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Abstract
By using a constant step-size, the convergence analysis of the gradient projection method
on the sphere is presented for a closed spherically convex set. This algorithm is applied
to discuss copositivity of operators with respect to cones. This approach can also be used
to analyse solvability of nonlinear cone-complementarity problems. To our best knowledge
this is the first numerical method related to the copositivity of operators with respect to the
positive semidefinite cone. Numerical results concerning the copositivity of operators are
also provided.

Keywords Gradient projection method on the sphere · Copositivity · Nonlinear
cone-complementarity problems

Mathematics Subject Classification 90C30 · 90C33

1 Introduction

We study connections between solvability of nonlinear cone-complementarity problems [1]
and testing copositivity of operatorswith respect to conesK. Cone-complementarity problems
play a significant role in amultitude of applications spanning physics, mechanics, economics,
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game theory, robotics, optimization, and neural networks [2–11]. In this paper all cones will
be assumed to be closed and convex sets. Danninger [12] used the concept of K-copositivity
and we follow this terminology. Some existence theorems regarding complementarity prob-
lems can be traced back to optimizing a quadratic function on the intersection of the sphere
and a cone, see [13–15]. This can also be connected to theK-copositivity of operators, where
K is a cone. An operator A is said to be K-copositive if the quadratic function associated to
it is nonnegative on K. Determining whether an operator A is copositive (with respect to the
nonnegative orthant) is known to be co-NP complete, see [16]. Testing K-copositivity with
respect to a cone K has also been analysed, albeit using different terminology. For exam-
ple, Eichfelder and Jahn [17] used set-semidefiniteness instead of cone-copositivity. They
showed that testing K-semidefiniteness with respect to a polyhedral cone can be reduced to
copositivity with respect to the nonnegative orthant. Loewy and Schneider [18] characterized
testing copositivity of amatrix Awith respect to the Lorentz cone. As quadratic programming
problems can be related to complementarity via the KKT conditions, Gowda [19] used the
notion of copositivity to investigate complementarity problems. It should be mentioned that
algorithms for testing copositivity of matrices are based on simplicial decomposition [20,
21], polynomial programming [22] and finite branching for non-convex quadratic program-
ming [23]. Dickinson [24] presented a simple methodology for testing copositivity based on
the linear algebra literature. It turned out that recognizing copositivity of matrices can be
traced back to mixed-integer linear programming [25] or linear complementarity problems,
see [26].

The minimization of a smooth function on a subset of the sphere or, more generally, on a
smoothmanifold, holds significant practical value. Papers addressing this problem, including
those cited in [27, 28], explore various approaches to tackle this challenge. One of the first
algorithms that comes to mind for solving this problem is the gradient projection method,
known for its effectiveness in minimizing smooth functions on a subset of the Euclidean
space. Balashov et al. [29] proposed a different (non-intrinsic) version of the gradient pro-
jection method to solve this problem and obtained results that guarantee convergence of the
method under some minimal natural assumptions. Balashov and Kamalov [30] considered
the problem of minimizing a function with a Lipschitz continuous gradient on a proximally
smooth subset that is a smooth manifold without boundary. They proposed a gradient pro-
jection method with Armijo’s step size and proved its linear convergence. Bergmann and
Herzog [31] studied nonlinear optimization problems on a smooth manifold and proposed an
intrinsic gradient projection method to solve a specific instance of a constrained optimization
problem on the sphere. However, they have not studied the convergence properties of this
method. Our aim is to present convergence results, too.

In this paper we propose two intrinsic versions of a gradient projection method, namely,
with constant andArmijo step sizes, to solve constrained problems on the sphere in a real finite
dimensional vector spacewith a positive definite inner product.Wework in general Euclidean
vector spaces in order to consider a unified description of different cones. It is noteworthy that
the gradient projection method can also be used to test copositivity of operators with respect
to conesK ⊆ V and thus solvability of nonlinearK-complementarity problems, too. It should
be noted that if the algorithm returns a negative value, then the operator is not copositive with
respect to the cone. However, the algorithm cannot say for sure if the operator is copositive
with respect to a cone. To handle this problem, one can apply several techniques such as
using different initializations, and performing multiple runs of the optimization algorithm,
to increase the likelihood that the gradient descent method finds a global minimizer. In our
numerical results we applied this technique, and we ran the algorithm several times with
different starting points. The convergence analysis of the gradient projection method on the
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sphere is also presented. To our best knowledge this is the first method which can be used to
test copositivity of operators with respect to cones K.

The paper is organized as follows. In Sect. 2 the connection between K-complementarity
problems and testing K-copositivity is presented. Note that we work in Euclidean vector
spaces in order to consider a unified description of different cones, including the case when
K is the cone of positive semidefinite matrices. In Sect. 3 we show different examples forK-
copositivity. In particular, we deal with the case when the cone is the nonnegative orthant. We
also give a characterization of copositivitywith respect to the Lorentz cone. Section4 contains
the new gradient projection method on the sphere. In Sect. 4.1 we present the basic results
related to this topic that will be used later in the analysis of the method. Section4.2 deals
with the projection onto closed spherically convex set. Section 4.2.1 gives several properties
on the projection onto a closed spherically convex set. In Sect. 4.3 the gradient projection
method on the sphere for solving a general constrained optimization problem is analyzed.
Section5 contains a new variant of the method and several special cases for the nonnegative
orthant, the Lorentz cone and the cone of positive semidefinite matrices, respectively. In
Sect. 5.1 several numerical results are presented to show how the gradient projection method
on the sphere can be applied to detectK-copositivity of operators. In Sect. 6 some concluding
remarks and future research plans are enumerated.

1.1 Notations

Let V be a finite n-dimensional real vector space together with the positive definite inner
product 〈·, ·〉 : V × V → R. The norm ‖ · ‖ generated by the inner product is defined by

‖x‖:=√〈x, x〉. (1)

Consider n unit vectors e1, . . . , en that form an orthonormal system of vectors in the sense
that 〈ei , e j 〉 = δ

j
i , where δ

j
i is the Kronecker symbol. Then, e1, . . . , en form a basis of

the vector space V. If we want to emphasise that V is n-dimensional, then we write V
n

instead of V. If x ∈ V, then x = x1e1 + . . . xnen can be characterized by the coordinates
x1, . . . , xn of x with respect to the given system. We can also write x = (x1, . . . , xn). Then,
ei = (0, . . . , 0, 1, 0, . . . , 0), with 1 in the i-th position. Let x, y ∈ V, x = (x1, . . . , xn)
and y = (y1, . . . , yn). Then, the inner product of x and y is 〈x, y〉 = ∑n

i=1 xi yi . Although
the notion of cones can be introduced for more general sets, in this paper we use it only for
closed convex sets. A closed convex set K ⊆ V is called cone if and only if for any x ∈ K
and any λ > 0, it holds that λx ∈ K. A cone K is called pointed if K ∩ −K = {0}. The dual
of a cone K is the cone defined by

K∗:={y ∈ V : 〈x, y〉 ≥ 0, ∀x ∈ K}.
Denote the nonnegative orthant by R

n+:={x ∈ R
n : x ≥ 0}. For any n > 1, the Lorentz

cone in the Euclidean space R
n+1 = R

n × R is defined as:

Ln :=
{
(x, t)� ∈ R

n × R : ‖x‖ ≤ t
}

.

By denoting J :=diag(−1,−1, . . . ,−1, 1) an n × n diagonal matrix, the Lorentz cone can
also be written as

Ln =
{
x ∈ R

n+1 : x� J x ≥ 0 and xn+1 ≥ 0
}

.
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Denote the set of n × n symmetric matrices by Sn and the cone of positive semidefinite
matrices by Sn+, where

Sn+ = {p ∈ Sn : p � 0}
and p � 0 is the standard notation for the positive semidefiniteness of the matrix p. For
α ∈ R denote α+ = max(α, 0) and for a vector z ∈ R

n denote z+:=(z+1 , . . . , z+n ).

2 Complementarity problems

In this section we present a relationship between complementarity problems with an opti-
mization problem constrained to a suitable subset of the sphere. For that let us first recall
some concepts.

The inversion of mapping F : V → V is the mapping I(F) : V → V such that

I(F)(x):=
⎧
⎨

⎩
‖x‖2F

(
x

‖x‖2
)

if x �= 0,

0 if x = 0.

The following theorem has been introduced by Isac and Németh in [14].

Theorem 1 Let K ⊂ V be a cone and F : V → V be a mapping. Consider the following
complementarity problem

CP(F,K) =
{
Find x∗ ∈ K such that

F(x∗) ∈ K∗ and 〈x∗, F(x∗)〉 = 0.

If

lim inf
x→0

〈F(x) − F(0), x〉
‖x‖2 > 0,

then CP(F,K) has a solution.

Whenever the mapping I(F) is differentiable at 0, by using [14, Theorem4.6], we have

lim inf
x→0

〈F(x) − F(0), x〉
‖x‖2 = min‖u‖=1,u∈K〈dI(F)(0)u, u〉, (2)

where dI(F)(0) denotes the differential of the inversion of mapping I(F) at 0. As a conse-
quence, the constrained optimization problem (2) allows us to provide a sufficient condition
for the complementarity problem CP(F,K) to have a solution which is enunciated in the
next corollary.

Corollary 1 LetK ⊂ V be a cone and F : V → V a mapping such that I(F) is differentiable
at 0. If

min‖u‖=1,u∈K〈dI(F)(0)u, u〉 > 0, (3)

then the complementarity problem CP(F,K) has a solution.

The following theorem provides a class of mappings F such that the associated inversion
of mapping I(F) is differentiable at 0.
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Theorem 2 Let Pi , Qi : V → R be polynomial functions of degree ki and mi , respectively.
Assume that mi + 1 ≥ ki . In addition, for r ∈ N we assume that for any i ∈ {1, 2, . . . , r} we
have Qi (x) �= 0, for all x ∈ V and

Qi

(
x

‖x‖2
)

�= 0, ∀x ∈ V, x �= 0.

Let L : V → V be a linear mapping and q ∈ V. Consider the mapping F : V → V defined
by

F(x) =
r∑

i=1

Pi (x)

Qi (x)
ei + Lx + q. (4)

Then, the mappings F and I(F) are differentiable. Furthermore, we have dI(F)(0) = L.

Proof Since L , Qi (x) �= 0 and Pi , Qi are differentiable, it follows that F is differentiable.
Next we prove the differentiability of I(F). For similar reasons as before I(F) is differen-
tiable for any x ∈ D \ {0}. Since V � x �→ I(L + q)(x) = L(x) + q‖x‖2 is differentiable,
it is enough to check the differentiability of I(Pi/Qi ) in 0 for an arbitrary i . Fix such an i
and denote g:=I(Pi/Qi ). Let x �= 0. After some algebra, by using the homogeneity of the
involved functions, we get

g(x) =

ki∑

j=0

‖x‖2−2 j Pi j (x)

mi∑

j=0

‖x‖−2 j Qi j (x)

=

ki∑

j=0

‖x‖2mi−2 j+2Pi j (x)

mi∑

j=0

‖x‖2mi−2 j Qi j (x)

, (5)

where Pi j and Qi j are the monomial terms of degree j in Pi and Qi , respectively. We have
g(0) = 0. Indeed, let us first consider the case mi + 1 = ki . Then, we have Piki (0) = 0,
because Piki is homogeneous of degree ki > 0, and the powers of ‖x‖ in the remaining terms
of the nominator of (5) are positive. Hence, g(0) = 0. Ifmi +1 > ki , then g(0) = 0, because
the powers of ‖x‖ in all terms of the nominator of (5) are positive. In order to show that g is
differentiable in 0, it is enough to prove that the directional derivative

∂g

∂h
(0) = lim

t→0

g(th) − g(0)

t
= lim

t→0

g(th)

t

exists and it is linear with respect to h ∈ V. Since Qimi (0) �= 0, it follows that Qimi (v) �= 0
if v is sufficiently close to the origin. For such a v, by using (5) and again the homogeneity
of the involved functions, we obtain

g(tv)

t
=

ki∑

j=0

tmi− j+2‖v‖mi− j+2Pi j (v)

mi∑

j=0

tmi− j‖v‖mi− j Qi j (v)

,

which, after some algebraic manipulations, implies that

g(tv)

t
= t

(‖v‖mi+1−k Pik(v)tmi+1−k + · · · + ‖v‖mi+1Pi0(v)tmi+1
)

Qimi (v) + ‖v‖t Qi,mi−1(h)t + · · · + ‖v‖mi Qi0(v)tmi
.
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Since the nominator of the right hand side of the second equality above is t multiplied by a
polynomial of t (because the powers of t inside the bracket are nonnegative), it follows that
(∂g/∂v) (0) = 0 if v is close enough to the origin. Hence, by using the positive homogeneity
of the directional derivative, we obtain

V � h �→ ∂g

∂h
(0) = 0,

which is linear. ��
From Theorem 2 and Corollary 1 we obtain the following result.

Corollary 2 Let K ⊂ V be a cone. If F is given as in (4), then the complementarity problem
CP(F,K) has a solution if min‖u‖=1,u∈K〈Lu, u〉 > 0.

Please note that if all polynomial functions Pi in Corollary 2 reduce to the null function, then
CP(F,K) becomes a linear complementarity problem. Hence, Corollary 2 extends a well
known result from linear complementarity which says that any positive definite matrix is a
Q-matrix (see [32]).

By using [33] we obtain the following example, which gives a relationship between a cone
constrained optimization problem with a complementarity problem.

Example 1 LetK ⊂ V be a cone. Let ϕ : V → R be a differentiable function with its gradient
denoted by Dϕ. Then, the KKT conditions of the constrained optimization problem

minx∈K ϕ(x) (6)

can be written as follows

Dϕ(x) = y, x ∈ K, y ∈ K∗, 〈x, y〉 = 0. (7)

Hence, the KKT conditions of the optimization problem (6) lead to the complementarity
problem CP(F,K). In particular, consider the function ϕ : R

4 → R defined by

ϕ(x) = x21 + x3
x42 + x44 + 1

+ x21 + x23 + 3x1x3 + 2x2x4 + 5x1 + 3x3 + 4x4,

where x :=(x1, x2, x3, x4). Define the mapping F : R
4 → R

4 by F(x):=Dϕ(x), where Dϕ

is the gradient of ϕ. The mapping F is given by

F(x) =
4∑

i=1

Pi (x)

Qi (x)
ei + Lx + q, (8)

where P1(x):=2x1, Q1(x):=x42 + x44 +1, P2(x):=−4x32 (x
2
1 + x3), Q2(x):=(x42 + x44 +1)2,

P3(x):=1, Q3(x):=x42 + x44 + 1, P4(x):= − 4x34 (x
2
1 + x3), Q4(x):=(x42 + x44 + 1)2 and

L:=

⎛

⎜⎜
⎝

2 0 3 0
0 0 0 2
3 0 2 0
0 2 0 0

⎞

⎟⎟
⎠ , q:=

⎛

⎜⎜
⎝

5
0
3
4

⎞

⎟⎟
⎠ . (9)

Therefore, due to Corollary 2, the solvability of (7) with F given by (8) is related to the strict
copositivity of the matrix L given by (9).
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It should be mentioned that complementarity problems with functions given in (4) can
be considered as extensions of linear complementarity problems [32]. The KKT optimality
conditions of quadratic optimization problems lead to linear complementarity problems.
If we consider extensions of quadratic optimization problems which optimize the sum of
special fractional polynomial functions andquadratic functions, thenbywriting the optimality
conditions, we obtain complementarity problems with functions of type (4).

3 Copositivity with respect to cones

In this section we present a relationship between the general concept of copositivity of linear
operators with an optimization problem constrained to a suitable subset of the sphere. We
will start by recalling the concept of K-copositivity of an operator with respect to a cone
K ⊂ V.

Definition 1 LetV be a finite dimensional real vector space together with the positive definite
inner product 〈·, ·〉 : V × V → R and K ⊆ V be a cone. The operator A : V → V is said
to be K-copositive if 〈Ax, x〉 ≥ 0, for all x ∈ K. We say that the operator A is K-strictly
copositive if 〈Ax, x〉 > 0, for all x ∈ int K.

When V is n-dimensional and the coneK is the nonnegative orthant V+ = {x ∈ V : x1 ≥
0, . . . , xn ≥ 0}, the classical terminology refers to V+-copositive as copositive omitting the
reference to the cone V+. The above Definition 1 also appeared with other names as well,
for example K-semidefinite or copositive with respect to the set K, see for example [17].
Testing copositivity of matrices plays key role in combinatorial and non-convex quadratic
optimization. However, testing copositivity of a given matrix turned out to be a co-NP-
complete problem. Several conditions for copositivty have been introduced, see [34, 35].
Some of the proposed conditions use properties of principal submatrices and are difficult
to use for optimization purposes. In the literature we can read about many algorithms for
testing copositivity of matrices, see [20, 21, 23–26]. In particular, in [36] the authors used
the projection onto the intersection of a cone and a sphere, which is a non-convex set, to test
the classical copositivity of matrices, i.e., it was considered the non-convex problem QP in
(10) withK = R

n+ and adaptation of several classical algorithms to non-convex constraint to
solve it. It is worth to note that due to [17, Corollary 2.21], testingK-copositivity of matrices
with respect to polyhedral cones can be reduced to test classical copositivity.
The next lemma is an immediate consequence of theDefinition 1 and its proofwill be omitted.

Lemma 1 Let A : V → V be an operator, K be a cone and x̄ be a (global) minimal solution
of the non-convex constrained quadratic optimization problem

QP: min f (x) := 1

2
〈Ax, x〉

〈x, x〉 = 1,

x ∈ K. (10)

Then, the following statements hold:

1. A is K-copositive if and only if f (x̄) ≥ 0,
2. A is K-strictly copositive if and only if f (x̄) > 0,
3. A is not K-copositive if and only if there exists a feasible x with f (x) < 0,
4. A is not K-strictly copositive if there exists a feasible x with f (x) = 0.
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The next corollary relates copositivity to cone-complementarity and it follows fromCorollary
2.

Corollary 3 Let F be defined by formula (4), K be a cone and I : V → V be the identity
map. If there exists an α > 0 such that L − α I is K-copositive, then the complementarity
problem CP(F,K) has a solution.

According to Corollary 1, Corollary 3 and Lemma 1, to obtain existence results for the
complementarity problem CP(F,K) with F defined by formula (4) reduces to find a global
solution of problem (10) via testing K-copositivity. Besides the nonnegative orthant, Corol-
lary 3 also motivates to consider the copositivity with respect to others cones, such as the
Lorentz cone Ln and the positive semidefinite cone. The following proposition has appeared
in [18].

Proposition 3 The matrix A ∈ Sn is copositive with respect to Ln if and only if there exists
a μ ∈ R+ such that the matrix A − μJ is positive semidefinite.

Next we state the homogeneous S-Lemma, which together with Proposition 3 provides a
sufficient condition for a matrix to be Ln-copositive, its proof can be found in [37, Theorem
2.2].

Lemma 2 Suppose that there exists x∗ such that (x∗)�Ax∗ > 0. If x�Ax ≥ 0 implies
x�Bx ≥ 0 for any x ∈ R, then there exists a μ ∈ R+ such that B − μA is positive
semidefinite.

Theorem 4 Let F be defined by formula (4) and consider the Lorentz cone Ln. Suppose that
there exists λ,μ > 0, such that L + λI − μJ is positive semidefinite. Then, the complemen-
tarity problem CP(F,Ln) has a solution.

Proof By using that L + λI − μJ is positive semidefinite and Proposition 3, it follows that
L + λI is copositive with respect to Ln . Since

lim inf
x→0

〈F(x) − F(0), x〉
‖x‖2 = min‖u‖=1,u∈Ln 〈Lu, u〉 = λ > 0,

byusingTheorem1,we conclude that the complementarity problemCP(F,L)has a solution.
��

Several papers appeared regarding copositivity with respect to a cone K, see [12, 17, 19].
To our best knowledge, there is no characterization for copositivity of operators with respect
to the cone of positive semidefinitematricesSn+. It should bementioned thatS2+ is isomorphic
toL3, hence the characterization of copositivity with respect to the positive semidefinite cone
in case of n = 2 can be given by using the previous results.

In the following section we will introduce the gradient projection method on the sphere to
solve the problem (10), which can also be used to test copositivity of operators with respect
to different cones. In Sect. 5.1 we will also give examples where we analyse the copositivity
of operators with respect to the positive semidefinite cone.

4 Gradient projectionmethod on the sphere

The aim of this section is to introduce the gradient projection method to solve constrained
problems on the sphere in Euclidean vector spaces. Let us be more precise by stating the
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problemwe are going to address. LetVn+1 be an (n+1)-dimensional Euclidean vector space
with the inner product 〈·, ·〉 and norm ‖ ·‖. Denote the n-dimensional sphere in the Euclidean
vector space by

S
n := {

p ∈ V
n+1 : ‖p‖ = 1

}
. (11)

It should be mentioned that we work in general Euclidean vector spaces in order to consider
a unified description of different cones, including the case when K is the cone of positive
semidefinite matrices. Throughout this section we consider the following constrained opti-
mization problem

min{ f (p) : p ∈ C}, (12)

where f : S
n → R is differentiable and C ⊆ S

n is closed and spherically convex (see
Definition 2). Since problem (2) is of type (12), the gradient projection method can also be
used to test copositivity of operators with respect to cones K ⊆ V

n+1. As a consequence, it
follows from Corollary 1 that it can also be used to analyze solvability of complementarity
problems. To deal with problem (12), we firstly present some basic results about the sphere
(11), after that we show how to intrinsically project onto C ⊆ S

n and present some properties
of the projection. Finally, the gradient projection method to solve problem (12) is introduced
and the convergence analysis is presented.

4.1 Basics results

In this section we recall notations, definitions and basic geometric properties of the sphere
in Euclidean vector spaces, for more details see for example in [38–41].

The tangent hyperplane at a point p ∈ S
n is denoted by

TpS
n := {

v ∈ V
n+1 : 〈p, v〉 = 0

}
, (13)

and the corresponding projection mapping onto it, denoted by Projp : V
n+1 → TpS

n , is
given by

Projp x :=x − 〈p, x〉p, (14)

The intrinsic distance on the sphere between two arbitrary points p, q ∈ S
n is defined by

d(p, q):= arccos〈p, q〉. (15)

A geodesic segment on the sphere joining two points p, q ∈ S
n is obtained by the inter-

section of a plane through these points and the origin of V
n+1 with S

n . The arc length of a
geodesic segment ω is denoted by �(ω). If for a geodesic segment ω : [a, b] → S

n we have
�(ω):= arccos〈ω(a), ω(b)〉, then this geodesic segment is said to be minimal.

Definition 2 A set C ⊆ S
n is called spherically convex if for any two points belonging to C,

all minimal geodesic segments joining them are contained in C.
Below, we present some examples; for more details, please refer to [42].

Example 2 The sets C = R
n+1+ ∩ S

n , C = Ln ∩ S
n and C = {p ∈ Sn+ : ‖p‖ = 1} are

spherically convex.

Denoting by ωp,v , the geodesic defined by its initial position p with velocity v at p, the
exponential mapping expp : TpS

n → S
n is given by exppv := ωp,v(1). Hence, we have

exppv:=
⎧
⎨

⎩
cos(‖v‖) p + sin(‖v‖) v

‖v‖ , v ∈ TpS
n/{0},

p, v = 0.
(16)
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As a consequence, for all t ∈ R we obtain that ωp,v(t) = expptv. In addition,

expptv:=
⎧
⎨

⎩
cos(t‖v‖) p + sin(t‖v‖) v

‖v‖ , v ∈ TpS
n/{0},

p, v = 0.
(17)

The inverse of the exponential mapping, denoted by exp−1
p : S

n → TpS
n , is given by

exp−1
p q:=

⎧
⎨

⎩

d(p, q)
√
1 − 〈p, q〉2 Projp q, q /∈ {p,−p},

0, q = p.
(18)

By using (15) and (18), some calculations show that

d(p, q) = ‖exp−1
q p‖, p, q ∈ S

n . (19)

From now on 	 ⊆ S
n denotes an open set and f : 	 → R is a differentiable function. The

gradient on the sphere of f at p ∈ 	 is defined by

grad f (p) = Projp D f (p). (20)

where Df (p) ∈ V
n+1 denotes the usual gradient (Euclidean gradient) of f at a point p ∈ 	.

For f twice differentiable, the Hessian on the sphere at p ∈ 	 is an operator Hess f (p) :
TpS

n → TpS
n defined by

Hess f (p)u:= Projp
(
D2 f (p)u − 〈Df (p), p〉u) , (21)

where D2 f (p) : V
n+1 → V

n+1 is the usual Hessian operator (Euclidean Hessian) of f at
p. For the next example, let us firstly recall the operator norm of the Hessian operator:

‖Hess f (p)‖:= sup
‖u‖=1

| 〈Hess f (p)u, u〉 |= sup
‖u‖=1

‖Hess f (p)u‖. (22)

Example 3 In the special case of f (p):=〈Ap, p〉, where A : V
n+1 → V

n+1 is a linear
operator, by using (14) and (20) we have 〈grad f (p), u〉 = 〈Ap, u〉 + 〈p, Au〉, for all u ∈
TpS

n .We also obtain from (14) and (21) that 〈Hess f (p)u, u〉 = 2 〈Au, u〉−2〈Ap, p〉 〈u, u〉,
for all u ∈ TpS

n . Letting λmax(A):=max‖u‖=1〈Au, u〉 and λmin(A):=min‖u‖=1〈Au, u〉, we
conclude that ‖ grad f (p)‖ ≤ 2λmax(A) and ‖Hess f (p)‖ ≤ 2(λmax(A) − λmin(A)).

For each p, q ∈ S
n with q �= −p we denote by [0, 1] � t �→ ωpq(t):=exppt(exp

−1
p q)

the geodesic segment joining p and q . The parallel transport from p to q along the geodesic
segment ωpq , which is denoted by Ppq : TpS

n → TqS
n , is given by

Ppq(v):=v − 1

1 + 〈p, q〉 〈q, v〉(p + q).

Definition 3 LetC ⊂ S
n be a spherically convex set. The gradient vector field of f is said to be

Lipschitz continuous on C with constant L ≥ 0 if
∥∥Ppq grad f (p) − grad f (q)

∥∥ ≤ Ld(p, q),
for any p, q ∈ C.
The proof of the next lemma is similar to [38, Proposition 10.43], it will be omitted.

Lemma 3 The gradient vector field of f is Lipschitz continuous with constant L ≥ 0 on C if
and only if there exists L ≥ 0 such that ‖Hess f (p)‖ ≤ L, for all p ∈ C.
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As an application of Lemma 3 and Example 3 we obtain the following lemma.

Lemma 4 Let f : 	 → R be given by f (p) = 〈Ap, p〉 and C ⊆ 	 be a convex set. Then, f
is Lipschitz continuous with constant L = 2(λmax (A) − λmin(A)) on C.

Proof It follows from Example 3 that ‖Hess f (p)‖ ≤ 2(λmax (A) − λmin(A)). Therefore,
by combining the last equality with (22) and Lemma 3, we obtain the desired result. ��
The proof of the next lemma it a straight application of [38, Corollary 10.54].

Lemma 5 Assume that grad f is Lipschitz continuous on a convex set C ⊆ 	 with constant
L ≥ 0. Then, there holds

f (q) ≤ f (p) + 〈grad f (p), exp−1
p q〉 + L

2
d2(p, q), ∀p, q ∈ C.

In the next lemma we recall the well-known cosine law for triangle in the sphere. Since
its proof is a straight application of (18), for sake of completeness we include it here.

Lemma 6 Let q̂, q̃, q̄ ∈ S
n such that q̃, q̄ /∈ {q̂,−q̂} and let θq̂ be the angle between the

vectors exp−1
q̂ q̃ and exp−1

q̂ q̄ . Then, there holds

cos d(q̃, q̄) = cos d(q̂, q̄) cos d(q̂, q̃) + sin d(q̂, q̄) sin d(q̂, q̃) cos θq̂ .

Proof First we apply (19) to obtain that 〈exp−1
q̂ q̃, exp−1

q̂ q̄〉 = d(q̂, q̃)d(q̂, q̄) cos θq̂ . Now,
by using (18), we obtain that

〈
exp−1

q̂ q̃, exp−1
q̂ q̄

〉
= d(q̂, q̃)

√
1 − 〈q̂, q̃〉2

d(q̂, q̄)
√
1 − 〈 p̂, q̄〉2

〈
Projq̂ q̃,Projq̂ q̄

〉
.

By combining the two previous inequalities, after some algebraic manipulations, we obtain
that

cos θq̂ = 1
√
1 − 〈q̂, q̃〉2

1
√
1 − 〈 p̂, q̄〉2

(〈q̃, q̄〉 − 〈q̂, q̄〉〈q̃, q̂〉) . (23)

Hence, bearing in mind that 〈q̃, q̄〉 = cos d(q̃, q̄), 〈q̂, q̄〉 = cos d(q̂, q̄) and 〈q̃, q̂〉 =
cos d(q̃, q̂), we obtain the desired equality. ��

4.2 Projection onto a closed spherically convex set

In this section we study some concepts related to the projection onto a closed spherically
convex set. We begin by recalling some concepts on the projection onto a closed convex set,
for more details see [42, 43]. Since Definition 2 implies that S

n is closed spherically convex,
for convenience, from now on we assume that all closed spherically convex sets are nonempty
proper subsets of the sphere. For each set C ⊆ S

n , let

KC := {tp : p ∈ C, t ∈ [0,+∞)} . (24)

Proposition 5 The closed set C ⊂ S
n is spherically convex if and only if KC ⊆ V

n+1 is a
pointed cone.
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Let C ⊆ S
n be a closed spherically convex set. The projection onto C ⊆ S

n is defined by

PC(p) := { p̄ ∈ C : d(p, p̄) ≤ d(p, q),∀ q ∈ C}
= { p̄ ∈ C : 〈p, q〉 ≤ 〈p, p̄〉,∀ q ∈ C} . (25)

In the following proposition we present the main property of the projection onto a closed
spherically convex set C ⊆ S

n .

Proposition 6 Let p ∈ S
n and p̄ ∈ C such that 〈p, p̄〉 > 0. Then, p̄ ∈ PC(p) if and only if〈

Proj p̄ p, Proj p̄ q
〉 ≤ 0, for all q ∈ C. In addition, PC(p) is a singleton.

Remark 1 The condition
〈
Proj p̄ p, Proj p̄ q

〉 ≤ 0 is equivalent to 〈exp−1
p̄ p, exp−1

p̄ q〉 ≤ 0.

The following proposition implies that for projecting a point onto a closed spherically convex
set, it is sufficient to project this point onto the cone spanned by this set, its proof can be
found in [43].

Proposition 7 Let C ⊆ S
n be a nonempty, closed, and convex proper subset. If p ∈ S

n with
PKC (p) �= 0, then

PC(p) = PKC (p)

‖PKC (p)‖ ,

where PKC (p) denotes the usual orthogonal projection onto the cone KC .

Example 4 Let P
R
n+1+

(z) be the usual orthogonal Euclidean projection onto the pointed cone

R
n+1+ . It is well-known that z+ = P

R
n+1+

(z). Consider the closed convex set C = {p ∈
S
n : p ∈ R

n+1+ }. The cone spanned by C is KC = R
n+1+ . Thus, it follows from Proposition 7

that, for all points p ∈ S
n with p+ �= 0, we have

PC+(p) = p+

‖p+‖ .

Example 5 Let Ln be the Lorentz cone. Then,

PLn (x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

1

2

( [
(t + ‖x‖)+ − (t − ‖x‖)+] x

‖x‖ , (t − ‖x‖)+ + (t + ‖x‖)+
)
, x �= 0,

(
t+, 0

)
, x = 0.

see for example [44, Proposition 3.3], or alternatively we have

PLn (x, t) =
{

(x, t), t ≥ ‖x‖,
1
2

(
1 + 1

‖x‖
)

(x, ‖x‖) , −‖x‖ < t < ‖x‖. (26)

for more details, see [45, Theorem 3.3.6, pp. 40]. Let C = {p ∈ S
n : p ∈ Ln} be a closed

spherically convex set. Then, KC = Ln . Thus, it follows from Proposition 7 that, for all
points p = (x, t) ∈ S

n with t > 0, we have

PC(p) = PLn (p)

‖PLn (p)‖ .
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Example 6 Let Sn be the vector space of symmetric matrices over the real numbers R, and
Sn+ = {X ∈ Sn : X � 0} be the cone of positive semidefinite matrices. The inner product
of two matrices X , Y ∈ Sn is defined by 〈X , Y 〉 = tr(Y X), where tr denotes the trace. Let
X ∈ Sn and {v1, v2, . . . , vn} be an orthonormal system of eigenvectors of the matrix X
corresponding to the eigenvalues λ1, λ2, . . . , λn , respectively. Thus, by using the spectral
decomposition of X , we have

X =
n∑

i=1

λiv
i (vi )�.

Consider the closed convex set C = {X ∈ S
n : X ∈ Sn+}. The cone spanned by C is

KC = Sn+. Then, the projection of X ∈ Sn onto Sn+ is given by

PSn+(X) =
n∑

i=1

λ+
i viv

T
i ,

where λ+
i = max{λi , 0}. Thus, it follows from Proposition 7, that for all matrices X ∈ S

n

with PSn+(X) �= 0, we have

PC(X) = PSn+(X)

‖PSn+(X)‖ .

4.2.1 Properties of the projection onto a closed spherically convex set

In this sectionwe present some newproperties on the projection onto a closed spherically con-
vex set which will be useful to analyze the gradient projection method. Consider a nonempty
closed spherically convex set C ⊆ S

n with C �= S
n .

Lemma 7 Let p, q ∈ S
n and θ̄ > 0 such that θ̄ < π/2. Assume that p ∈ C and d(p, q) ≤ θ̄ .

Then, the following inequality holds

cos(θ̄)d2(p,PC(q)) ≤
〈
exp−1

p q, exp−1
p PC(q)

〉
. (27)

Proof By applying Lemma 6 with q̂ = p, q̃ = q and q̄ = PC(q), we conclude that

cos d(q,PC(q)) = cos d(p,PC(q)) cos d(p, q)+sin d(p,PC(q)) sin d(p, q) cos θp. (28)

Now, by using Lemma 6 with q̂ = PC(q), q̃ = q and q̄ = p, we obtain that

cos d(q, p) = cos d(PC(q), p) cos d(PC(q), q)+sin d(PC(q), p) sin d(PC(q), q) cos θPC(q).

It follows from Proposition 6 that cos θPC(q) ≤ 0. Thus, due to d(PC(q), p) ≤ π and
d(PC(q), q) ≤ π , the last equality becomes

cos d(q, p) ≤ cos d(PC(q), p) cos d(PC(q), q). (29)

By combining inequalities (28) and (29), after some algebraic manipulations, we conclude
that

(cos d(q,PC(q)) + cos d(q, p)) (1 − cos d(PC(q), p))

≤ sin d(p,PC(q)) sin d(p, q) cos θp. (30)
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Since 〈exp−1
p q, exp−1

p PC(q)〉 = d(p, q)d(p,PC(q)) cos θp , the last inequality is equivalent
to

d2(p,PC(q))
d(q, p)

sin d(p, q)
(cos d(q,PC(q)) + cos d(q, p))

1 − cos d(PC(q), p)

d(p,PC(q)) sin d(p,PC(q))
≤

〈exp−1
p q, exp−1

p PC(q)〉.
Due to d(q,PC(q)) ≤ d(q, p), we have cos d(q, p) ≤ cos d(q,PC(q)). Thus, the last
inequality implies

d2(p,PC(q))
2d(q, p) cos d(q, p)

sin d(p, q)

1 − cos d(PC(q), p)

d(p,PC(q)) sin d(p,PC(q))

≤ 〈exp−1
p q, exp−1

p PC(q)〉. (31)

By using that (0, π/2) � x �→ x/sin(x) > 1, the function (0, π/2) � x �→ cos(x) is
decreasing, and 0 ≤ d(p, q) ≤ θ̄ < π/2, we obtain

cos(θ̄) ≤ cos d(q, p) ≤ d(q, p) cos d(q, p)

sin d(p, q)
. (32)

On the other hand, the function (0, π/2) � x �→ (1 − cos(x))/(x sin(x)) > 1/2. Thus, by
considering d(q,PC(q)) ≤ d(q, p) and d(p, q) ≤ θ̄ < π/2, we have

1

2
≤ 1 − cos d(PC(q), p)

d(p,PC(q)) sin d(p,PC(q))
. (33)

Therefore, by combining (31) with (32) and (33), inequality (27) follows. ��
To simplify the notations we take θ > 0 such that

θ̄ := arccos(θ) <
π

2
. (34)

Consider a function f as defined in (12).

Lemma 8 Let p ∈ C be such that grad f (p) �= 0 and the constants θ and θ̄ satisfying (34).
Assume that α ∈ R satisfies 0 < α ≤ θ̄/‖ grad f (p)‖. Then, we have

〈
grad f (p), exp−1

p PC
(
expp (−α grad f (p))

)〉

≤ − θ

α
d2

(
p,PC

(
expp (−α grad f (p))

))
. (35)

Proof Let p ∈ C and α > 0. To simplify the notations we set

v:= grad f (p), q(α):=expp(−α grad f (p)). (36)

Since grad f (p) �= 0, we have PC(q(α)) �= p. By using (36), θ̄ < π/2 and α ≤
θ̄/‖ grad f (p)‖ we conclude that d(p, q(α)) = α‖ grad f (p)‖ ≤ θ̄ < π/2. Thus, we
have −αv = exp−1

p q(α). By applying Lemma 7 with q = q(α), we obtain that

θd2(p,PC(q(α))) ≤
〈
exp−1

p q(α), exp−1
p PC(q(α))

〉
.

Thus, we have 〈v, exp−1
p PC(q(α))〉 ≤ − θ

α
d2(p,PC (q(α)), which, by using (36), implies

(35). ��
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Let C ⊆ 	 be a closed spherically convex set. If p̄ ∈ C is a solution of the problem (12)
then

〈
Df ( p̄),Proj p̄ p

〉 = 〈
grad f ( p̄),Proj p̄ p

〉 = 〈grad f ( p̄), p〉 ≥ 0, ∀ p ∈ C. (37)

Any point satisfying (37) is called a stationary point for problem (12).
In the following corollary we present two important properties of the projection, which is

related to the stationary points of problem (12).

Corollary 4 Let p̄ ∈ C be such that grad f ( p̄) �= 0 and the constants θ and θ̄ satisfying (34).
Assume that α ∈ R satisfies 0 < α ≤ θ̄/‖ grad f ( p̄)‖. Then, there hold:
(i) The point p̄ is stationary for problem (12) if and only if p̄ = PC

(
exp p̄ (−α grad f ( p̄))

)
.

(ii) If p̄ is a nonstationary point for problem (12), then
〈
grad f ( p̄), exp−1

p̄ PC
(
exp p̄ (−α grad f ( p̄))

)〉
< 0. (38)

Equivalently, if there exists ᾱ ∈ R such that 0 < ᾱ ≤ θ̄/‖ grad f ( p̄)‖ and
〈
grad f ( p̄), exp−1

p PC
(
exp p̄ (−ᾱ grad f ( p̄))

)〉 ≥ 0, (39)

then p̄ is stationary for problem (12).

Proof To prove item (i), we first assume that p̄ ∈ C is a stationary point for problem (12).
Assume also by contradiction that

p̄ �= PC
(
exp p̄ (−α grad f ( p̄))

)
. (40)

It follows from (37) that
〈
grad f ( p̄),Proj p̄ p

〉 ≥ 0, ∀ p ∈ C. (41)

By using (18) and Proj p̄ p = p − 〈 p̄, p〉 p̄, the combination of (40) and (41) implies that
〈
grad f ( p̄), exp−1

p̄ PC
(
exp p̄ (−α grad f ( p̄))

)〉 ≥ 0. (42)

By using Lemma 8, we conclude that d( p̄,PC(exp p̄(−α grad f ( p̄)))) ≤ 0, which
contradicts (40). Therefore, p̄ = PC

(
exp p̄ (−α grad f ( p̄))

)
. Now, assume that p̄ =

PC
(
exp p̄ (−α grad f ( p̄))

)
. By using Proposition 6 together with Remark 1, we obtain that

〈exp−1
p̄ exp p̄ (−α grad f ( p̄)) , exp−1

p̄ p〉 ≤ 0, ∀ p ∈ C.

or equivalently, 〈α grad f ( p̄), exp−1
p̄ p〉 ≥ 0, for all p ∈ C. Thus, considering α > 0, by

using (18), the last inequality implies that
〈
grad f ( p̄),Proj p̄ p

〉 ≥ 0, ∀ p ∈ C.

Therefore, the point p̄ is stationary for problem (12) and (i) is proved. We proceed to prove
item (ii). Take a nonstationary point p̄ for problem (12). Thus, item (i) implies that

p̄ �= PC
(
exp p̄ (−α grad f ( p̄))

)
.

Thus, by applying Lemma 8, we conclude that

0 <
θ

α
d2

(
p̄,PC

(
exp p̄ (−α grad f ( p̄))

))
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≤ −
〈
grad f ( p̄), exp−1

p̄ PC
(
exp p̄ (−α grad f ( p̄))

)〉
,

which implies (38), and therefore the first sentence of item (ii) is proved. Finally, note that
the second statement of item (ii) is the contrapositive of the first sentence. ��

4.3 Gradient projectionmethod on the sphere

In this section we present the gradient projection method to solve the constrained opti-
mization problem (12). For that, let C∗ �= ∅ be the solution set of the problem (12) and
f ∗:= inf p∈C f (p) be the optimum value of f . From now on, we assume that

(H1) grad f is Lipschitz continuous on C ⊆ S
n with constant L ≥ 0.

To proceed, we need a constant ζ ∈ R such that

maxp∈C ‖ grad f (p)‖ ≤ ζ < +∞. (43)

Next, we present an example of a function f and an upper bound for its gradient grad f .

Example 7 Let f : S
n → R be given f (p) = p�Ap. Thus, it follows from Example 3 that

‖ grad f (p)‖ ≤ 2λmax(A). In this case, we can take ζ = 2λmax(A).

The conceptual version of the gradient projection method to solve problem (12) is given
in Algorithm 1.

Algorithm 1: Gradient projection method on S
n with constant stepsize

Step 0. Take the constants ζ > 0 satisfying (43), θ and θ̄ > 0 satisfying (34) and α ∈ R such that

0 < α < min

{
2θ

L
,
θ̄

ζ

}
. (44)

Also take an initial point p0 ∈ C. Set k = 0;
Step 1. If grad f (pk ) = 0, then stop and return pk ; otherwise, set the next iterate pk+1 as follows

pk+1 := PC
(
exppk

( − α grad f (pk )
)) ; (45)

Step 2. Update k ← k + 1 and go to Step 1.

Remark 2 Since the sphere S
n is compact and f is a differentiable function, there exists

q̄ ∈ S
n a minimizer of f and grad f (q̄) = 0. Consequently, if grad f is Lipschitz continuous

on S
n , then it follows fromDefinition 3 that ‖ grad f (p)‖ ≤ Ld(p, q̄), for all p ∈ S

n . Hence,
‖ grad f (p)‖ ≤ πL , for all p ∈ S

n , and ζ in (43) can be taken as ζ = πL . In order to obtain
the biggest interval for the step-size α in (44), by considering (34), we must take 0 < θ < 1
such that θ = θ̄ , which implies that θ̄ > 0.7. Therefore, it follows from (44) that we can
take 0 < α < 0.7/(πL). As we will see in Sect. 5, for the special case f (p) = p�Ap, this
interval can be taken bigger.

In the next proposition we prove that Algorithm 1 is well defined.

Proposition 8 Algorithm 1 is well defined and generates a sequence (pk)k∈N ⊆ C.
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Proof Considering p0 ∈ C, without loss of generality we can assume that pk ∈ C. Since ζ sat-
isfies (43) and α satisfies (44), we have d(pk, exppk (−α grad f (pk))) = α‖ grad f (pk)‖ <

θ̄ . Thus, considering θ̄ < π/2, we conclude that d(pk, expp (−α grad f (pk))) < π/2.
Hence, due to pk ∈ C, it follows from (25) that

d
(PC(exppk (−α grad f (pk))), exppk (−α grad f (pk))

)
<

π

2
.

Thus, Proposition 6 implies thatPC(exppk (−α grad f (pk))) is a singleton. Therefore, Algo-
rithm 1 is well defined and the point pk+1 belongs to the set C . ��

Next,we present an inequalitywhich plays an important role in the analysis of the sequence
(pk)k∈N generated by Algorithm 1.

Lemma 9 The following inequality holds

f (pk+1) ≤ f (pk) −
(
2θ − αL

2α

)
d2(pk, pk+1), k = 0, 1, . . . . (46)

In particular, the sequence ( f (pk))k⊆N is non-increasing and converges.

Proof Since p0 ∈ C, it follows from Proposition 8 that (pk)k∈N ⊆ C . By applying Lemma 5
with D = Sn , p = pk and q = pk+1, we have

f (pk+1) ≤ f (pk) + 〈grad f (pk), exp
−1
pk pk+1〉 + L

2
d2(pk, pk+1).

Thus, by applying Lemma 8 with p = pk and by taking into account (45), we conclude that

f (pk+1) ≤ f (pk) − θ

α
d2(pk, pk+1) + L

2
d2(pk, pk+1)

= f (pk) −
(
2θ − αL

2α

)
d2(pk, pk+1), (47)

which implies that (46) holds. It follows from (44) that (2θ − αL)/2α > 0, and by using (46),
we conclude that ( f (pk))k∈N is non-increasing. Moreover, since−∞ < f ∗ and ( f (pk))k∈N
is non-increasing, it follows that it converges. ��
In the following we prove that any cluster point of (pk)k∈N is a solution of the problem (12).

Theorem 9 If p̄ ∈ C is a cluster point of the sequence (pk)k∈N, then p̄ is a stationary point
for problem (12).

Proof If grad f ( p̄) = 0, then (37) implies that p̄ ∈ C is a stationary point for problem
(12). Now, assume that grad f ( p̄) �= 0. Lemma 9 implies that ( f (pk))k∈N is non-increasing,
which together with −∞ < f ∗ yield that it converges. By using (46), we have

d2(pk , pk+1) ≤ 2α

2θ − αL
( f (pk) − f (pk+1)) , k = 0, 1, . . . . (48)

Thus, we obtain that limk→+∞ d(pk, pk+1) = 0. Let x̄ be a cluster point of (pk)k∈N
and (pk j ) j∈N be a subsequence of (pk)k∈N such that lim j→+∞ pk j = x̄ . Because
lim j→+∞ d(pk j+1, pk j ) = 0, we have lim j→+∞ pk j+1 = p̄. On the other hand, consid-
ering pk j+1 = PC(exppk j

(−α grad f (pk j )
)
), for j = 0, 1, . . ., it follows from item (ii) of

Proposition (6) that
〈
Projpk j+1

(
exppk j

(−α grad f (pk j ))
)

,Projpk j+1
q
〉
≤ 0, ∀ q ∈ C.
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Thus, by taking limit and by using that grad f is continuous, we obtain that
〈
Proj p̄

(
exp p̄(−α grad f ( p̄))

)
,Proj p̄ q

〉 ≤ 0, ∀ q ∈ C,

which is equivalent to
〈
exp p̄(−α grad f ( p̄)),Proj p̄ q

〉 ≤ 0, for all q ∈ C. Hence, by setting
v = −α grad f ( p̄) and by using (16), we have

0 ≥
〈
cos(‖v‖) p̄ + sin(‖v‖) v

‖v‖ ,Proj p̄ q

〉
= sin(‖v‖)

‖v‖
〈
v,Proj p̄ q

〉
, ∀ q ∈ C. (49)

By combining equations (43), (44), and (34), we deduce the following inequality

‖v‖ = α‖ grad f ( p̄)‖ ≤ αζ ≤ θ̄ <
π

2
.

Consequently, sin(‖v‖) ≥ 0, which combined with (49) leads to 0 ≥ 〈v,Proj p̄ q〉, for
all q ∈ C. Thus, due to v = −α grad f ( p̄) and α > 0, we conclude that

〈
grad f ( p̄),Proj p̄ q

〉 ≥ 0, ∀ q ∈ C,

which by using (37) implies that x̄ ∈ C is a stationary point for problem (12). ��
Item (i) of Corollary 4 implies that if pk = PC(exp pk(−αk grad f (pk))), then pk is a

stationary point for problem (12). Additionally, (45) implies that

d(pk, pk+1) = d (pk,PC(exp pk(−αk grad f (pk)))) .

Consequently, the quantity d(pk, pk+1) can be seen as a measure of the stationarity of pk .
The next theorem presents an iteration-complexity bound for this measure. To simplify its
statement we define

η:=(2θ − αL)/(2α) > 0. (50)

Theorem 10 For all N ∈ N there holds

min {d(pk, pk+1) : k = 0, 1, . . . , N } ≤
√

f (p0) − f ∗
η

1√
N + 1

,

Proof By using again (46) and (50), we have d2(pk, pk+1) ≤ ( f (pk) − f (pk+1)) /η, for all
k = 0, 1, . . .. Since f ∗ ≤ f (pk) for all k, the last inequality implies

N∑

k=0

d2(pk+1, pk) ≤ 1

η

N∑

k=0

( f (pk) − f (pk+1)) ≤ 1

β
( f (p0) − f ∗). (51)

Therefore, (N + 1)min
{
d2(pk, pk+1) : k = 0, 1, . . . , N

} ≤ ( f (p0) − f ∗)/η, which is
equivalent to the desired inequality. ��

It should be mentioned that in Algorithm 1 we need the Lipschitz constant for grad f and
an upper bound for ‖ grad f ‖ on C ⊆ S

n . However, these constants are not always known or
computable. For large-scale problems or in case when we deal with the positive semidefinite
cone, this quantity is not easily computable. Therefore, in this case we state another variant of
Algorithm 1 with a backtracking stepsize rule approximating the Lipschitz constant, which
can also be shown to accumulate at stationary points as well. The conceptual version of
the gradient projection method on the sphere with a backtracking stepsize rule to solve the
problem (12) is as follows:
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Algorithm 2: Gradient projection method on S
n with backtracking stepsize rule

Step 0. Take constants ρ, β, γ0 ∈ (0, 1), ᾱ > 0, θ and θ̄ > 0 satisfying (34). Choose initial point p0 ∈ C.
Set k = 0;
Step 1. If grad f (pk ) = 0, then stop and return pk ; otherwise take

0 < αk < min

{
θ̄

‖ grad f (pk )‖ , ᾱ

}
, (52)

Step 2. Compute
yk := exppk (−αkgrad f (pk )) , zk := PC (yk ) , (53)

�k := min

{
� ∈ N : β�γk ≤ θ̄

‖ grad f (pk )‖ , f
(
q(β�γk )

) ≤ f (pk ) + ρ
(
β�γk

)〈
grad f (pk ), exp−1

pk
zk
〉}

,

where q(τ ) := exppk
(
τ exp−1

pk zk
)
denotes the geodesic segment joining pk to zk ;

Step 3. Set pk+1 := q(β�k γk ) and γk+1 := β�k−1γk ;
Step 4. Update k ← k + 1 and go to Step 1.

5 Special case

In this section we state Algorithm 1 to solve the following constrained optimization problem

min{ f (p):=〈Ap, p〉 : p ∈ C}, (54)

where A : V
n+1 → V

n+1 is a linear operator with λmax (A) �= λmin(A) and C ⊆ S
n . For

that, we first note that by Lemma 4 we have L = 2(λmax(A) − λmin(A)). Moreover, by
using (43) and Example 7, we can take ζ = 2λmax(A). Consequently, by considering that
0.7 < arccos(0.7), we can also take α ∈ R in Algorithm 1 satisfying

0 < α <
0.35

λmax(A)
. (55)

It is worth recalling that for projecting on C we use Proposition 7, i.e., if PKC (p) �= 0, then

PC(p) = PKC (p)

‖PKC (p)‖ ,

where PKC (p) denotes the usual orthogonal projection onto the cone KC . Therefore, in this
specific case Algorithm 1 can be stated as follows:

Algorithm 3: Gradient projection method on S
n to solve problem (54)

Step 0. Take 0 < α < 0.35/(λmax (A) − λmin(A)) and an initial point p0 ∈ C. Set k = 0;
Step 1. Set vk := Apk − 〈Apk , pk 〉pk . If vk = 0, then stop and return pk . Otherwise, set pk+1 as follows

pk+1 := PKC (qk )

‖PKC (qk )‖ , qk := cos(α‖vk‖) p + sin(α‖vk‖) vk

‖vk‖ . (56)

Step 2. Update k ← k + 1 and go to Step 1.
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Remark 3 In practical applications we use upper bound for the value λmax (A) − λmin(A).

In the following examples we explicit the first equality in (56) for C ⊆ S
n the nonnegative

orthant, the Lorentz cone and the positive semidefinite cone.

Example 8 For C = R
n+1+ ∩ S

n we have KC = R
n+1+ . Thus, it follows from Example 4 that

the first equality in (56) becomes

pk+1 = q+
k

‖q+
k ‖ .

Example 9 For C = Ln ∩ S
n , we obtain that KC = Ln . Thus, letting qk :=(xk, tk) ∈ R

n × R,
by using Example 5, the first equality in (56) can be written as follows

pk+1 =
{

(xk, tk), tk ≥ ‖xk‖,
1√

2‖xk‖ (xk, ‖xk‖) , −‖xk‖ < tk < ‖xk‖.

Example 10 For C = Sn+ ∩ S
n we have KC = Sn+. Let qk ∈ C and {v1k, v2k, . . . , vnk} be

an orthonormal system of eigenvectors of the matrix qk corresponding to the eigenvalues
λ1k, λ2k, . . . , λnk , respectively. Thus, by using the spectral decomposition of qk , we have

qk =
n∑

i=1

λikv
ik(vik)�.

Thus, Example 6 implies that the first equality in (56) is given by

pk+1:=
∑n

i=1(λik)
+vik(vik)T

‖∑n
i=1(λik)

+vik(vik)T ‖ , (57)

In the following section we present numerical results, where we show how our algorithm
can be used to test copositivity of operators with respect to the nonnegative orthant, to the
Lorentz cone and to the positive semidefinite cone.

5.1 Numerical experiments

We will use the algorithm presented in the previous section to test copositivity of operators
with respect to different cones.We implemented the algorithms inMatlab 2018b. If the output
of the algorithm is negative, then we know that the operator is not copositive with respect to
the cone K. On the other hand, if we run the algorithm several times with different starting
points and the output is nonnegative each time, then we can just guess that the operator might
be copositive with respect to K.

5.1.1 Positive orthant and Lorentz cone

Firstly, we consider the cases when the cone is the nonnegative orthant and the Lorentz cone,
respectively. For this, we will use the following function f (p) = p�Ap and consider the
optimization problem given in (12).
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Example 11 Consider the following matrix which is not copositive, see [26]:

A1 =

⎛

⎜⎜
⎝

1 −0.72 −0.59 1
−0.72 1 −0.6 −0.46
−0.59 −0.6 1 −0.6

1 −0.46 −0.6 1

⎞

⎟⎟
⎠ . (58)

Firstly, we consider the matrix A1 given in (58) and K is the nonnegative orthant in problem
(12). Thus, by running Algorithm 3 with starting point p0 = [0.5 0.5 0.5 0.5], we obtain
that f ∗ = −0.2756 < 0. In fact, we confirm the known result that the matrix A1 is not
copositive. Now we consider problem (12) with the Lorentz cone. In this case, if we run

Algorithm 3 with p0 = [
√
3
6

√
3
6

√
3
6

3
4 ], we obtain that f ∗ = −0.0545 < 0. Thus, A1 is also

not copositive with respect to the Lorentz cone. The copositivity with respect to the Lorentz
cone can also be verified by using Proposition 3. Indeed, suppose that A1 is copositive with
respect to the Lorentz cone. Therefore, we can find a μ ∈ R+ such that matrix A1 − μJ is
positive semidefinite. Then we have that one of its principle minors

∣∣∣∣
1 + μ 1
1 1 − μ

∣∣∣∣ ≥ 0,

which is equivalent to μ ≤ 0, hence we conclude that μ = 0. Thus, if A1 is copositve with
respect to the Lorentz cone, then A1 is positive semidefinite. But the matrix A1 has one
negative eigenvalue, which implies that it is not positive semidefinite. Thus, we obtain as
before that A1 is not copositive with respect to the Lorentz cone.

Example 12 We take the well-known Horn matrix:

A2 =

⎛

⎜⎜⎜⎜
⎝

1 −1 1 1 −1
−1 1 −1 1 1
1 −1 1 −1 1
1 1 −1 1 −1

−1 1 1 −1 1

⎞

⎟⎟⎟⎟
⎠

. (59)

If we consider the Horn matrix given in (59), by applying Algorithm 3 in the case when
the cone is the nonnegative orthant we obtain that f ∗ = 1 > 0. Hence, it might be strictly
copositive with respect to the nonnegative orthant. On the other hand, if we consider the
Lorentz cone and the starting point p0 = [0 0 0 0 1], we obtain that f ∗ = −1.2018 < 0.
Therefore, we can conclude that it is not copositive with respect to the Lorentz cone, which
can also be verified by using once again Proposition 3. Indeed, if A2 would be copositive
with respect to the Lorentz cone, then there would exist a μ ∈ R+ such that

A2 − μJ =

⎛

⎜⎜⎜⎜
⎝

1 − μ −1 1 1 −1
−1 1 − μ −1 1 1
1 −1 1 − μ −1 1
1 1 −1 1 − μ −1

−1 1 1 −1 1 + μ

⎞

⎟⎟⎟⎟
⎠

.

is positive semidefinite. Since the matrix A2 − μJ is positive semidefinite, all the principal
minors of this matrix must be nonnegative. Thus, we have

∣∣∣∣
1 + μ −1
−1 1 − μ

∣∣∣∣ ≥ 0,
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which is equivalent to 1− μ2 − 1 ≥ 0, this leads to μ ≤ 0, hence we have μ = 0. Thus, we
conclude once again that the Horn matrix A2 is not copositive with respect to the Lorentz
cone since A2 itself has two negative eigenvalues.

Example 13 Consider the Hoffmann-Pereira matrix:

A3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 −1 1 0 0 1 −1
−1 1 −1 1 0 0 1
1 −1 1 −1 1 0 0
0 1 −1 1 −1 1 0
0 0 1 −1 1 −1 1
1 0 0 1 −1 1 −1

−1 1 0 0 1 −1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (60)

which is a copositive matrix, see [26]. If we run Algorithm 3 with different starting points in
the nonnegative orthant case, we obtain that f ∗ = 1 > 0. Hence, we might conclude that this
matrix is strictly copositive with respect to the nonnegative orthant. However, if we consider
the Lorentz cone with p0 = [0 0 0 0 0 0 1] we obtain that f ∗ = −0.6519 < 0, hence this
matrix is not copositive with respect to the Lorentz cone. This can also be implied by using
Proposition 3, since the matrix A3 − μJ has the same principle minor

∣∣∣∣
1 + μ −1
−1 1 − μ

∣∣∣∣

as A2 − μJ . Hence, we can conclude that μ = 0, which implies that A3 itself is not positive
semidefinite because it has 4 negative eigenvalues. Thus,we get again that A3 is not copositive
with respect to the Lorentz cone.

5.1.2 Results in case of generated matrices

In [26, 46] the authors considered a set of matrices related to maximum clique problem
from the DIMACS collection [47], for which the real status of copositivity is known by
construction, see [26] for justification. The matrices can be accessed at [48].

We applied Algorithm 3 to test the copositivity of most matrices given in [48] with respect
to the nonnegative orthant. In these cases we ran the algorithmwith 1000 randomly generated
starting points. The algorithm detected correctly the copositivity status of the tested matrices.
In the following table we can see the average number of iterations in some of the cases. In
the other cases the behaviour of the algorithm is similar.

Order Strictly Copositive Not copositive Average nr. of iterations

Hamming4-4-not-COP 16 Yes 6.28
Johnson6-2-4-not-COP 15 Yes 31.69
Johnson6-4-4-not-COP 15 Yes 31.92
Keller2-not-COP 16 Yes 13.54
sanchis22-Not-COP 22 Yes 141.68
Hamming4-4-in-Interior 16 Yes 77.62
Johnson6-2-4-in-Interior 15 Yes 56.48
Johnson6-4-4-in-Interior 15 Yes 56.66
Keller2-in-Interior 16 Yes 66.73
sanchis22-in-Interior 22 Yes 140.5
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5.1.3 Positive semidefinite cone

Let Sn be the vector space of the n × n symmetric matrices, ‖ · ‖ be the Frobenius norm in
Sn and S

m = {p ∈ Sn : ‖p‖2 = 1} be the sphere, where m = n(n + 1)/2− 1. Consider the
following nonlinear programming problem

minp∈C f (p):=tr(pAp), (61)

where A : Sn → Sn is a linear operator and C = S
m+ is the positive semidefinite cone.

In the next examples we present the results obtained by applying Algorithm 2 in two
particular instances of problem (61).

Example 14 Take a ∈ Sn and consider the linear operator A : Sn → Sn defined by Ap =
apa. In this case, A∗ = A. Thus, by using (20), it follows that

grad f (p) = 2Ap − tr((2Ap)p)p. (62)

If we consider the matrix a = A1 given in (58) and the positive semidefinite cone, then by
applying Algorithm 2 with different stating points we obtain that f ∗ � 3 · 10−6. Hence, the
operator Ap = apa it might be copositive with respect to positive semidefinite cone.

Example 15 Take a ∈ Sn and consider the linear operator A : Sn → Sn defined by Ap =
pa + ap. We know that A∗ = A and we also have grad f (p) = 2Ap − tr((2Ap)p)p.
Considering a = A2, the matrix given in (59), by applying Algorithm 2 we obtain that
f ∗ = −2.4721 < 0. Hence, we conclude that the operator Ap = pa + ap with the Horn
matrix is not copositive with respect to the positive semidefinite cone.

6 Conclusions

We proposed a gradient projection algorithm to solve constrained optimization problems
on the sphere in finite dimensional vector spaces. We presented the convergence analy-
sis of this method. We studied the existence of solutions of a certain type of nonlinear
cone-complementarity problem, by reducing it to optimizing a quadratic function on the
intersection of the sphere and the corresponding cone. The latter problem was reduced to
testing the cone-copositivity of the considered linear operator via the introduced algorithm.
Furthermore, we provided several computational results, including numerical study of cone-
copositivity of operators.
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