the situation in the strong sector and the one in the weak sec-
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tor. First, in the former, the large-Nc limit can be applied
to three-flavour QCD, immediately before integrating out
also the light quarks and reaching an effective theory where
the only surviving degrees of freedom are the light pseudo-
scalar states. In the weak sector, the last step before reaching
this low-energy description is also provided by three-flavour
QCD, but now supplemented by a set of four-fermion opera-
tors QI modulated by coupling constants CI , usually called
Wilson coefficients. These additional pieces are the low-
energy manifestation of the SM degrees of freedom that pop-
ulate the spectrum from the EW scale down to the hadronic
scale around 1 GeV, where only the three lightest quarks
remain as active degrees of freedom. The only input that is
required from the SM at this ∼ 1 GeV scale is therefore
the list of four-fermion operators QI and the values of the
corresponding couplings CI at this same scale. The second
difference is due to the existence, in the weak sector and in
the particular case of radiative kaon decays, of short-distance
singularities that do not show up in the strong sector. These
short-distance singularities arise in QCD correlators involv-
ing the time-ordered product of the electromagnetic current
with the four-fermion operators QI , which are relevant for
radiative kaon decays. This time-ordered product is singular
at short distances [86,128], and it is mandatory to under-
stand and correctly address this feature before attempting a
determination of the LECs.

This second aspect shows up quite clearly in the large-Nc

limit, for instance in the K → γ ∗γ ∗ transition form factor.
It manifests itself in the form of a contribution involving a
vacuum-polarisation function, which is divergent in QCD.
This divergence actually disappears when the two photons
are real, so that there is no problem in defining the amplitude
for K → γ γ in the usual way, in terms of a kaon-to-two-
photons transition form factor. But it is present as soon as at
least one of the photons is off-shell, i.e., in the amplitudes
for K → γ �+�− or for K → �+

1 �−
1 �+

2 �−
2 . In these cases this

divergence is taken care of by a local contact contribution
provided by the operator Q7V , the product of the quark cur-
rent (s̄d)V−A with the leptonic vector current, the divergence
being absorbed by the renormalisation of the corresponding
coupling C7V . The renormalised vacuum-polarisation func-
tion has an asymptotic behaviour proportional to log(Q2/ν2).
This differs markedly from the strong sector, where the cor-
relators involved behave asymptotically as inverse powers of
Q2. As a consequence, the usual picture of saturation by a
single resonance – or even a finite number of resonances –
does not work, and one needs to consider an infinite tower of
narrow resonances [129]. However, while the addition of the
local contribution from Q7V allows one to define a finite tran-
sition form factor for a neutral kaon into two virtual photons,
its insertion into the loop integral that leads to the amplitude
for the K → �+�− decay is now divergent. Actually, if CP is
conserved, this divergence only appears in the amplitude for

KL → �+�−, and, once minimally subtracted, is of the form
∼ (log ν)C7V (ν)αGF (s̄γ μ(1 − γ5)d)(�̄γμ�). This structure
is reminiscent of a two-loop short-distance contribution, also
of order O(α2GF ), discussed in Ref. [130].

The large-Nc limit also offers some interesting insight
into the amplitudes for the CP-conserving processes K →
πγ ∗ → π�+�− [131]. In the charged-kaon channel, the
amplitude in the large-Nc limit is dominated by the contribu-
tions from the current–current operators Q1 and Q2, whose
Wilson coefficients are of similar size, and much larger than
those of the QCD penguin operators, but with opposite signs.
The LEC a+ thus results, in the large-Nc limit, from a large
cancellation between these two contributions, making a sta-
ble prediction difficult without some knowledge of 1/Nc sup-
pressed corrections. Since Q2 does not contribute to the form
factor for KS → π0γ ∗ in the large-Nc limit, this cancellation
does not occur and one obtains an unambiguous answer for
the LEC aS . Although its value can only be determined with
a relative uncertainty of about 1/Nc ∼ 30%, its sign is fixed
without ambiguity, and corresponds to a positive interference
between the direct and indirect CP-violating components of
the amplitude for KL → π0�+�−, which is rather good news
in view of the possibility to measure this interference in the
future, see Sect. 2.

A systematic investigation of all radiative kaon decay
modes from the perspective of the large-Nc limit of QCD
remains to be done, but is under way. Although it may not
lead to predictions in all possible cases, it may nevertheless
provide a useful guide to implementing phenomenological
approaches that take some known properties from QCD, in
particular at short distances, into better account.

3.4 ChPT and dispersion relations

Besides large-Nc considerations and matching to short-
distance constraints, the purview of ChPT can also be
extended in combination with dispersion relations, which
allow one to implement the constraints from analyticity,
unitarity, and crossing symmetry, and thereby unitarise the
chiral expansion. This section is focused on K�4 decays
(K → ππ�ν�), a prominent example in which the disper-
sive evaluation of ππ rescattering corrections is particularly
important.

Leptonic and semileptonic kaon decays play a crucial role
in the determination of CKM matrix elements. On the one
hand, the ratio of K�2(γ ) (i.e., K → �ν�(γ )) to π�2(γ ) decay
widths provides access to the ratio |Vus/Vud | [106,133,134].
On the other hand, photon-inclusive K�3(γ ) decays (K →
π�ν�(γ )) are used to determine |Vus | directly, ideally using
a dispersive representation of the form factors [135,136],
together with input on the form-factor normalisation from
lattice QCD [99] and isospin-breaking corrections [41,43,
59,137–139]. In contrast, semileptonic K�4 decays offer a
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Table 3 Results for the LECs at μ = 770 MeV, obtained from matching a dispersive representation of K�4 form factors to ChPT

103 × Lr
1 103 × Lr

2 103 × Lr
3 χ2/dof

Dispersive treatment, NLO matching [132] 0.51(6) 0.89(9) −2.82(12) 141/116 = 1.2

Dispersive treatment, NNLO matching [132] 0.69(18) 0.63(13) −2.63(46) 122/122 = 1.0

BE14 global fit [122] 0.53(6) 0.81(4) −3.07(20)

unique opportunity to probe strong dynamics at low ener-
gies: since the final state contains two pions, they are ideal to
study ππ interaction [140–142]. In particular, the determi-
nation of ππ S-wave scattering lengths from K�4 decays can
be compared to very precise theoretical predictions based
on Roy equations matched to two-loop ChPT [143,144]
and taking into account important isospin-breaking correc-
tions [145,146]. Furthermore, K�4 decays are the best source
of information about some of the O(p4) LECs of SU (3)

ChPT.
On the experimental side, impressive precision was

reached by the high-statistics measurements of the E865
experiment at BNL [147,148] and the NA48/2 experiment
at CERN [142,149]. The statistical errors of the S-wave of
one form factor reached in both experiments the sub-percent
level. Matching this precision requires a theoretical treatment
beyond one-loop order in the chiral expansion [150]. Even
at two loops [151], ChPT is not able to predict the observed
curvature of one of the form factors.

For the dispersive treatment of the K�4 form factors of
Ref. [132], a model-independent parametrisation valid up to
and including O(p6) was employed, known as reconstruc-
tion theorem [152,153]. This framework is based on unitar-
ity, analyticity, and crossing, and it includes a resummation
of ππ - and Kπ -rescattering effects. The dispersion relation
leads to a coupled system of integral equations, which can
be solved numerically using input on the elastic ππ - and
Kπ scattering phase shifts [143,154–156]. The system is
parameterised by a few subtraction constants, which are fit to
the experimental form-factor data, together with a constraint
from the soft-pion theorem [157,158]. Isospin-breaking and
radiative corrections beyond the ones included in the exper-
imental analyses were computed in Ref. [159] at one loop in
ChPT including photons and leptons.

The resummed rescattering effects are expected to give
the most important contributions beyond O(p6) and indeed
it turns out that the dispersive description is able to reproduce
the experimentally measured form-factor curvature. The dis-
persion relation enables an analytic continuation of the form
factors beyond the physical region and the matching to ChPT
can be performed at zero energy, where the chiral expansion
should converge best. The matching to one-loop and two-loop
ChPT leads to the results for the LECs Lr

1, Lr
2, and Lr

3 shown
in Table 3. The LECs are universal parameters of SU (3)

ChPT and enter the description of many mesonic processes
at low energies, e.g., (in the case of Lr

3) η → 3π [160].
Future experimental improvement on the form factors

could reduce further the uncertainties on the LECs Lr
1, Lr

2,
and Lr

3. More information on the dependence on the dilep-
ton invariant mass could be used to determine Lr

9. Better
data could also give access to valuable information on Kπ

scattering, and in particular data on the muonic mode Kμ4

would provide access to a third form factor that is helicity
suppressed and invisible in Ke4 decays.

3.5 Kaon experiments as π0 factories: a theory point of
view

Having a primary beam of protons hitting the target, one can
get not only kaon flux but naturally also pions. Thus, any
typical kaon facility (as today’s NA62) would also represent
a pion factory. Even if the secondary beam were composed
only of kaons (at NA62 the charged kaons represent 6%), due
to the hadronic decay modes of kaons to pions, one would
have again a clean source of the lightest mesons. For the
charged kaons, the dominant hadronic mode is K+ → π+π0

(its branching ratio is approximately 20.7%). Due to the very
different lifetime of pions (3 × 10−8 and 8 × 10−17 s for the
charged and neutral pion, respectively), it is unlikely that
one can measure both secondary pions by the same detec-
tors. Here, the focus is on the neutral pion decay modes.
The π0 meson is in some sense unique as it represents the
lightest hadron. It plays a crucial role in the study of low-
energy properties of the strong interaction and is also impor-
tant in various scenarios of BSM. There are two fundamental
parameters connected with the π0 decays – the pion decay
constant Fπ and the lifetime. Fπ represents the fundamental
order parameter of the spontaneous chiral symmetry break-
ing. Its standard determination from the pion weak decay
relies on the validity of the SM. A tension between its deter-
mination from the weak decay πl2 and the direct π0 decay
would strongly indicate NP [135,161], although in this com-
parison the role of isospin-breaking effects, especially the
definition of Fπ in the presence of electromagnetic interac-
tions, becomes critical [162]. The second parameter, the π0

lifetime is important for the normalisation of other processes
(including kaons).

Let us briefly summarise all observed decay modes
with their corresponding branching fractions: π0 → γ γ
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(98.823(34) × 10−2), π0 → γ e+e− (1.174(35) × 10−2),
π0 → e+e+e−e− (3.34(16) × 10−5), π0 → e+e−
(6.85(35) × 10−8) and π0 → γ positronium (1.82(29) ×
10−9). Within the SM (including massive neutrinos), there
are further possible decay modes. The pure π0 → νν̄ is
helicity suppressed and, similarly, π0 → γ νν̄ seems to be
very far from being measured in present or next-generation
experiments. Within the SM, the first process that might be
also seen is π0 → 4γ (being roughly 3 orders below the
theoretical prediction [163]). It might be a very important
process as it goes via the anomalous π0γ γ -vertex and the
interesting light-by-light scattering. Besides, π0 decays are
also ideal for studying BSM physics [164], in searches for
dark photons [165], for C-parity violation [163,166], or by a
precision measurement of π0 → e+e−.

The observed decay modes of neutral pions are governed
mainly by the above mentioned π0 → γ ∗γ ∗ transition form
factor Fπγ ∗γ ∗ , including the dilepton decay π0 → e+e−
via a loop process. Its knowledge is also important for the
anomalous magnetic moment of the muon aμ as it enters
hadronic light-by-light (HLbL) scattering via the pion-pole
contribution. The uncertainty of HLbL scattering is subdom-
inant with respect to hadronic vacuum polarisation, but still
relevant, and efforts to reduce the theoretical uncertainty are
ongoing [167,168].

It is therefore interesting to study and improve our present
knowledge of the above π0 decay modes. Starting with the
dominant π0 → γ γ , one can compare the most precise theo-
retical estimate based on the EM corrections and the two-loop
ChPT calculation [161], with the most recent experimental
measurement:

theory: �(π0 → γ γ ) = 8.09(11) eV,

PrimEx: �(π0 → γ γ ) = 7.80(12) eV (3.11)

leading to almost 2σ difference. The substantial improve-
ment in recent years from an error of 10% down to 1.5%
is solely due to the Primakoff-type measurements at JLab
[169]. Given the difference with the theory, it is desirable to
verify the measurement by a different method, e.g., at a kaon
facility.

An even bigger tension was reported for the π0 → e+e−
decay by the KTeV E799-II experiment [170]. This rare pro-
cess is important for BSM studies as its long-range SM con-
tribution is loop-induced and chirally suppressed, in such
a way that potential BSM effects could compete. Further,
a discrepancy could have implications for our understand-
ing of Fπγ ∗γ ∗ and g − 2, while at the same time provid-
ing valuable BSM constraints. However, the original more
than 3σ discrepancy is shifted down to 1.7σ if radiative cor-
rections are correctly incorporated [171,172]. The problem
with the radiative corrections lies in the fact that the extra
radiative photon is experimentally indistinguishable from a

Dalitz decay π0 → γ e+e−. Its dedicated study [36,173]
is thus important in the complete understanding of the two-
lepton decay mode and the pion transition form factor. With
radiative corrections now directly included in the experi-
mental analyses, cf. Sect. 2.6, a precision measurement of
π0 → e+e− can then be confronted with the most recent
theoretical study, B(π0 → e+e−) = 6.25(3) × 10−8 [174],
including Z exchange and relying on detailed dispersive anal-
yses of Fπγ ∗γ ∗ in the context of HLbL scattering [175–177],
cf. Sect. 3.7, providing a precision test of the SM in analogy
to the rare kaon decay KL → �+�−.

In summary, the π0 decay modes represent a complex
and interrelated system important for our understanding of
the fundamental interactions that can be studied naturally in
future kaon experiments.

3.6 The time dependent rate K (t) → μμ

While improvements for the SM predictions for the KL ,S →
μ+μ− modes are under way (see Sects. 3.2.5 and 3.7), bring-
ing in particular the long-distance effects under good control,
it is also worthwhile to imagine measuring the time depen-
dent rate, �(K → μ+μ−)(t), from which the theoretically-
clean, pure short-distance contribution can be extracted, pro-
portional to the Wolfenstein parameter η̄.

The time dependent decay rate of an initial neutral kaon
beam is given in terms of the following function of time [40]

1

N
(

d�

dt

)
= f (t) ≡ CL e

−�L t + CS e
−�S t

+2CInt. cos(�MK t − ϕ0)e
−(�L+�S)t/2,

(3.12)

where N is a normalisation factor, �L(�S) is the KL(KS)

decay width, and �MK is the KL−KS mass difference.
The four experimental parameters, {CL , CS, CInt., ϕ0}, are
directly related to the four theory parameters describing the
system [178],

{|A(KS)�=0|, |A(KL)�=0|, |A(KS)�=1|,
arg

[
A(KS)

∗
�=0 A(KL)�=0

]}
, (3.13)

where � = 0 (S-wave symmetric wave function) and � = 1
(P-wave anti-symmetric wave function) correspond to the
CP-odd and -even (μ+μ−) final states, respectively.

Under the following assumptions, all fulfilled to an excel-
lent approximation within the SM – (i) CP violation in mixing
is negligible, (ii) no scalar leptonic operators are relevant, and
(iii) CP violation in the long-distance physics is negligible
– the � = 1 amplitude for KL vanishes (since it is a CP-
odd transition which cannot be induced by vectorial short-
distance operators), |A(KL)�=1| = 0 . Moreover, under the
above assumptions the CP-odd amplitude, |A(KS)�=0|, is a
pure short-distance parameter.
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The relations between the experimental and theory param-
eters can be written as

CL = |A(KL)�=0|2,
CS = |A(KS)�=0|2 + β2

μ|A(KS)�=1|2,
CInt. = D|A(KS)�=0||A(KL)�=0|,

ϕ0 = arg
[
A(KS)

∗
�=0 A(KL)�=0

]
, (3.14)

where

βμ =
√

1 − 4m2
μ

M2
K

, D = NK 0 − N
K

0

NK 0 + N
K

0
. (3.15)

From Eq. (3.14), one can extract the pure short-distance
parameter, |A(KS)�=0|, using a fit to the experimental param-
eters (together with knowledge of the dilution factor, D),

1

D

C2
Int.

CL
= |A(KS)�=0|2. (3.16)

In terms of SM CKM parameters, the branching ratio,
B(KS → μ+μ−)�=0, is related to the amplitude of interest
via

B(KS → μ+μ−)�=0 = τSβμ

16πMK
|A(KS)�=0|2, (3.17)

and is predicted to an excellent precision. The prediction, in
terms of Wolfenstein parameters, is given by [178,179]

B(KS → μ+μ−)SM
�=0 = τSβμ

16πMK

×
∣∣∣∣∣
2G2

FM
2
W

π2 fK MKmμYt × A2λ5η̄

∣∣∣∣∣

2

, (3.18)

where Yt is a loop function, dependent on xt = m2
t /M

2
W ,

that is known, and the only hadronic parameter is fK , known
to a very high accuracy. The current numeric SM prediction
reads [179]

B(KS → μ+μ−)SM
�=0

= 1.70(02)QCD/EW(01) fK (19)param. × 10−13, (3.19)

where the non-parametric uncertainties are of the order of
∼ 1%.

This demonstrates the potential of a future measurement
of �(K → μ+μ−)(t), marking it a third kaon golden mode.
To summarise recent theory progress:

1. A measurement sensitive to interference effects in the
time dependent K → μ+μ− rate can be used to
extract the CP-violating short-distance mode, B(KS →
μ+μ−)�=0, which provides a clean measurement of
|VtsVtd sin(β + βs)| ≈ |A2λ5η̄|, with theory uncertainty
of O(1%) [178–180].

2. The combination of a measurement of B(KS → μ+
μ−)�=0 with a measurement of B(KL → π0νν̄) results
in a ratio that is a very clean test of the SM, in particular
avoiding |Vcb|-related uncertainties [62].

3. The same B(KS → μ+μ−)�=0 observable is a potent
probe of NP scenarios affecting the kaon sector, comple-
mentary to the sensitivity of KL → π0νν̄ [181].

4. The phase shift characterising the KL–KS oscillations in
the K (t) → μ+μ− rate is also cleanly predicted within
the SM, up to a fourfold discrete ambiguity [182].

These recent results are an example for novel experimen-
tal and theoretical ideas that are developing, driven by the
prospect of the realisation of future kaon factories.

3.7 Discussion: SM predictions – continuum

Theoretical uncertainties in SM predictions for kaon decays
can be roughly separated into (i) parametric uncertainties,
which can be reduced by improving the precision of CKM
input parameters, (ii) perturbative corrections, which can be
improved by higher-order loop corrections, see Sect. 3.1, and
(iii) long-distance contributions, which are traditionally cal-
culated in ChPT [94]. Limitations concern the energy range
in which predictions apply and the knowledge of LECs. The
latter one is particularly severe for many radiative channels,
since, due to gauge invariance, some form factors may receive
contributions only at high orders, when LECs parameterising
unknown high-energy contributions proliferate, or be domi-
nated by resonance contributions that are only poorly repro-
duced by the chiral expansion. As discussed in Sect. 3.3, a
promising strategy in this case concerns the interplay with
large-Nc considerations and matching to short-distance con-
straints.

Moreover, in recent years lattice QCD has made remark-
able progress in calculating the respective matrix elements
(cf. Sect. 3.2), but also improved continuum strategies have
been developed that allow one to extend the scope and pre-
dictive power of ChPT. One such strategy concerns the use of
dispersion relations to unitarise amplitudes, capturing rescat-
tering effects that are known to impede a rapid convergence
of ChPT, e.g., for S-wave ππ scattering (cf. Sect. 3.4). In
addition, dispersive techniques can be used to constrain LECs
directly, e.g., in many cases elastic contributions can be calcu-
lated unambiguously in terms of known form factors. Recent
examples of such ideas include radiative corrections to K�3

decays [137–139] (including input from lattice QCD), the
kaon mass difference [183], and even matrix elements for
neutrinoless double-β decay [184,185]. In general, further
constraints arise from the short-distance behaviour, where
both perturbative calculations and large-Nc arguments may
prove useful. In many cases, the different methods are com-
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Fig. 9 Long-distance contribution to KL → �+�−. The KL → γ ∗γ ∗
form factor is indicated by the gray blob

plementary, in such a way that combined analyses can help
further improve the precision.

As a concrete example, some of these techniques have
been used to improve the long-distance contribution to
KL → �+�−, which arises from the KL → γ ∗γ ∗ form
factor as shown in Fig. 9 and needs to be controlled if con-
straints on the short-distance amplitude [186,187] are to
be extracted. In one-loop ChPT, the point-like form factor
in the diagram generates a UV divergence, which becomes
absorbed by a LEC with unknown finite part [188]. More-
over, the full dynamics of the KL → γ ∗γ ∗ form factor are
only resolved at subleading orders, at which yet new parame-
ters appear. However, similar form factors have been studied
with dispersive techniques in great detail in the context of the
HLbL contribution to the anomalous magnetic moment of the
muon [167], in the case of π0 [174,176,177], η(′) [189] and
f1 [190,191], and similar strategies apply to the KL [192].
Including data from both leptonic (KL → �+�−γ ) and
hadronic (KL → π+π−γ ) processes and matching to the
asymptotic contribution [193] in terms of a dispersive inte-
gral indeed allows one to reduce the uncertainty of the result-
ing prediction for the long-distance part of the KL → �+�−
amplitude. Further improvements, including a definite state-
ment on the relative sign between long-distance and short-
distance contributions, should become possible in combina-
tion with input from lattice QCD [97,98,194], see Sect. 3.2.5.
Finally, continuum, data-driven techniques profit from data
on related processes, e.g., in the case of KL → �+�− a sig-
nificant part of the error budget in Ref. [192] derives from
experimental uncertainties in the spectra of KL → �+�−γ

and KL → π+π−γ , which could thus be reduced with
improved measurements at future kaon facilities.

4 Kaon physics beyond the Standard Model

The SM provides a successful and economical description
of particle physics up to energies of about 1 TeV. However,
there are various phenomenological and theoretical reasons
that motivate an extension of this theory at higher energies.
The EW hierarchy problem (i.e., the instability of the Higgs
potential under quantum corrections) and the unexplained
hierarchies of the SM Yukawa coupling (the so-called flavour

problem) are among the most compelling theoretical argu-
ments in favour of new (heavy) degrees of freedom. In this
perspective, the SM can be viewed as the renormalisable part
of an effective field theory valid up to some still undeter-
mined cutoff scale �. There are no direct indications about
the value of �; however, natural solutions of the hierarchy
problem suggest that it should not exceed a few TeV.

4.1 The BSM potential of rare kaon decays

Indirect NP searches, such as those conducted via FCNC pro-
cesses, aim at probing the SM cutoff by looking at suppressed
SM processes, where the relative impact of new degrees of
freedom can be larger. In this perspective, rare K decays, and
in particular the theoretically clean K → πνν̄ modes, play
a unique role, since they could allow us to probe, for the first
time and with high precision, the short-distance structure of
the s → d FCNC amplitude.

The s → d transition is very interesting since it experi-
ences a twofold suppression within the SM: (1) it is forbidden
at the tree-level, and (2) it is further strongly suppressed by
the hierarchy of the SM Yukawa couplings. In all kaon decays
measured so far it is impossible to get precise short-distance
information about the s → d transition (i.e., determining the
strength of this transition at the EW scale): the interesting
short-distance dynamics is obscured by large long-distance
effects. This does not happen only in K → πνν̄ decays.
This is the reason why these processes are (i) very interest-
ing, (ii) very suppressed, and (iii) can be predicted with high
accuracy in the SM.

B(K+ → π+νν̄) and B(KL → π0νν̄) are conceptually
comparable to clean precise EW observables, such as the W
mass or the Higgs self-coupling. Similarly to those, rare K
decays probe EW dynamics. However, rare K decays probe
it in a different and less tested sector connected to the flavour
problem, which is one of the main reasons why the SM needs
to be extended. Not surprisingly, there are plenty of exam-
ples in the literature of well motivated BSM models, perfectly
consistent with present high-energy data, which would give
rise to large deviations from the SM in both decay modes (see,
e.g., Refs. [195–202]). A further unique aspect of K → πνν̄

decays is that they are sensitive to the interaction of light
quarks (s and d) with third-generation leptons (the τ neutri-
nos). This additional unique aspect enhances their sensitiv-
ity to motivated BSM models shedding light on the origin
of the flavour hierarchies (see, e.g., Refs. [198,202,203]).
Note that, besides being particularly motivated, such models
are also favoured by present data that indicates an excess,
over the SM predictions, in b → cτν decays. An illustration
of the potential impact of a future precise measurement of
B(K+ → π+νν̄) in this context, also in connection with the
expected precision on B(B → K (∗)νν̄), is shown in Fig. 10.
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Fig. 10 B(K+ → π+νν̄) vs. B(B → K (∗)νν̄) in extensions of the
SM with NP coupled dominantly to the 3rd family leading to an effective
interaction of the type (q̄3

Lγ μTq3
L )(�̄3

LγμT �3
L ), with T = σ a (triplet)

or T = 1 (singlet). Left: Allowed values for the two modes, setting
RD = 1.25, and assuming a triplet interaction (red) or triplet – 2 singlet
(blue); the bands denote present errors and future projections [198].
Right: Scale of the effective operator (singlet case) vs. the parameter

θq describing the flavour alignment [q3
L ≡ cos(θq )bL + sin(θq )tL ]; the

coloured bands denote 1σ and 2σ regions assuming a 5% [10%] mea-
surement of B(K+ → π+νν̄) [B(B → K (∗)νν̄)] around the present
central value; the pink area indicates the present allowed region. These
plots highlight the importance of combining precise data on the two
modes in determining not only the effective scale of NP, but also its EW
and flavour structure

Loosely speaking, the motivated BSM theories that can be
tested by means of K → πνν̄ decays fall into the same cate-
gory as those researched at HL-LHC, i.e., theories with new
heavy particles in the few TeV regime. An explicit exam-
ple of the complementary of K → πνν̄ with collider and
electroweak observables in this context has recently been
shown in [204]. In this respect, it is worth emphasising that
NP around the TeV scale is perfectly compatible with current
data, and still represents the most natural option to address the
EW hierarchy problem [204]. Limits on specific exotic par-
ticles, or new contact interactions, can even exceed 100 TeV,
but this fact should not be over-interpreted: these strong lim-
its only apply to exotic states that badly violate some of the
accidental symmetries of the SM. Low-scale NP models com-
patible with current data imply small deviations from the SM
and can only be searched for via dedicated precision mea-
surements.

As with all precision tests, also in the case of B(K →
πνν̄) the impact of the result depends both on the experi-
mental and on the theoretical accuracy. Right now, the exper-
imental precision on B(K+ → π+νν̄) is around 40%, well
above the theoretical one. Reaching the few-percent level on
this mode would represent major progress. If, as predicted in
motivated NP models, a significant deviation from the SM
were observed, this would be a major breakthrough. How-

ever, the value of this observable is such that a precision mea-
surement would have far-reaching implications even in case
of a result compatible with the SM. This would allow us to
rule out (or further constrain) a class of well motivated BSM
theories in the TeV-energy domain addressing the origin of
the flavour hierarchies.

4.2 Exotica from kaon decays: theory and experiment

The question of how to rank searches for exotics or forbidden
decays inevitably runs into theoretical prejudices. One can
for instance order NP models in terms of their simplicity such
as the minimal field content that is added to the existing SM
structure. One can see that this may not be the best criterion
by considering that before the discovery of the muon or even
charm, simplicity would not have guided one to the complex
structure of the SM. The other option is to ask for interesting
experimental signatures, so that no stone is left unturned.
This can easily lead to rather complicated model building
(“signature building”), and also runs against the problem of
limited resources.

An option that is quite appealing is to give priority to the
models that already solve some of the outstanding problems
in particle physics. An example of such a model is the QCD
axion, which solves both the strong CP problem and is a cold
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dark matter candidate. In this case HIKE is in a very advan-
tageous position that it will probe very interesting parameter
space. Assuming sizeable flavour-violating couplings, such
as in the case of axiflavon [205], HIKE will probe values
of axion decay constant, fa , that result in the correct DM
abundance in minimal scenarios.

4.2.1 Theory overview

Heavy NP with flavour-violating couplings is very efficiently
probed via classic FCNC probes such as K–K̄ mixing,
μ → e conversion, rare B decays, etc. The effects of such
heavy NP are encoded in the values of the Wilson coeffi-
cients, for instance Cds(d̄γ μs)(d̄γμs) for K–K̄ mixing. The
tree level exchanges of heavy NP mediators will result in
Cds ∝ g2/M2, where g is the flavour-violating coupling
of the heavy mediator to the quark current, M the mediator
mass, and we are omitting O(1) factors. That is, the clas-
sic FCNC probes with SM particles as asymptotic states can
probe very heavy mediators that have O(1) flavour-violating
couplings, or much lighter NP that is proportionally more
weakly coupled.

There is a qualitative change in the sensitivity, if one
searches for rare decays to light NP states. For instance, if
light NP state φ couples through dimension 5 operators that
are suppressed by 1/ fa , the branching ratio for K → πφ

is parametrically given by B(K → πφ) ∝ (M2
W / faMK )2.

That is, the sensitivity to the UV scale fa is parametrically
enhanced because the kaons are light. The underlying reason
is that the kaon decay width is suppressed by the off-shellness
of the W , so that �K ∝ M5

K /M4
W . This same heuristic argu-

ment applies to other light mesons and leptons: which one
wins depends on flavour and CP structure of NP.

The other open question is how “exotic” are such light
NP states. Here, an important comment is that any global
U (1) that is spontaneously broken will result in a light
(pseudo-)Nambu–Goldstone boson. The perhaps most cel-
ebrated example is the QCD axion, while in general such
light pseudoscalars a go under the term axion-like particles
or ALPs. These can have flavour-violating couplings [206–
211]. If these are already present in the UV then K → πa
decays probe very high scales, fa ∼ 1013 GeV, while if the
flavour violation is due to the SM CKM, generated at 1-loop,
then the reach is correspondingly lower, at fa ∼ 106 GeV
[212,213]. Beyond ALPs, there are many other well moti-
vated models of light NP to which kaon decays are sensi-
tive, such as light Higgs-mixed scalar, heavy neutral leptons,
dark photon, etc. Even seemingly exotic signatures could in
fact be due to relatively simple extensions of the SM. One
such example, is for instance the decay K → π2(e+e−) that
would be generated within a dark HiggsedU (1)d , where both
the Higgs and the dark photon are light. A more complete list
can be found in Ref. [213].

4.2.2 Principal experimental signatures

Discussed below are the principal K+ decay channels that
have been exploited by NA62, and will be exploited at HIKE,
to address the Physics Beyond Collider (PBC) benchmark
scenarios (BC) in the classification of Ref. [214]. The updated
HIKE sensitivity is published in the HIKE proposal [1].

Kaon decays also provide sensitivity to a large number of
non-minimal scenarios that evade detection in beam-dump
experiments [215–217], which have been studied experi-
mentally only to a minimal extent so far. Examples of non-
minimal scenarios accessible in kaon experiments are: short-
lived Majorana heavy neutral leptons (HNLs) decaying via a
displaced-vertex topology K+ → �+

1 N , N → π−�+
2 [218];

dark neutrino produced and decaying via the K+ → �+N ,
N → νZ ′, Z ′ → e+e− chain [217]; a muonphilic force
scenario leading to K+ → μ+νX decays [219].

K+ → π+X inv decays: The search for the K+ →
π+X inv decay, where X inv is an invisible particle, provides
sensitivity to the benchmark scenarios BC4 (dark scalar),
BC10 (ALP with fermion coupling) and BC11 (ALP with
gluon coupling). The accessible mX ranges are approxi-
mately 0–110 MeV/c2 and 150–260 MeV/c2, corresponding
to the K+ → π+νν̄ signal regions. The principal back-
ground comes from the K+ → π+νν̄ decay itself. The
search strategy based on the peak search in the spectrum of
the reconstructed missing mass m2

miss = (PK+ − Pπ+)2 has
been established by the NA62 experiment [220], and the full
NA62 Run 1 (2016–2018) dataset has been analysed [14].
The search at HIKE Phase 1 will be performed by direct
extension of the K+ → π+νν̄ measurement. The HIKE
Phase 1 sensitivity projection has been performed by exten-
sion of the NA62 analysis, assuming a 40-fold increase in
the size of the data sample with respect to NA62 Run 1.

The above scenarios are also addressed by a dedicated
search for theπ0 → X inv decay using a technique established
by NA62 [221]. This search covers the mX region in the
vicinity of the π0 mass. The region mX > 260 MeV/c for
the scenarios BC4 and BC11 is addressed experimentally
by searches for K+ → π+X decays followed by displaced
X → μ+μ− or X → γ γ decays, respectively.

K+ → �+N decays: Searches for the K+ → �+N
decays (� = e, μ), where N is an invisible particle, pro-
vide sensitivity to the benchmark scenarios BC6 (HNL with
electron coupling) and BC7 (HNL with muon coupling).
The technique has been established by the NA62 exper-
iment, which has obtained world-leading exclusion limits
on the HNL mixing parameters |U�4|2 over much of the
accessible mass range of 144–462 MeV/c2 with the Run 1
dataset [222,223]. Both searches are limited by background.
In particular, the K+ → μ+ν decay followed by μ+ →
e+νν̄ decay in flight, and the π+ → e+ν decay of the pions

123



Eur. Phys. J. C           (2024) 84:377 Page 25 of 34   377 

in the unseparated beam, represent irreducible backgrounds
to the K+ → e+N process.

The HIKE sensitivity projection is obtained by exten-
sion of the NA62 analysis assuming the similar resolution
and background. In the K+ → μ+N case, it is assumed
additionally that, unlike NA62, the trigger line is not down-
scaled, which is possible for a fully software trigger. HIKE
sensitivity to |Ue4|2 in the mass range 144–462 MeV/c2

approaches the seesaw neutrino mass models [224]. For
mN < 140 MeV/c2, HIKE will improve the PIENU lim-
its [225] on |Ue4|2 via the π+ → e+N decays of pions in
the unseparated beam, and has a further potential via the
K+ → π0e+N decay [226]. HIKE will also approach the
seesaw neutrino mass models for |Uμ4|2.

π0 → γ A′ decay: A search for the K+ → π+π0, π0 →
γ A′, A′ → e+e− prompt decay chain had been performed
by the NA48/2 experiment [227], addressing the benchmark
dark photon scenario BC1. The case of invisible dark pho-
ton (scenario BC2) has been addressed by the NA62 experi-
ment [165]. The HIKE experiment will be able to improve on
both searches. Of particular interest for the future experimen-
tal programme are the displaced A′ → e+e− vertex analysis
which potentially provides sensitivity for lower dark photon
couplings, and a study of an alternative dark photon produc-
tion channel K+ → μ+νA′, followed by either prompt or
displaced A′ → e+e− decays, extending the search region
above the π0 mass.

Other processes: Other exotic processes studied recently
using the NA62 Run 1 dataset include searches for lepton-
flavour and -number violating decays, including K+ →
π−μ+μ+ and K+ → π−e+e+ [228], K+ → π±μ∓e+ and
π0 → μ−e+ [229], K+ → π−(π0)e+e+ [230], and K+ →
μ−νe+e+ [231]. These searches are almost background-free,
and typically reach sensitivities to the decay branching ratios
of O(10−11). The sensitivities will be improved significantly
with NA62 Run 2 and HIKE datasets.

The NA62 experiment has recently reported the first
search for pair-production of hidden-sector mediators in the
prompt K+ → π+aa, a → e+e− and K+ → π+S,
S → A′A′, A′ → e+e− decay chains leading to a five-track
final state [232].

4.3 Discussion: (B)SM constraints from kaon physics

In this section the impact of kaon observables as constraints
on the SM and beyond is discussed.

The interplay of kaon physics with other areas of particle
physics can be nicely illustrated by the example of anomalous
couplings of the Z boson to top quarks. These couplings can
be measured directly at the LHC via t t̄+ Z production [233].
It turns out, however, that indirect constraints are more pow-
erful [234]. In particular, rare B and K meson decays are
sensitive probes of such couplings. Moreover, anomalous

t t̄ Z couplings are related, via gauge invariance, to anoma-
lous couplings of W bosons, which leads to a rich interplay
between rare decays, EW precision observables, and collider
signals.

This interplay can be discussed in a transparent way in
the context of SM effective field theory (SMEFT) [235,236].
At mass dimension six, there are three operators that induce
anomalous t t̄ + Z couplings at tree level, namely, Q(3)

φq,33,

Q(1)
φq,33, Qφu,33. Strong constraints from B meson decays

require the combination C (3)
φq,33 +C (1)

φq,33 to be very small. In
certain models with vector-like quarks, this combination van-
ishes identically [237], which is assumed in the following.
In this case, rare K and B meson decays put strong bounds
on non-standard t t̄ Z couplings. Currently, the Bs → μ+μ−
mode is clearly dominant (Fig. 11, left panel), but precise
measurements of the K → πνν̄ will lead to comparable
(and complementary) constraints in the future. The single
other most important constraint arises from the measure-
ment of the T parameter, while the modification of the left-
handed bb̄Z (i.e., δgLb ) leads to weaker constraints. The mod-
ification of the charged current affects the t-channel single
top production cross section which has been measured by
both ATLAS [238] and CMS [239]; however, rare decays are
expected to give stronger bounds even in the future with a
larger LHC data sample.

Rare kaon decays are also sensitive probes of light new
particles that can appear in the final state. For instance, the
measurement of the K+ → π+νν̄ branching ratio can set
stringent bounds on well-motivated models of axion dark
matter if the axions have flavour off-diagonal couplings, see
the discussion in Sect. 4.2 for details.

The expected K+ → π+νν̄ event rate at HIKE will result
in a measurement of the invariant mass spectrum of the final-
state neutrino pair and test fundamental properties of neutri-
nos. If we consider only lepton-number-conserving interac-
tions of SMEFT, the resulting three light Majorana neutrinos
can only couple through an axial vector current with the quark
sector in the limit of small neutrino masses. The resulting
missing mass spectrum would be a rescaled SM spectrum.
Dimension seven operators, that violate lepton number, can
generate scalar interactions and (neutrino flavour-changing)
tensor interactions. Neutrino flavour-conserving scalar inter-
actions were studied in Ref. [240] and a sensitivity to energy
scales in the multi TeV range was found. The neutrino spec-
trum peaks at higher invariant masses if compared with the
SM expectation. The situation changes if we go beyond the
three light Majorana neutrino scenario. Three extra neutrinos
can potentially form Dirac neutrinos, together with the lepton
doublets of the SM. In this scenario, scalar and tensor inter-
actions are already generated at dimension six in νSMEFT
without the need for lepton number violation. Preliminary
results [241,242] for this scenario and extra sterile Majo-
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Fig. 11 Constraints on anomalous t t̄ Z couplings. The left panel shows
current constraints on the two independent coefficients C (1)

φq,33 and

Cφu,33, arising from the rare decays Bs → μ+μ− and K+ → π+νν̄, t-
channel single top production (σt ), as well as the EW precision param-
eters T and δgLb . The white star indicates the SM expectation. The

right panel shows future projections, assuming 5% measurements of
the rare-decay modes and a naive rescaling of the uncertainty in single
top production with 300/fb of data. The EW precision parameters were
measured at LEP and are not expected to change significantly. See text
for discussion

rana neutrinos were discussed. Both scenarios are sensitive
to NP in the 100 TeV range. Dirac neutrinos also allow for
lepton-flavour-conserving tensor interactions. The scenario
with extra massive sterile neutrinos can lead to unique mod-
ifications of the spectrum through the modified phase space.

4.4 Discussion: complementarity of B- and K -decays

Flavour physics is a traditional source of correlation among
B-and K -physics: are there observables and models cor-
relating B- and K -physics? What about lepton-flavour-
universality violation (LFUV)? Which models? What about
model independent tests? CP violation? Which LFUV scale
can be tested? What about lepton-flavour-violating (LFV)
decays like K → πμe?

Based on the stronger constraints of FCNCs of the first
two families compared to the third family, the traditional
Minimal Flavour Violation (MFV) protection of FCNCs
based on U (3) flavour symmetry was already challenged
by a less protective U (2): indeed Isidori and collaborators
have recently applied this U (2) to interesting B- and K -
correlations [201,243], in particular B → πνν̄ and K →
πνν̄. Also a typical NP scale of ∼ 1−2 TeV was indicated.

Since a SMEFT approach generically predicts LFV in
higher dimensional operators, it is interesting to question
LFUV and LFV in kaon physics independently, and also
address which kaon observable could be more interesting;
for instance, LFUV was tested in K± → π±�+�− [39]:
in the presence of LFUV in higher dimensional operators,
for instance Q7V , affecting differently K± → π±e+e− and
K± → π±μ+μ−, experiment could test LFUV by measur-
ing the form factors of the different final states.

However, if NP affects left-handed currents also neutrinos
of different flavours are affected in K → πνν̄. Moreover,
KL → μ+μ− and KL → π0�+�− experiments may give
relevant constraints to LFUV (dimension-six V − A⊗V − A
operators) coefficients [27]. In this research all kaon decays
potentially constraining LFUV interactions (KL → π0νν̄,
K+ → π+νν̄, KL → μ+μ− and KL → π0�+�−) are
limiting the supposed different couplings to the first and sec-
ond left-handed family. Also the projections for the future
programmes of KOTO and NA62, i.e. KOTO-II and HIKE
Phases 1 and 2, are studied.

One of the questions of this workshop was how to quantify
the impact of BSM reach, through dimension-6 operators, in
flavour and collider experiments (kaons, beauty, �F = 2, 1,
muon decays, dipole moments, Higgs decays, . . .): one can
parameterise the limits in terms of the scale appearing in the
Wilson coefficients of dimension-6 operators, but it was also
argued that specific models could be more useful to show the
experimental reach. For instance there are specific models
that might be more effective to address B- and K -physics and
the possible g − 2 muon anomaly. Other studies have shown
that the explanation of B → D(∗)τ ν̄ decay would generate,
through W -box diagrams, effects in K → πνν̄ [244].

Several theoretical and experimental studies have explored
the possibility of lepton number violation manifesting itself
in rare kaon decays. Also NA62, KOTO, KOTO-II and HIKE
have studied this, see Sect. 2. Several models have been dis-
cussed at the workshop: (i) using SMEFT its detection would
put high-scale leptogenesis under tension and would hint to
small radiatively generated neutrino masses [240], (ii) Ger-
man Valencia and collaborators [245] compare constraints
on pairs of light scalars or vectors from their contribution to
K → πνν̄ and B → Mνν̄ (M = K , π etc.).
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One interesting question in the workshop was the possible
connection between the strong CP problem and the flavour
problem: it was discussed the possibility that solving the
flavour problem of the SM with a simpleU (1)H flavour sym-
metry naturally leads to an axion that solves the strong CP
problem and constitutes a viable Dark Matter candidate. This
framework is very predictive and experimentally testable by
future axion and precision flavour experiments [205].

The interplay between kaon physics and other areas is
also evident in precision measurements of charged-current
decays of K+ and KL . These decays serve as a robust BSM
probe through the testing of first-row CKM unitarity and the
exploration for nonstandard currents. They are sensitive to
effective TeV scales, complementing EW precision data and
direct LHC searches, as can be seen in the SMEFT frame-
work [134,246–248]. The current discrepancies observed
across various modes provide further motivation to delve into
these processes and resolve the existing uncertainties.

5 Outlook and conclusions

This document provides a compact summary of talks and
discussions from the workshop Kaons@CERN 23 [249].
Over 100 leaders in experiment and theory participated in
the workshop to take stock, discuss and contemplate about
the opportunities that current and future kaon-physics exper-
iments, as well as anticipated theoretical developments, pro-
vide for particle physics in the coming decade and beyond.
A few outcomes are worth highlighting:

• The rare-decay channels K+ → π+νν̄ and KL → π0νν̄

are among the theoretically cleanest standard candles of
the SM. Being essentially free of hadronic uncertainties
they allow for accurate and precise tests of the SM. Their
suppression in the SM leads to sensitivity to NP at the
highest scales.

• The theoretical precision matching the projections of
future experiments HIKE and KOTO-II does already
exist.

• Generic NP models show complementarity of searches
in B and K decays. Results from a future kaon factory
will uniquely impact the constraining or understanding
of the microscopic structure of NP.

• Besides the gold-plated rare modes, HIKE and KOTO-
II will measure a plethora of other K+ and KL decays
(rare, less rare and radiative) with unprecedented preci-
sion. For some of these decays the improved measure-
ments will help the community of SM theorists working
in ChPT, dispersion theory and lattice QCD+QED to test
their predictions and sharpen their tools.

• For several other decays not belonging to the gold-plated
class, the improved measurements will help put further

constraints on NP models, in particular if one analyses
them in combined fits. Moreover their effectiveness can
increase if theoretical calculations of long-distance con-
tributions improve, even at a later stage. Precision HIKE
measurements of the dominant K+ and KL decay modes
can also provide important NP input.

• While the best possible outcome is that NP will be dis-
covered by HIKE and/or KOTO-II, the resulting preci-
sion measurement of the SM are guaranteed deliverables
and will allow for stronger constraints of NP models, and
hence, stronger exclusion limits.

As the workshop has shown – the kaon physics community is
diverse, young and vibrant and distributed around the entire
world. A clear commitment to a kaon factory in terms of
HIKE will give it a further boost and allow it to further
develop ideas and projects that are already ongoing. Histor-
ically, the study of kaon physics was an important driver for
the development of the SM, but it is far from a closed chapter:
kaon physics still harbours many fundamental questions. As
this workshop has clearly highlighted, through their sensitiv-
ity to high-scale physics, kaons could very well be the place
where first signs of NP will be discovered. Studying kaons
to high precision with a next-generation kaon factory should
therefore be a priority for both CERN and J-PARC.
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