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Combining Clinical With Cognitive or Magnetic
Resonance Imaging Data for Predicting
Transition to Psychosis in Ultra High-Risk
Patients: Data From the PACE 400 Cohort

Simon Hartmann, Micah Cearns, Christos Pantelis, Dominic Dwyer, Blake Cavve, Enda Byrne,
Isabelle Scott, Hok Pan Yuen, Caroline Gao, Kelly Allott, Ashleigh Lin, Stephen J. Wood,
Johanna T.W. Wigman, G. Paul Amminger, Patrick D. McGorry, Alison R. Yung, Barnaby Nelson,
and Scott R. Clark
ISS
ABSTRACT
BACKGROUND: Multimodal modeling that combines biological and clinical data shows promise in predicting tran-
sition to psychosis in individuals who are at ultra-high risk. Individuals who transition to psychosis are known to have
deficits at baseline in cognitive function and reductions in gray matter volume in multiple brain regions identified by
magnetic resonance imaging.
METHODS: In this study, we used Cox proportional hazards regression models to assess the additive predictive
value of each modality—cognition, cortical structure information, and the neuroanatomical measure of brain age
gap—to a previously developed clinical model using functioning and duration of symptoms prior to service entry
as predictors in the Personal Assessment and Crisis Evaluation (PACE) 400 cohort. The PACE 400 study is a well-
characterized cohort of Australian youths who were identified as ultra-high risk of transitioning to psychosis using
the Comprehensive Assessment of At Risk Mental States (CAARMS) and followed for up to 18 years; it contains
clinical data (from N = 416 participants), cognitive data (n = 213), and magnetic resonance imaging cortical
parameters extracted using FreeSurfer (n = 231).
RESULTS: The results showed that neuroimaging, brain age gap, and cognition added marginal predictive infor-
mation to the previously developed clinical model (fraction of new information: neuroimaging 0%–12%, brain age gap
7%, cognition 0%–16%).
CONCLUSIONS: In summary, adding a second modality to a clinical risk model predicting the onset of a psychotic
disorder in the PACE 400 cohort showed little improvement in the fit of the model for long-term prediction of transition
to psychosis.

https://doi.org/10.1016/j.bpsc.2023.11.009
The development of criteria for ultra-high risk (UHR) of psy-
chosis has facilitated early intervention strategies to promote
better clinical outcomes (1). Although there is meta-analytic
evidence that 25% of individuals at UHR for psychosis tran-
sition to first-episode psychosis over a 3-year period (2), we
are currently unable to identify the level of risk at the individual
level. Being able to do this would enable individualized treat-
ment strategies to be developed using currently available
treatments and would also enable efficient stratification of in-
dividuals at UHR in clinical trials of new treatments.

To date, the majority of approaches that have attempted to
generate individualized prediction models have used either
traditional multivariate techniques such as Cox proportional
hazards (3–6) and logistic regression (7,8) or machine learning
models such as support vector machines (9–11) and greedy
algorithms (12). Recently, prediction models that combine
ª 2023 Society of Biological Psychiatry. Publi
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multiple domains such as clinical, structural magnetic reso-
nance imaging (MRI), cognition, genetic markers, and blood
markers have been shown to improve psychosis prediction
accuracy in UHR cohorts, e.g., as demonstrated by the Per-
sonalised Prognostic Tools for Early Psychosis Management
(PRONIA) consortium in recent studies using multimodal,
multisite machine learning models (11,13). Such multimodal
models can provide more important information regarding the
value of more expensive and complex assessment workflows
including genomic testing and MRI than structured clinical and
cognitive assessments (14,15). To drive the implementation of
prediction models in practice, there is a need to understand the
benefit of including complex assessments because a low
number of predictors or modalities, in particular noninvasive
modalities, lowers the difficulty of translation into clinical
practice and should be included as objective during the
shed by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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development of prediction models in addition to a high pre-
dictive accuracy. Here, we validated the new information
introduced by new predictors in a nested Cox regression
model by determining the fraction of new information added to
the total predictive information over an extended follow-up
period during which we investigated the relevance of adding
complex modalities.

Clinical variables that are known to predict transition to
psychosis in UHR cohorts include long duration of symptoms
prior to presentation to clinical services (16,17), severity of
positive (18,19) and negative psychotic symptoms (20,21), and
poor functioning and quality of life (22,23). Cognition is
impaired across domains in individuals at UHR for psychosis
and is a key prognostic biomarker of transition to first-episode
psychosis (FEP) (24). Neuroimaging studies have found the
surface area in the rostral anterior cingulate, lateral and medial
prefrontal regions, parahippocampal gyrus (25), the mean
anterior genu thickness (26), and the cortical thinning rate (27)
to be predictive of transition to psychosis. One relatively new
imaging concept, brain age gap, shows potential for prediction
for transition to FEP (28). MRI scans can be used to estimate
an individual’s brain age by using prediction models that were
trained on normative population data (29). Brain age gap refers
to the difference between the estimate of an individual’s brain
age and the individual’s chronological age (30). A positive brain
age gap indicates an older brain compared to the person’s
chronological age whereas a negative brain age gap suggests
a younger brain. Brain age gap has been part of an increasing
number of studies over the past decade which have shown
that higher brain age gap scores are associated with cognitive
impairment and with schizophrenia or bipolar disorder
(11,31,32–34).

In the current analysis, we investigated the potential benefit
of using a multimodal model compared to using a clinical risk
model alone to estimate the transition hazard in individuals at
UHR for psychosis using the PACE (Personal Assessment and
Crisis Evaluation) 400 dataset. The aim was to assess the in-
dividual additive predictive value of cognition, cortical structure
information, and brain age gap to a clinical Cox proportional
hazards model developed by Nelson et al. (35). The clinical
model consisted of poor functioning (Global Assessment of
Functioning [GAF]), duration of symptoms prior to service en-
try, and UHR subgroup. The aim of this study was to quantify
the benefits of including additional modalities in predicting
transition to FEP in the PACE 400 cohort rather than finding the
most generalizable prediction model.

METHODS AND MATERIALS

The PACE 400 Study

The PACE 400 study is the first long-term follow-up of a UHR
cohort (up to 15 years after entry to the PACE clinic). The PACE
400 cohort (35) (N = 416) comprised all patients at UHR for
psychosis participating across 7 studies [3 intervention
(36–38), 4 cohort (39–42)] at the PACE clinic in Melbourne,
Australia, between 1993 and 2006.

The enrollment criteria and assessment of UHR status at
baseline are outlined in the Supplement. The main outcome of
interest in the PACE 400 study was transition to psychotic
disorder. Details on how psychosis status was determined in
418 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging A
the PACE 400 study are described in the Supplement. Time to
follow-up ranged from 2.4 to 18.6 years after baseline, with a
mean follow-up time of 7.5 years (SD = 3.2 years) (35). The
study combined individual information from multiple sub-
studies across multiple domains including clinical assess-
ments, cognition, neuroimaging, and in some cases fluid
biospecimens. Previous studies have investigated cortical
structure in the PACE 400 cohort but either in a smaller cohort
(43) or only in individuals who did not transition to psychosis
(44). Furthermore, cognitive predictors in the PACE 400 cohort
were previously assessed in a univariate analysis (45) but not in
terms of their additive predictive value to a clinical prediction
model.

Measures

Clinical Measures. At baseline, negative symptoms were
assessed using the Scale of Assessment for Negative Symp-
toms (46), positive symptoms were assessed with the Brief
Psychiatric Rating Scale, psychotic subscale (47) and the
Comprehensive Assessment of At Risk Mental States
(CAARMS) (1), and depressive symptoms were assessed using
the Hamilton Rating Scale for Depression (48).

Functioning. Functioning was determined using the Quality
of Life Scale (49) and the GAF (50).

Structural Imaging. Details on MRI scanners used for MRI
acquisition, cortical reconstruction, and volumetric segmen-
tation using FreeSurfer (51) are outlined in the Supplement.

The neuroimaging measures demonstrated a large variance
between scanner sites due to different types of scanners that
were used (Figure S1). We applied the ComBat method (52)
prior to our analysis to harmonize neuroimaging measures
across sites. The ComBat method assumes an additive and
multiplicative scanner or site effect which can be estimated
from the data using conditional posterior means and subse-
quently removed (53). ComBat requires a sufficient sample size
from each site or scanner to successfully estimate the multi-
plicative effect. The outcome measure of transitioning to FEP
was included as a covariate to align the distributions of in-
dividuals transitioning to FEP and individuals who did not
transition across sites (53). To reduce the dimension of the
feature space for each neuroimaging domain, we applied
bilateral principal component analysis (PCA) (54). We also
included cortical thickness values for fusiform, superior tem-
poral, and paracentral regions as candidate predictors
because they have been associated with psychosis conversion
in the ENIGMA (Enhancing Neuroimaging Genetics through
Meta-Analysis) clinical high risk for psychosis initiative (55).

Cognition. IQ at baseline was measured using a range of
age-appropriate scales across studies (56) including the
Wechsler Adult Intelligence Scale-Revised (57), the Wechsler
Abbreviated Scale of Intelligence (58), or the Wechsler Intelli-
gence Scale for Children (59). Verbal list learning and memory
was assessed with the Rey Auditory Verbal Learning Test
(RAVLT) (60). Here, we used the age-adjusted scores for
Wechsler Adult Intelligence Scale-Revised subtests Arithmetic
and Digit Symbol Coding as well as the total score from a
pril 2024; 9:417–428 www.sobp.org/BPCNNI
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3-trial version of the RAVLT as cognitive predictors. Verbal
learning and memory (RAVLT), processing speed (Digit Symbol
Coding), and auditory verbal working memory (Arithmetic) have
shown strong associations with transition to psychosis and
changes in functioning in previous studies (24,61,62).

Brain Age Gap. We used the publicly available pretrained
ENIGMA brain age model (https://photon-ai.com/enigma_
brainage) to estimate the brain age in the PACE 400 cohort.
The model was trained using ridge regression to estimate
normative models of the association between chronological
age and 14 subcortical gray matter regions (nucleus accum-
bens, amygdala, caudate, hippocampus, pallidum, putamen,
and thalamus), 2 lateral ventricles, 68 cortical thickness mea-
sures, 68 surface area measures, and total intracranial volume
in a healthy sample of 952 males (16 scanning sites) and 1236
females (22 scanning sites) aged 18 to 75 years (63). Stan-
dardized protocols were used for image processing and
feature extraction across sites (http://enigma.ini.usc.edu/
protocols/imaging-protocols/). To control for regression dilu-
tion, a common phenomenon in brain age prediction models
that results in a systematic overestimation of the brain age for
younger individuals and a systematic underestimation of the
brain age for older individuals (64), we included chronological
age as a covariate in our analysis as suggested by the ENIGMA
brain age model (63). An overview of the estimated brain age
gap for individuals with neuroimaging in the PACE 400 cohort
using the ENIGMA Photon Brain Age Model without correction
and with correction by removing the linear trend caused by
chronological age is shown in Figure S2.
•
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Survival analysis was applied to analyze transition to FEP. Cox
proportional hazards regression (65) was used to investigate
the predictive value of clinical predictors combined with
cognition, neuroimaging, or brain age gap. We fitted a base
model that included 3 clinical variables as well as enhanced
models that added 1 of the following modalities: CAARMS
subscales, cognition, MRI, or brain age gap. For each addi-
tional modality, we initially added 1 additional predictor and in
a further analysis a maximum of 2 predictors to remain within a
maximum of 5 predictors (3 clinical predictors plus 2 predictors
for each additional modality), which resulted in 10 to 15 events
per predictor (66–70). The analysis plan is summarized in
Figure 1.

The 3 predictors of GAF, duration of symptoms prior to
service entry, and UHR subgroup were included in the base
model based on the univariate analysis in Nelson et al. (35).
More information on the clinical predictors is provided in
the Supplement. Regarding the additional modalities, the
CAARMS subscales Disorders of Thought Content and
Conceptual Disorganization, which were the most significant
additional variables identified in Nelson et al. (35), were
included to provide additional information on the severity of
positive psychotic symptoms and to control for the effect of
adding more variables to the base model. The first bilateral
principal component of each MRI domain as well as cortical
thickness values for left fusiform, right superior temporal, and
left and right paracentral regions were included as neuro-
imaging predictors. Brain age gap plus chronological age
was included as neuroanatomical predictor. For the subset
Likelihood-
test (LRT)

Concordance
index (CI)

Figure 1. Study plan using nested Cox pro-
portional hazards regression models, internal
validation, and nested models evaluation. Study
plan using nested Cox proportional hazards
regression models with a base model including
the global assessment of functioning (GAF),
duration of symptoms prior to service entry, and
ultra-high risk group status as clinical variables
as well as full models that contained the 3 clinical
variables and 1 of the additional modalities:
neuroimaging (magnetic resonance imaging
[MRI]), brain age gap, or cognition. We also fitted
a model containing the 3 clinical variables plus
the Comprehensive Assessment of At Risk
Mental States (CAARMS) subscales Disorders of
Thought Content and Conceptual Disorganiza-
tion to control for the effect of adding 2 variables
to the base model. The full models were subse-
quently compared to the base model using the
likelihood-ratio test, the fraction of new infor-
mation, and the concordance index. RAVLT, Rey
Auditory Verbal Learning Test.
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Table 1. Descriptive Information About the Neuroimaging
and Cognition Samples at Baseline and Follow-Up

Cognition,
n = 94

MRI,
n = 212

Nonstandard (Trial) Intervention
Treatment

24% (23) 37% (78)

Sex, Female 51% (48) 49% (104)

Age at Baseline, Years 21.1 6 3.5 19.9 6 3.5

Days Between Symptom Onset
and First Contact With
PACE

564.2 6 1056.4 430.9 6 632.5

UHR Subgroup

Any BLIPS 24% (23) 16% (34)

APS or APS1vulnerability 59% (55) 68% (144)

Vulnerability 17% (16) 16% (34)

Clinical Measures

BPRS total 43.4 6 7.5 46.2 6 9.0

SANS total 18.3 6 13.6 19.3 6 11.9

GAF 62.3 6 14.5 59.2 6 11.7

QLS total 73.3 6 22.3 75.1 6 20.3

CAARMS Disorders of Thought
Content, severity

2.1 6 1.1 2.0 6 1.1

CAARMS Perceptual
Abnormalities, severity

1.9 6 1.5 2.1 6 1.5

CAARMS Conceptual
Disorganization, severity

2.1 6 1.1 1.9 6 1.0

Cognition

Coding 9.3 6 2.5 –

Arithmetic 8.7 6 3.1 –

RAVLT total 28.6 6 6.3 –

Brain Age Gap 20.3 6 7.4

Follow-Up

Transition to psychosis 41% (39) 31% (65)

Follow-up time, days 4055.3 6 320.6 3052.8 6 1066.0

Time to transition, days 217.4 6 528.0 167.8 6 460.9

SOFAS score 62.9 6 17.0 69.0 6 16.0

Values are presented as % (n) or mean 6 SD.
APS, attenuated psychotic symptoms; BLIPS, brief limited intermittent

psychotic symptoms; BPRS, Brief Psychiatric Rating Scale; CAARMS,
Comprehensive Assessment of At Risk Mental States; GAF, Global Assessment
of Functioning; MRI, magnetic resonance imaging; PACE, Personal Assessment
and Crisis Evaluation; QLS, Quality of Life Scale; RAVLT, Rey Auditory Verbal
Learning Test; SANS, Scale of Assessment for Negative Symptoms; SOFAS,
Social and Occupational Functioning Assessment Scale; UHR, ultra-high risk.
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of participants with cognition measures, the base model
was repeated and compared in a separate sample with 2
enhanced models: first a model adding CAARMS subscales
and second a model adding cognition predictors measured
by age-adjusted scores for Wechsler subtests Arithmetic and
Digit Symbol Coding and the RAVLT total score. Due to a
difference in the number of participants with neuroimaging
and cognition data, we performed our analysis in separate
neuroimaging and cognition datasets from the PACE 400
sample. Each model was internally validated using boot-
strapping (1000 samples) (71).

The enhanced models were then compared to the base
model (GAF, duration of symptoms prior to service entry, and
UHR subgroup) to assess the additional predictive value of
each modality. For each enhanced model, the likelihood-ratio
test (LRT) for added value was obtained by comparing log
likelihoods of the base and full models. The significance level
for p values from the LRT was ,.05. We also determined the
fraction of new information as the proportion of total predictive
information that was added by cognition, MRI predictors, or
brain age gap. More information on the calculation of the
fraction of new information is provided in the Supplement.
Before the analysis, we checked whether all variables included
in the analysis and the variable describing the treatment
groups (treatment-as-usual participants and participants who
received trial treatments) satisfied the proportional hazards
assumption. The analysis was performed in R (72) using the
rms (72) and glmnet (73) package. Code for this analysis is
available at https://github.com/preempt-centre-for-research-
excellence/MultiPredModelPACE400.

RESULTS

Table 1 details the descriptive statistics of the neuroimaging
and cognition samples at baseline and follow-up. A total
of 212 individuals at UHR for psychosis (49% female) were
included in the neuroimaging dataset (age at baseline [mean
6 SD] 19 6 5 years). There were 65 transitioned cases (31%)
in the neuroimaging sample, with an average time to transi-
tion of 168 days (SD = 461 days). The cognition dataset
contained a total of 94 individuals at UHR for psychosis (51%
female) with an average age of 21 years (SD = 3.5 years). In
the cognition sample, there were 39 transitioned cases (41%)
with an average time to transition of 217 days (SD = 528
days). The demographic and clinical characteristics of the
total sample (N = 416) have been reported and discussed in
detail in a previous publication (35).

Clinical Measures Plus Neuroimaging

Table 2 lists the regression coefficients and test scores after
internal validation using bootstrapping for clinical and neu-
roimaging variables in a multivariate Cox regression model to
predict transition to FEP in PACE 400. The base model with
GAF, duration of symptoms prior to service entry, and UHR
subgroup as predictors in the neuroimaging sample achieved
a concordance index of 0.68. There was strong evidence that
all 3 individual predictors had an effect on the risk for tran-
sition to FEP (GAF: hazard ratio [HR] = 0.51 [95% CI: 0.33,
0.71], p = .001; duration of symptoms prior to service entry,
log-transformed: HR = 1.68 [95% CI: 1.16, 2.64], p = .015;
420 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging A
UHR subgroup, brief limited intermittent psychotic symptoms
vs. vulnerability: HR = 3.13 [95% CI: 1.26, 10.50], p = .017;
UHR subgroup, attenuated psychosis vs. vulnerability: HR =
1.28 [95% CI: 0.62, 3.55], p = .017).

The addition of the CAARMS subscales Disorders of
Thought Content or Conceptual Disorganization to the base
model increased the model fit by 3% to 4%, adding a marginal
amount of new information (LRT disorders of thought content:
p = .240, LRT conceptual disorganization; p = .302). The
addition of the first bilateral principal component of cortical
surface area, curvature, volume, or thickness did not add new
information to the clinical model (LRT surface area: p = .946,
LRT curve: p = .789, LRT volume: p = .687, LRT thickness: p =
.463). Subsequently, a combination of the first principal
component of thickness and volume or the first and second
pril 2024; 9:417–428 www.sobp.org/BPCNNI
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Table 2. Results After Internal Validation (Bootstrapping n = 1000) for Clinical and Neuroimaging Predictor Variables in the Multivariate Cox Proportional Hazards
Regression Analysis of Transition to Psychosis, n = 212

Predictor Variable

Base

Base 1
Disorders of Thought

Content

Base 1
Conceptual

Disorganization
Base 1 MRI
Surface PC

Base 1 MRI
Curve PC

Base 1 MRI
Volume PC

Base 1 MRI
Thickness PC

Base 1 Thickness
Paracentral Left

Base 1 Thickness
Paracentral Right

Base 1 Thickness
Superior Temporal

Right
Base 1 Thickness

Fusiform Left

HR p HR p HR p HR p HR p HR p HR p HR p HR p HR p HR p

Duration of
Symptoms Prior to
Service Entry–Log-
Transformed

1.68 .015a 1.68 .021a 1.64 .025a 1.68 .019a 1.67 .021a 1.66 .018a 1.65 .019a 1.66 .018a 1.67 .017a 1.65 .024a 1.70 .019a

GAF 0.51 .001a 0.53 .002a 0.52 .001a 0.51 .001a 0.51 .001a 0.50 .001a 0.50 .001a 0.50 .002a 0.50 .001a 0.50 ,.001a 0.51 ,.001a

UHR Subgroup .017a .050 .024a .015a .014a .014a .017a .031a .027a .017a .024a

BLIPS vs.
vulnerability

3.13 2.56 3.08 3.12 3.12 3.10 3.04 3.10 2.87 3.05 2.99

Attenuated
psychosis vs.
vulnerability

1.28 1.11 1.35 1.28 1.28 1.26 1.26 1.25 1.21 1.29 1.26

CAARMS Disorders
of Thought
Content

1.37 .292

CAARMS Conceptual
Disorganization

1.14 .389

Bilateral PC MRI
Variable

0.99 .954 1.05 .819 0.93 .728 1.12 .491 0.78 .164 0.77 .140 0.87 .468 0.76 .131

Regression Analysis Results

LR c2 35.00 36.38 36.07 35.00 35.07 35.16 35.54 37.44 37.28 35.67 37.21

Fraction of New
Information

– 0.04 0.03 0.00 0.00 0.01 0.02 0.07 0.06 0.02 0.06

Concordance Index 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.69 0.69 0.68 0.68

For each full model, the likelihood-ratio (LR) test was obtained by comparing log likelihoods of the base and full models. The fraction of new information is the proportion of total predictive information in clinical plus MRI that was added by MRI. It
was calculated as follows: 1 2 base LR c2/full LR c2.

BLIPS, brief limited intermittent psychotic symptoms; CAARMS, Comprehensive Assessment of At Risk Mental States; GAF, Global Assessment of Functioning; HR, hazard ratio; MRI, magnetic resonance imaging; PC, principal component;
UHR, ultra-high risk.

aSignificance level for LR test: p , .05.
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principal components for cortical thickness because cortical
thickness and volume appeared to add the most information to
the clinical model of the 4 cortical domains, resulted in a
marginal increase in new information (2%) with no effect (LRT
thickness and volume: p = .752, LRT first and second principal
component cortical thickness: p = .701) (see Table S1).

Of the 4 individual regions identified in the ENIGMA clinical
high risk for psychosis initiative as being associated with
psychosis conversion, cortical thickness for the right para-
central region added the most new information to the clinical
model (7%) with an increase in the concordance index to 0.69.
However, adding the regional cortical thickness values indi-
vidually as predictors to the base model did not have a sig-
nificant effect on the model fit (LRT right paracentral: p = .119,
LRT left paracentral: p = .131, LRT right superior temporal: p =
.412, LRT left fusiform: p = .137). The largest addition of new
information to the base model, 12%, was achieved by adding
cortical thickness values of the left paracentral and left fusiform
together, although with small effect (LRT: p = .101) (see
Table S1).

Clinical Measures Plus Brain Age Gap

Table 3 lists the regression coefficients and test scores after
internal validation using bootstrapping for clinical and brain
age gap variables. Adding brain age gap and chronological age
to the clinical model resulted in 7% of new information and an
increase in the concordance index to 0.69, although this was
not significant (LRT: p = .291). The fraction of new information
was predominantly due to the addition of age as shown by the
individual analysis in Table 3.

Clinical Measures Plus Cognition

Table 4 lists the regression coefficients and test scores after
internal validation using bootstrapping for clinical and cogni-
tion variables. The base model with GAF, duration of symp-
toms prior to service entry, and UHR subgroup as predictors in
the cognition sample achieved a concordance index of 0.69. In
contrast to the base model in the neuroimaging dataset, there
was strong evidence that in the base model only GAF had an
effect on the risk of transition to FEP (GAF: HR = 0.33 95% CI
[0.15, 0.54], p = .001) but not duration of symptoms prior to
service entry or UHR subgroup categories. Similar to the re-
sults in the neuroimaging dataset, the addition of the CAARMS
subscales Disorders of Thought Content or Conceptual
Disorganization to the base model only marginally increased
the model fit by 1%–4% (LRT disorders of thought content: p =
.305, LRT conceptual disorganization: p = .605) with no
improvement in the concordance index. Adding the RAVLT
total score and the age-adjusted scores for Arithmetic and
Digit Symbol Coding individually (10%–9%, LRT Digit Symbol
Coding: p = .492, LRT Arithmetic: p = .113, LRT RAVLT total:
p = .975) or combined (12–16%, see Table S2) as cognitive
predictors to the base model did not result in any large
improvement of the model fit.

DISCUSSION

In this study, we assessed the predictive value of additional
modalities including cognition, structural neuroimaging, or the
neuroanatomical measure brain age gap to a base clinical
422 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging A
model of transition to FEP (GAF, duration of symptoms prior to
service entry, and UHR subgroup) in the PACE 400 sample,
derived using Cox proportional hazards regression models.
The cognitive variables, verbal learning and memory (RAVLT),
processing speed (Digit Symbol Coding), and auditory verbal
working memory (Arithmetic), added a marginal amount of
additional predictive information to the clinical model. The
addition of neuroimaging measures such as cortical surface
area, curvature, volume, or thickness resulted in no significant
improvement of the model fit or accuracy. The neuroimaging
composite measure brain age gap plus chronological age
increased the amount of variance that was explained by the
model by 7% and increased the concordance index from 0.68
to 0.69, but this effect was predominantly a result of the
addition of chronological age as a predictor rather than specific
differences in brain structure.

Previous studies have shown that compared to unimodal
approaches, multimodal approaches, particularly machine
learning models, may help more accurately estimate the indi-
vidual transition risk in UHR samples (11,15,74,75). Most
commonly, the complementary predictive value of cognition,
neuroimaging, and genetic features has been investigated. Our
results suggest that the combination of MRI and clinical
assessment only marginally improved the fit of a psychosis
transition prediction model in the PACE 400 cohort. The
combination of neuroimaging with the base clinical model
resulted in a similar model fit and concordance index when
controlling for adding the next-most-significant clinical vari-
ables identified in Nelson et al. (35), the CAARMS subscales
Disorders of Thought Content and Conceptual
Disorganization.

The discrepancy in outcomes with previous multimodal
UHR studies could be related to the heterogeneity of the PACE
400 cohort in that it is a collection of cohort studies and clinical
trials that were conducted over an extended period of time (14
years). Moreover, studies that have investigated the benefit of
multimodal prediction models have either suggested only a
marginal improvement compared to unimodal approaches (74)
or used a small sample size (75), thus resulting in a strong risk
of misestimation (76,77). More promising results have been
achieved when different modalities have been stacked (15),
e.g., using generalized stacked models (11) because stacking
determines how to optimally combine the predictions from
each modality. However, stacked Cox proportional hazards
regression models are particularly complex due to the inclu-
sion of time-to-event information. Furthermore, previous
studies have suggested that the change in cortical structure,
especially cortical thickness, may be a more suitable predictor
for transition to psychosis than cortical measures assessed at
baseline (27,78,79).

The addition of cognitive measures to the clinical model did
not result in an improvement of model fit. Our results are
consistent with previous studies that have analyzed the pre-
dictive value of cognition in the PACE 400 cohort (45,61),
which have shown that cognition is not a strong predictor of
transition to psychosis. Our results on the additive predictive
value of cognition are restricted by the differences in cognitive
batteries used across studies and the resultant small size of
the cognition sample in this study. The neuroanatomical
measure brain age gap did not improve model accuracy when
pril 2024; 9:417–428 www.sobp.org/BPCNNI
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Table 3. Results After Internal Validation (Bootstrapping n = 1000) for Clinical and Brain Age Gap Predictor Variables in the Multivariate Cox Proportional
Hazards Regression Analysis of Transition to Psychosis, n = 212

Predictor Variable

Base

Base 1
Disorders of

Thought Content

Base 1
Conceptual

Disorganization

Base 1
Brain Age

Gap Base 1 Age
Base 1 Brain

Age Gap 1 Age

HR p HR p HR p HR p HR p HR p

Duration of Symptoms Prior to Service
Entry–Log Transformed

1.68 .015a 1.68 .021a 1.64 .025a 1.67 .020a 1.71 .022a 1.70 .024a

GAF 0.51 .001a 0.53 .002a 0.52 .001a 0.51 .001a 0.49 ,.001a 0.49 .001a

UHR Subgroup .017a .050 .024a .017a .003a .004a

BLIPS vs. vulnerability 3.13 2.56 3.08 3.14 3.19 3.21

Attenuated psychosis vs. vulnerability 1.28 1.11 1.35 1.28 1.13 1.13

CAARMS Disorders of Thought Content 1.37 .292

CAARMS Conceptual Disorganization 1.14 .389

Brain Age Gap 1.03 .879 1.04 .847

Age 0.74 .151 0.74 .180

Regression Analysis Results

LR c2 35.00 36.38 36.07 35.03 37.42 37.47

Fraction of New Information – 0.04 0.03 0.00 0.07 0.07

Concordance Index 0.68 0.68 0.68 0.68 0.69 0.69

For each full model, the likelihood-ratio (LR) test was obtained by comparing log likelihoods of the base and full models. The fraction of new information is the proportion of total predictive information in clinical plus
brain age gap that was added by brain age gap. It was calculated as follows: 1 2 base LR c2/full LR c2.

BLIPS, brief limited intermittent psychotic symptoms; CAARMS, Comprehensive Assessment of At Risk Mental States; GAF, Global Assessment of Functioning; HR, hazard ratio; PC, principal component; UHR, ultra-
high risk.

aSignificance level for LR test: p , .05.
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Table 4. Results After Internal Validation (Bootstrapping n = 1000) for Clinical and Cognition Predictor Variables in the Multivariate Cox Proportional Hazards
Regression Analysis of Transition to Psychosis, n = 127

Predictor Variable

Base

Base 1
Disorders of

Thought Content

Base 1
Conceptual

Disorganization

Base 1
Digit Symbol

Coding
Base 1

Arithmetic
Base 1 RAVLT

Total

HR p HR p HR p HR p HR p HR p

Duration of Symptoms Prior to Service
Entry–Log Transformed

1.47 .145 1.49 .153 1.47 .150 1.44 .180 1.52 .134 1.47 .166

GAF 0.33 .001a 0.35 .002a 0.33 .001a 0.31 .001a 0.35 .002a 0.33 .001a

UHR Subgroup .712 .839 .684 .677 .845 .760

BLIPS vs. vulnerability 1.63 1.34 1.71 1.72 1.42 1.63

Attenuated psychosis vs. vulnerability 1.24 1.04 1.33 1.26 1.21 1.24

CAARMS Disorders of Thought Content 1.21 .338

CAARMS Conceptual Disorganization 1.09 .716

Cognition Variable 1.15 .550 0.61 .178 1.01 .977

Regression Analysis Results

LR c2 26.94 27.99 27.21 27.41 29.46 26.94

Fraction of New Information – 0.04 0.01 0.02 0.09 0.00

Concordance Index 0.69 0.69 0.61 0.68 0.69 0.69

For each full model, the likelihood ratio (LR) test was obtained by comparing log-likelihoods of the base and full models. The fraction of new information is the proportion of total predictive information in clinical plus
cognition that was added by cognition. It was calculated as follows: 1 2 base LR c2/full LR c2.

BLIPS, brief limited intermittent psychotic symptoms; CAARMS, Comprehensive Assessment of At Risk Mental States; GAF, Global Assessment of Functioning; HR, hazard ratio; PC, principal component; RAVLT, Rey
Auditory Verbal Learning Test; UHR, ultra-high risk.

aSignificance level for LR test: p , .05.
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considered together with age. Our findings are consistent with
the results from the North American Prodromal Longitudinal
Study, which found that the predictive variance of brain age
gap overlapped entirely with that of age (4). Furthermore, our
results in terms of brain age gap are limited by the usage of a
publicly available external model that was trained on healthy
individuals aged 18 to 75 years. Although the ENIGMA Photon
Brain Age model proved to be accurate in a previous study, the
lack of a validation sample in our cohort and the slightly
different age range, with an average age of 20 years (SD =
63.5 years), may have influenced our results. Finally, the
predictive value of brain age gap for transition to psychosis
could be reduced by the large age range in our sample
resulting in a discrepancy between predictive information in
similar brain age gap values for younger and older participants.
This could be accounted for by dividing the sample into age
groups in addition to adding age as a covariate, but this was
not done in this sample due to the small sample size.

Our study is limited by the low number of events (transi-
tioned cases) in the subset of the PACE 400 cohort that had
cognitive or neuroimaging data available, highlighting a key
drawback to adding modalities to the structured clinical
assessment routine because they multiply the costs and
workload of the assessment. The low number of events could
partially explain the lack of predictive benefit of multimodal
models that was observed in this study because the charac-
teristics of individuals with complete data may differ from in-
dividuals who were excluded from this study. A low number of
events restricts the number of potential predictors, the opti-
mization of the model fit, and the validation of the fitted model.
Additionally, we did not account for nonstandard treatment
due to randomization to intervention trials that are part of the
PACE 400 sample because testing the proportional hazards
assumption did not indicate a need for stratification based on
treatment received. Moreover, a sensitivity analysis in the
original PACE 400 study indicated the same results for the
treatment-as-usual participants (i.e., excluding 244 who had
received trial treatments) and the entire cohort (35). Another
limitation is the possibility that some transitioned cases were
not detected, i.e., if they were unavailable for interview and had
not attended a public mental health service (35).

Another major limitation of our study was the heterogeneity
in neuroimaging measures due to different MRI scanners being
used at assessment sites. Figure S1 illustrates the inherited
bias across sites for cortical thickness in the right rostral
middle frontal region. Harmonizing the neuroimaging measures
across scanner sites using the ComBat method successfully
removed the site bias, although the ComBat method has been
shown to have the potential to cause distortion in the absence
of a scanner or site effect (80) and is outperformed by
traveling-subject-based harmonization methods (81). The need
for harmonization raises a number of questions with regard to
the clinical application of multimodal models for the prediction
of transition to psychosis in individuals at UHR for psychosis.
Harmonization performs well during the implementation and
evaluation phase of a model because the distributions of each
scanner or site can be determined in the training and test set.
However, harmonization in a clinical application relies on a
priori knowledge of the deployed scanner to remove the
inherited bias. Moreover, there is no agreed-upon way to
Biological Psychiatry: Cognitive Neuroscience and
standardize MRI measures within a cross-validation framework
used to train machine learning models (33). Thus, the hetero-
geneity in MRI measures across sites and scanners severely
limits the broad clinical applicability of multimodal prediction
models that include neuroimaging and highlights the need for
local recalibrations of models.

Conclusions

In sum, our results show that the inclusion of neuroimaging or
cognitive information in a risk model that estimates the pro-
portional hazard of transition to psychosis in individuals at
UHR for psychosis in the PACE 400 study appears to add little
information to improve the fit of the clinical-based model.
These findings raise the question of whether adding baseline
cognitive and structural MRI assessments provides sufficient
additional predictive information to warrant the associated
computational and economical costs and the increased
workflow complexity of actioning these assessments in a
clinical setting apart from their predictive value in a clinical
setting. However, it is important to acknowledge that our
findings are limited by the constraints on methodological
choices given the nature of the cohort that could have
decreased the importance of our findings.
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