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Abstract
Combining the strengths of model-based iterative algorithms and data-driven
deep learning solutions, deep unrolling networks (DuNets) have become a
popular tool to solve inverse imaging problems. Although DuNets have been
successfully applied to many linear inverse problems, their performance tends
to be impaired by nonlinear problems. Inspired by momentum acceleration
techniques that are often used in optimization algorithms, we propose a recur-
rent momentum acceleration (RMA) framework that uses a long short-term
memory recurrent neural network (LSTM-RNN) to simulate the momentum
acceleration process. The RMA module leverages the ability of the LSTM-
RNN to learn and retain knowledge from the previous gradients. We apply
RMA to two popular DuNets—the learned proximal gradient descent (LPGD)
and the learned primal-dual (LPD) methods, resulting in LPGD-RMA and
LPD-RMA, respectively. We provide experimental results on two nonlin-
ear inverse problems: a nonlinear deconvolution problem, and an electrical
impedance tomography problem with limited boundary measurements. In the
first experiment we have observed that the improvement due to RMA largely
increases with respect to the nonlinearity of the problem. The results of the
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second example further demonstrate that the RMA schemes can significantly
improve the performance of DuNets in strongly ill-posed problems.

Keywords: inverse problems, deep unrolling networks,
momentum acceleration, learned primal-dual,
learned proximal gradient descent, recurrent neural network

1. Introduction

Many image processing tasks can be cast as an inverse problem, i.e. to recover an unknown
image x from indirect measurements y

y=A(x)+ ϵ, (1)

where x ∈ X, y ∈ Y, A represents a forward measurement operator and ϵ is the observation
noise. Problems that can be formulated with equation (1) include denoising [18], compressive
sensing [37], computed tomography reconstruction [2, 3], phase retrieval [29], optical diffrac-
tion tomography [30], electrical impedance tomography [10, 28, 33] and so on.

A common challenge in solving the inverse problems is that they are typically ill-posed
and as such regularization techniques are often used to ensure a unique and stable solution.
Classical regularization techniques introduce an explicit regularization term in the formulation,
yielding a variational regularization problem that can be solved with iterative algorithms, such
as the alternating direction method of multipliers (ADMM) [5] and the primal-dual hybrid
gradient (PDHG) method [6]. Although such methods can obtain well-posed solutions of the
inverse problems, they have a number of limitations: most notably, inaccuracy regularizing
assumption, need for parameter tuning, and mathematical inflexibility. A possible remedy to
these limitations is to implicitly regularize the inverse problem by replacing certain modules
in the iterative procedure with deep neural networks [1, 2, 34, 37], a type of method commonly
referred to as the deep unrolling networks (DuNets).

DuNets, pioneered by Gregor and LeCun in [13], have achieved great empirical success
in the field of inverse problems and image processing [26, 32, 39] in the past few years.
DuNets combine traditional model-based optimization algorithms with learning-based deep
neural networks, yielding an interpretable and efficient deep learning framework for solving
inverse imaging problems. It should be noted that most of the aforementioned studies have
focused on solving inverse problems with linear or linearized forward operators. On the other
hand, there has been relatively little research on applying DuNets to nonlinear inverse prob-
lems, such as optical diffraction tomography and electrical impedance tomography (EIT). This
paper attempts to bridge this gap by applyingDuNets to the nonlinear inverse problems. In such
problems, nonlinearity may pose additional difficulty for the DuNet methods, as the gradient of
the forward operator varies significantly as the iterations proceed. Intuitively, the performance
of DuNets may be improved if the previous gradient information is included. In this work
we will draw on momentum acceleration (MA), an acceleration strategy commonly used in
optimization algorithms, and the recurrent neural networks (RNN) techniques to improve the
performance of the deep unrolling networks. Specifically, we propose a recurrent momentum
acceleration (RMA) module that utilizes a long short-term memory recurrent neural network
(LSTM-RNN) to represent the momentum acceleration term. The RMA module exploits the
LSTM-RNN’s capacity to remember previous inputs over extended periods and learn from
them, thereby providing information from the entire gradient history. In particular we apply
it to two popular DuNets: the learned proximal gradient descent (LPGD) [25] and the learned
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primal-dual (LPD) [2]. We refer to the resulting algorithms as LPGD-RMA and LPD-RMA
respectively. It should be noted that several existing works propose to use the iteration his-
tory to improve the performance of the unrolling algorithms. For example, [2] extends the
state space to allow the algorithm some ‘memory’ between the iterations, and [17] develops a
history-cognizant unrolling of the proximal gradient descent where the outputs of all the pre-
vious regularization units are used. As a comparison, our RMA method employs the previous
gradients that are combined via a flexible RNN model learned from data.

The remainder of this paper is organized as follows. In section 2, we review twowidely used
types of deep unrolling models: the LPGD and the LPD methods. In section 3, we present our
RMA formulation, and incorporate it with both LPGD and LPD, yielding LPGD-RMA and
LPD-RMA. Numerical experiments performed on two nonlinear inverse problems are reported
in section 4. Finally section 5 offers some concluding remarks.

2. Deep unrolling networks

We start with the variational formulation for solving inverse problems of the form (1). These
methods seek to solve the following minimization problem that includes a data consistency
term D(·, ·) : Y×Y→ R and regularization termR(·) : X→ R:

argmin
x∈X

D (A(x) ,y)+λR(x) , (2)

where λ is the regularization parameter balancing R against D. The regularizer R encodes
prior information on x representing desired solution properties. Common regularization func-
tions include Tikhonov regularization, total variation (TV), wavelets, and sparsity promot-
ing dictionary [4], to name a few. Besides Tikhonov, all the aforementioned regularization
functions are non-smooth, and as a result equation (2) is typically solved by the first-order
algorithms, such as the proximal gradient descent (PGD) algorithm [11], the variable splitting
scheme [5] and the primal-dual hybrid gradient (PDHG) method [6]. These algorithms typ-
ically involve rather expensive and complex iterations. The basic idea of DuNets is to use a
learned operator, represented by a deep neural network, to model the iterations. We here focus
on two archetypes of the deep unrolling models: the LPGD method with both shared [24, 25]
and independent weights [7, 15], and the LPD method [2].

2.1. Learned proximal gradient descent method

Starting from an initial value x0, PGD performs the following iterates until convergence:

st = xt−1 −αt∇xt−1D (A(xt−1) ,y) , (3a)

xt = PλR (st) , (3b)

where αt is the step size and the proximal gradient descent PλR(·) is defined by

PλR (x) = argmin
x ′∈X

1
2
∥x ′ − x∥2X+λR(x ′) .

Simply speaking, the LPGD method replaces the proximal operators PλR with a neural net-
work Ψθt [7, 15, 36], and thus it allows one to learn how to effectively combine the previous
update with the gradient update direction instead of a pre-determined updating scheme. The
complete algorithm of LPGD is outlined in algorithm 1. In the standard LPGD algorithm, the
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network in each iteration uses its own weights θt, and a popular variant of the method is to
use shared weights over all the networks, i.e. restricting θ1 = . . .= θT. We refer to [24, 25] for
more details.

Algorithm 1. LPGD algorithm.

Input: x0 ∈ X
Output: xT

1: for t= 1, . . . ,T do
2: gt−1 =∇xt−1D(A(xt−1),y)
3: xt =Ψθt(xt−1,gt−1)
4: end for

2.2. Learned primal-dual method

Adler and Öktem first introduced the partially learned primal-dual approach as an extension
of iterative deep neural networks in [1] and further elaborated it into the LPD approach in [2].
The method is based on PDHG, another popular algorithm for solving the non-differentiable
optimization problem (2). The PDHG iteration is given by ut+1 = proxσD∗ (ut+σA(x̄t))

xt+1 = proxτR
(
xt− τ [∂A(xt)]

∗
(ut+1)

)
x̄t+1 = xt+1 + γ (xt+1 − xt) ,

(4)

where σ,τ,γ are predefined parameters,D∗ denotes the Fenchel conjugate ofD, and [∂A(xt)]
∗

is the adjoint of the Fréchet derivative of A at point xt. The LPD method is built upon
equation (4), and the main idea is to replace proxσD∗ and proxτR with neural network models
that are learned from data. Once the models are learned, the reconstruction proceeds via the
following iterations:{

ut = Γθdt

(
ut−1,A

(
xt−1

)
,y
)

xt = Λθpt

(
xt−1, [∂A(xt−1)]

∗
(ut)

)
,

for t= 1, . . . ,T. (5)

The complete LPD algorithm is given in algorithm 2. It is important to note that the
LPD method often enlarges both the primal and dual spaces to allow some ‘memory’

between iterations [2]. In particular, it defines xt = [x(1)t ,x(2)t , . . . ,x
(Nprimal)
t ] ∈ XNprimal and ut =

[u(1)t ,u(2)t , . . . ,u(Ndual)
t ] ∈ YNdual . Additionally, Λθpt

: XNprimal ×XNprimal → XNprimal corresponds to
dual and primal networks, which have different learned parameters but with the same archi-
tecture for each iteration. A typical initialization is x0 = [0, . . . ,0] and u0 = [0, . . . ,0], where 0
is the zero element in the primal or dual space. We refer to [2] for details on the LPD method.

Algorithm 2. LPD algorithm.

Input: x0 ∈ XNprimal ,u0 ∈ YNdual

Output: x(1)T
1: for t= 1, . . . ,T do

2: ut = Γθdt

(
ut−1,A(x(2)t−1),y

)
3: gt =

[
∂A(x(1)t−1)

]∗
(u(1)t )

4: xt = Λθpt
(xt−1,gt)

5: end for
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3. Deep unrolling networks with momentum acceleration

The conventional DuNets, exemplified by LPGD and LPD, only use the current gradient, ignor-
ing a large amount of historical gradient data. As has been discussed, these methods can be
improved by adopting the momentum acceleration (MA) strategies that are frequently used
in optimization methods. In this section we will present such momentum accelerated DuNet
methods.

3.1. Momentum acceleration methods

We here discuss the conventional explicit MA scheme and the one based on RNN.

3.1.1. Explicit momentum acceleration. Momentum-based acceleration methods, like
Nesterov’s accelerated gradient [27] and adaptive moment estimation [20], are well-
established algorithms for speeding up the optimization procedure and have vast applications
in machine learning [31]. The classical gradient descent with MA utilizes the previous ‘velo-
city’ vt−1 at each iteration to perform extrapolation and generates the new update as:

vt = γvt−1 − ηgt−1 (6a)

xt = xt−1 + vt, (6b)

where gt−1 is the gradient of the objective function evaluated at xt−1, η is the step size, and γ ∈
[0,1) is the momentum coefficient controlling the relative contribution of the current gradient
and the previous velocity. Equation (6) can be rewritten as:

vt = γvt−1 − ηgt−1 = γ (γvt−2 − ηgt−2 − ηgt−1)

= . . .= γtv0 − γt−1ηg0 − . . .− ηgt−1,
(7)

which shows that the current velocity is essentially a weighted average of all the gradients
(assuming v0 = 0). As mentioned above, the momentum coefficient γ controls how much
information from previous iterations is used to compute the new velocity vt, and therefore
needs to be chosen carefully for a good performance of the method. However, the optimal
value for the parameter is problem-specific and typically requires manual tuning [23, 31].

3.1.2. Momentum acceleration via RNN. The conventional momentum method utilizes a
fixed formula (a linear combination of all the gradients) to calculate the present velocity vt.
In this section we introduce a more flexible scheme that uses the recurrent neural networks
to learn the velocity term [16], which we refer to as the RMA method. In particular we use
the LSTM based RNN, which is briefly described as follows. At each time step t we employ
a neural network to compute the ‘velocity’ vt. The neural network has three inputs and three
outputs. These inputs include the current gradient input gt−1, the cell-state ct−1 (carrying long-
memory information) and the hidden state ht−1 (carrying short-memory information), where
the latter two inputs are both inherited from the previous steps. The outputs of the network are
vt, ht and ct. We formally write this neural network model as,

(vt,ht,ct) = Ξϑ (gt−1,ht−1,ct−1) , (8)

where ϑ is the neural network parameters, and leave the details of it in appendix. As one can
see this network integrates the current gradient gt−1 and the information from previous step
ht−1 and ct−1 to produce the velocity vt that is used in DuNets. Finally we note that other RNN
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Figure 1. The model architectures of DuNets-RMA. The RMA module is constructed
via a deep LSTM-RNN, denoted as Ξϑ.

models such as the Gated Recurrent Unit (GRU) [8] can also be used here. In our numerical
experiments we have tested both LSTM and GRU, and found no significant difference between
the performances of the two approaches, which is consistent with some existing works, e.g. [9,
12]. As such, we only report our experimental results with LSTM-RNN in this work.

3.2. LPGD and LPD with MA

Inserting the MA module into the DuNets algorithms is rather straightforward. In this section,
we use LPGD and LPD as examples, while noting that they can be implemented in other
DuNets in a similar manner.

3.2.1. LPGD. The explicit MA can be easily incorporated with LPGD. A notable difference
is that in the unrolling methods, gt is not the gradient of the objective function, which may
be nondifferentiable or not explicitly available. In LPGD, gt is taken to be the gradient of the
data fidelity term only, i.e. gt =∇xt−1D(A(xt−1),y). The main idea here is to replace gt−1 in
algorithm 1 by vt calculated via equation (6a), yielding the LPGD-MAmethod (algorithm 3.).
Similarly by inserting the LSTM model into algorithm, (1), we obtain the LPGD-RMA
algorithm (algorithm 4), as illustrated in figure 1(a). Finally, recall that LPGD also has a shared-
weights version (referred to as LPGDSW), and correspondingly we have LPGDSW-MA and
LPGDSW-RMA, which will also be tested in our numerical experiments.

6
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Algorithm 3. LPGD-MA.

Input: x0 ∈ X, v0 = 0
Output: xT

1: for t= 1, . . . ,T do
2: gt−1 =∇xt−1D(A(xt−1),y)
3: vt = γvt−1 − ηgt−1

4: xt =Ψθt(xt−1,vt)
5: end for

Algorithm 4. LPGD-RMA algorithm.

Input: x0 ∈ X,h0 = 0,c0 = 0
Output: xT

1: for t= 1, . . . ,T do
2: gt−1 =∇xt−1D(A(xt−1),y)
3: (vt,ht,ct) = Ξϑ(gt−1,ht−1,ct−1)
4: xt =Ψθt(xt−1,vt)
5: end for

3.2.2. LPD. The integration of the MA schemes and LPD is a bit different. Namely, in
LPGD, the velocity is constructed based on the gradient of the data fidelity term, while in
LPD, we build it upon gt−1 = [∂A(x(1)t−1)]

∗u(1)t . By inserting the explicit MA formula (6a) into
algorithm 2 we obtain the LPD-MA method (algorithm 5). The LPD-RMA method depicted
in figure 1(b) can be constructed similarly: one simply replaces the explicit MA formula in
algorithm 2 with the RMA module equation (8), and the complete algorithm is outlined in
algorithm 6.

Algorithm 5. LPD-MA algorithm.

Input: x0 ∈ XNprimal ,u0 ∈ YNdual

Output: x(1)T
1: for t= 1, . . . ,T do

2: ut = Γθdt

(
ut−1,A(x(2)t−1),y

)
3: gt−1 =

[
∂A(x(1)t−1)

]∗
u(1)t

4: vt = γvt−1 − ηgt−1

5: xt = Λθpt
(xt−1,vt)

6: end for

Algorithm 6. LPD-RMA algorithm.

Input: x0 ∈ XNprimal ,u0 ∈ YNdual ,h0 = 0,c0 = 0
Output: x(1)T

1: for t= 1, . . . ,T

2: ut = Γθdt

(
ut−1,A(x(2)t−1),y

)
3: gt−1 =

[
∂A(x(1)t−1)

]∗
(u(1)t )

4: (vt,ht,ct) = Ξϑ (gt−1,ht−1,ct−1)
5: xt = Λθpt

(xt−1,vt)
6: end for
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4. Experiments and results

In this section, we present our numerical experiments on two nonlinear inverse problems: a
nonlinear deconvolution and an EIT image reconstruction.

4.1. Implementation details

To make a fair comparison, for various DuNet methods, we adjust the number of unrolled
iterations to ensure that all the methods have approximately the same of number of training
parameters. Specifically, for the LPGD-type of methods, we set the unrolling iterations to
20 for LPGD-RMA and to 43 for both LPGD and LPGD-MA. The outputs of the proximal
operator unit are first concatenated with the estimated direction from the RMA module and
then combined using a convolutional layer with a 3× 3 kernel size and 32 output channels
before being fed to the subsequent block. The primal subnetwork consists of two convolutional
layers of kernel size 3× 3 and 32 output channels. The convolutional layers are followed by a
parametric rectified linear units (PReLU) activation function. The output convolutional layer is
designed to match a desired number of channels and does not include any nonlinear activation
function. In LPD-RMA, we use 10 unrolling iterations, while in other LPDmethods, we adjust
it to 22. The number of data that persists between the iterates be Nprimal = 5,Ndual = 5. The
primal subnetwork Γθdi

is the same as that used in LPGD-based methods. The dual subnetwork
consists of one convolutional layer of kernel size 3× 3 and output channels 32, and the other
setting is the same as the primal subnetwork.

All networks are trained end-to-end using Adam optimizer [20] to minimize the empirical
loss (9). We use a learning rate schedule according to the cosine annealing, i.e. the learning
rate in step t is

ζt =
ζ0
2

(
1+ cos

(
π

t
tmax

))
,

where the initial learning rate ζ0 is set to be 10−3. We also let the parameter β2 of the ADAM
optimizer [20] to be 0.99 and keep all other parameters as default. We perform global gradient
norm clipping [38], limiting the gradient norms to 1 to improve training stability. We use a
batch size of 32 for the nonlinear convolution example and 1 for the EIT problem. For the
DuNets-MA methods, we choose γ= 0.9 and η = 10−3. We train all models with 20 epochs
and keep a set of trainable parameters that achieveminimal validation losses.We do not enforce
any constraint on the trainable parameters during training.

All experiments are run on an Intel Xeon Golden 6248 CPU and an NVIDIA Tesla V100
GPU. The nonlinear deconvolution example is run entirely on the GPU. The forward and
adjoint operators in the EIT experiments are run on the CPU as the pyEIT toolbox used is not
computationally parallelizable and runs faster on the CPU. The training time for a single epoch
is approximately 4min in the nonlinear convolution example with 10 000 training samples, and
60 min for the EIT example with 400 training samples.

We use the ℓ2 loss function on the outputs from all the stages. Specifically, given the paired
samples {xi,yi}, i = 1, . . . ,N, the training objective is defined as:

L(Θ) =
1
N

N∑
i=1

∥x̂i− xi∥2 . (9)

Here, x̂i is the reconstruction, and Θ presents the set of trainable parameters.
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4.2. A nonlinear deconvolution problem

4.2.1. Problem setting. We consider a nonlinear deconvolution problemwhich is constructed
largely following [42]. For each input x= [x1,x2, . . . ,xn] ′ consisting of n elements, the forward
problem is defined as

y(x) = a · x ′W2x+w ′
1x+ b. (10)

Herew1 = [w1
1,w

2
1, . . . ,w

n
1]

′ is the first-order Volterra kernel, which contains the coefficients of
the Volterra series’ linear part. The second-order Volterra kernel, denoted asW2, is structured
as follows:

W2 =


w1,1
2 w1,2

2 · · · w1,n
2

0 w2,2
2 · · · w2,n

2
...

...
. . .

...
0 0 · · · wn,n2

 .

It is important to note that the parameter a controls the degree of nonlinearity in the deconvo-
lution problem.

4.2.2. Training and testing datasets. We assume that the unknown x is on 53 mesh grid
points, and meanwhile we choose the nonlinear kernel with size 9 and stride 4, and the
dimension of the observed data y is 12. The first-order and second-order Volterra kernels in
equation (10) are derived using the methods described in section 3 of [21]. We consider four
sets of experiments with different coefficients in equation (10): a= 0,1,2,4. We generate the
ground truth by sampling from a TV prior (see chapter 3.3 in [19]) and then obtain the observa-
tion data by (10). We employ 12 000 randomly generated paired samples, where 10 000 pairs
are used as the training set, and the remaining 1000/1000 pairs are used as the validation/test
sets.

4.2.3. Results and discussion

4.2.3.1. Benefit of the RMA scheme. We assess the performance of RMA with the three
unrolling methods LPGDSW, LPGD and LPD, and in each method we implement the fol-
lowing three different cases: without acceleration, with the conventional MA module and
with the RMA module; as such there are 9 schemes implemented in total. All hyper-
parameters in the tested methods are manually tuned for optimal performance or automat-
ically chosen as described in the aforementioned references. Table 1 demonstrates the per-
formance of each method in terms of the mean-square error (MSE) on four different settings:
a= 0,1,2,4. The visual comparison can be found in figure 2.We summarize our findings as the
following:

(i) when a= 0, the MSE values of each type of DuNets method are almost the same, which
is not surprising as the gradient of the forward operator is constant;

(ii) when a> 0, DuNets with RMA outperform the state-of-the-art methods by a rather large
margin (e.g. LPD-RMA outperforms the LPD method by 8.0%, 12.0%, and 16.0% in
terms of MSE for a= 1,2,4 respectively), suggesting that the RMA module can sig-
nificantly improve the performance of DuNets, especially for problems that are highly
nonlinear;

9
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Table 1. MSE results of the DuNets methods under different a values. The result of
LPGD is not reported as it fails to converge. The best results are indicated in orange
color.

a= 0 a= 1 a= 2 a= 4

LPGD — — — —
LPGD-MA 3.21× 10−2 5.37× 10−2 6.49× 10−2 7.76× 10−2

LPGD-RMA 3.23× 10−2 3.56× 10−2 4.43× 10−2 4.97× 10−2

LPGDSW 3.01× 10−2 4.61× 10−2 5.88× 10−2 6.85× 10−2

LPGDSW-MA 3.02× 10−2 4.54× 10−2 5.32× 10−2 5.78× 10−2

LPGDSW-RMA 3.01× 10−2 3.89× 10−2 4.68× 10−2 5.24× 10−2

LPD 2.69× 10−2 3.65× 10−2 4.61× 10−2 5.17× 10−2

LPD-MA 2.68× 10−2 3.71× 10−2 4.65× 10−2 5.22× 10−2

LPD-RMA 2.67× 10−2 3.35× 10−2 4.04× 10−2 4.33× 10−2

Figure 2. Deconvolution results and their corresponding MSE values for all DuNets-
RMA methods.

(iii) the conventional MA module can also improve the performance, but RMA clearly out-
performs it in all the nonlinear cases;

(iv) LPD-RMA method consistently achieves the best results in terms of MSE.

10
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Table 2. Mean MSE values of the LPD-RMA models with L= 1,2,3 and n=
30,50,70. Evaluation is done via repeating the experiment 10 times. The number of
trainable parameters is also reported below the MSE value in parentheses.

L
n 1 2 3

30 3.37 × 10−2 (94 193) 3.36 × 10−2 (101 363) 3.34 × 10−2 (108 533)
50 3.35 × 10−2 (103 353) 3.34 × 10−2 (121 303) 3.33 × 10−2 (139 253)
70 3.34 × 10−2 (114 913) 3.35 × 10−2 (148 443) 3.32 × 10−2 (181 973)

Next we will test the sensitivity of the RMAmodule with respect to both the network struc-
ture and the data size. Since the LPGD-type methods are significantly outperformed by the
LPD-type ones in this example, we only use the LPD-type methods in these tests.

4.2.3.2. Sensitivity to the RMA structure. We discuss here the choice for the architecture
of the RMA modules, i.e. the number of hidden layers L and the hidden size n of the LSTM
layer. To avoid overfitting, we limit the ranges of the hidden layers as L ∈ {1,2,3} and the
hidden size as n ∈ {30,50,70}. Table 2 demonstrates the results of LPD-RMA trained with
different network structures in the setting where a= 1. We observe that in all these settings the
LPD-RMA yields similar results, indicating that the algorithm is rather robust provided that
the parameter values are within a reasonably defined range. With extensive numerical tests, we
have found that a reasonable choice of Lmay be L ∈ {1,2} in moderate dimensions, and n can
be chosen to be approximately the same as the dimensionality of the unknown variables. We
have also tested the methods for a= 2,4, where the results are qualitatively similar to those
shown in table 2, and hence are omitted here.

4.2.3.3. Sensitivity to data size. To assess the data efficiency of the proposed methods, we
train them on different data sizes. The data size is measured as the percentage of the total
available training data, and the MSE results are plotted against it in figure 3. The figure shows
that LPD-RMA is considerably more data-efficient than LPD and LPD-MA. Interestingly after
the data size increases to over 50%, the use of the conventional MA module cannot improve
the performance of LPD, while LPD-RMA consistently achieves the best accuracy across the
whole range.

4.3. Electrical impedance tomography

4.3.1. Problem setting. EIT is a nondestructive imaging technique that aims at reconstruct-
ing the inner conductivity distribution of a medium from a set of voltages registered on the
boundary of the domain by a series of electrodes [41].

In this example, we consider a bounded domain Ω⊆ R2 with a boundary ∂Ω containing
certain conducting materials whose electrical conductivity is defined by a positive spatial func-
tion σ(x) ∈ L∞(Ω). Next, we assume that L different electrical currents are injected into the
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Figure 3. The MSE results plotted against the data size for a= 1.

boundary of ∂Ω, and the resulting electrical potential should satisfy the following governing
equations with the same coefficient but different boundary conditions:

∇· (σ∇u) = 0 in Ω
u+ zlσ ∂u

∂e = Vl on El, l= 1, . . . ,L´
El
σ ∂u

∂e ds= Il on Γ

σ ∂u
∂e = 0 on Γ̃

(11)

where Γ(Γ̃) is the boundary ∂Ω with (without) electrodes, e is the outer normal direction at
the boundary, V l is the voltage measured by the lth electrode El when current Il is applied, and
zl is the contact impedance.

Numerically, the object domain Ω discretized into nS subdomains {τj}nSj=1 and σ is constant
over each of them. One injects a current at a fixed frequency through a pair of electrodes
attached to the boundary and measures the voltage differences on the remaining electrode
pairs. This process is repeated over all electrodes, and the resulting data is represented as a
vector denoted by y ∈ RnY where nY is the number of measurements. We can define a mapping
F : RnS → RnY representing the discrete version of the forward operator:

y= F(σ)+ η, (12)

where η is a zero-mean Gaussian-distributed measurement noise. The EIT problem aims to
estimate the static conductivity σ from measurements y. The EIT problem is widely con-
sidered to be challenging due to its severe ill-posedness, largely caused by the highly non-linear
dependence of the boundary currents on the conductivity.

4.3.2. Training and testing datasets. We run numerical tests on a set of synthetic 2D experi-
ments to evaluate the performance of the reconstructionmethods. In the circular boundary ring,
L= 16 electrodes are equally spaced and located. The conductivity of the background liquid
is set to be σ0 = 1.0Ωm−1. Measurements are simulated by using pyEIT [22], a Python-based
package for EIT. For each simulated conductivity phantom, the forward EIT problem (11) is
solved using FEMwith approximately 1342 triangular elements.We explore the following two
typical cases to test the methods:
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Table 3. The average MSE values of the DuNets methods for Case 1, with the associated standard devi-
ations in parentheses. The average MSE for the GN approach is 10.8 ×10−3 (±3.16 ×10−3), and for
the PDIPM-TV method, it is 5.24×10−3 (±2.78×10−3). The best MSE results are indicated in orange
color.

Data size 50 200 400

LPGD — — —
LPGD-MA 6.13 × 10−3 (±16.1 × 10−4) 5.17 × 10−3 (±14.1 × 10−4) 4.18 × 10−3 (±10.5 × 10−4)
LPGD-RMA 3.02 × 10−3 (±1.34 × 10−4) 2.48 × 10−3 (±1.08 × 10−4) 2.25 × 10−3 (±1.41 × 10−4)

LPGDSW 4.33 × 10−3 (±13.7 × 10−4) 2.87 × 10−3 (±1.15 × 10−4) 3.07 × 10−3 (±1.86 × 10−4)
LPGDSW-MA 3.81 × 10−3 (±3.15 × 10−4) 2.92 × 10−3 (±1.40 × 10−4) 2.95 × 10−3 (±1.55 × 10−4)
LPGDSW-RMA 3.92 × 10−3 (±4.79 × 10−4) 2.65 × 10−3 (±1.99 × 10−4) 2.63 × 10−3 (±1.14 × 10−4)

LPD 3.25 × 10−3 (±1.87 × 10−4) 2.55 × 10−3 (±1.34 × 10−4) 2.35 × 10−3 (±2.13 × 10−4)
LPD-MA 3.29 × 10−3 (±1.09 × 10−4) 2.71 × 10−3 (±1.46 × 10−4) 2.44 × 10−3 (±1.64 × 10−4)
LPD-RMA 3.11 × 10−3 (±1.52 × 10−4) 2.17 × 10−3 (±1.36 × 10−4) 2.04 × 10−3 (±1.89 × 10−4)

Table 4. The average MSE values of the DuNets methods for Case 2, with the associated standard devi-
ations in parentheses. The average MSE for the GN approach is 12.6 ×10−3 (±1.0 ×10−3), and for the
PDIPM-TV method, it is 7.67 ×10−3 (±0.36 ×10−3). The best results are indicated in orange color.

Data size 50 200 400

LPGD — — —
LPGD-MA 10.3 × 10−3 (±1.54 × 10−4) 8.60 × 10−3 (±1.45 × 10−4) 7.87 × 10−3 (±1.15 × 10−4)
LPGD-RMA 7.87 × 10−3 (±1.46 × 10−4) 7.43 × 10−3 (±1.27 × 10−4) 6.66 × 10−3 (±1.28 × 10−4)

LPGDSW 7.81 × 10−3 (±1.07 × 10−4) 6.88 × 10−3 (±2.13 × 10−4) 6.69 × 10−3 (±2.39 × 10−4)
LPGDSW-MA 6.96 × 10−3 (±5.04 × 10−4) 5.46 × 10−3 (±2.01 × 10−4) 5.53 × 10−3 (±2.26 × 10−4)
LPGDSW-RMA 6.82 × 10−3 (±3.42 × 10−4) 5.16 × 10−3 (±2.26 × 10−4) 5.02 × 10−3 (±2.15 × 10−4)

LPD 6.66 × 10−3 (±2.72 × 10−4) 5.46 × 10−3 (±1.90 × 10−4) 5.10 × 10−3 (±1.71 × 10−4)
LPD-MA 6.32 × 10−3 (±1.95 × 10−4) 5.49 × 10−3 (±1.63 × 10−4) 5.18 × 10−3 (±1.86 × 10−4)
LPD-RMA 6.01 × 10−3 (±1.60 × 10−4) 5.13 × 10−3 (±1.91 × 10−4) 4.93 × 10−3 (±1.49 × 10−4)

• Case 1: the anomalies consist of two random circles with radii generated from the uniform
distribution U(−0.6,0.6) and the conductivity values are 0.5 and 2 respectively in each
circle;

• Case 2: the anomalies consist of four random circles with radii generated according to
U(−0.55,0.55) and the conductivity values are 0.3, 0.5, 1.5, and 2.0.

We perform the DuNet methods with three different training sample sizes 50, 200 and 400,
and 20 testing samples to evaluate the performance of the methods. We report that the testing
time is approximately 19 seconds per sample for all DuNets.

4.3.3. Results and discussion. In the numerical experiments, we use the same set of
unrolling schemes as in section 4.2, and in addition we also implement the regularized Gauss–
Newton (GN)method and the primal-dual interior point method with total variation regularizer
(PDIPM-TV) [40]. The parameters in both GN and PDIPM-TV are optimally tuned.We calcu-
late the mean and standard deviation of MSE over ten independent runs with different training
data sizes, and provide the results for Case 1 in table 3 and those for Case 2 in table 4. In
what follows our discussion is focused on three aspects of the experimental results, (i) benefit
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Figure 4. EIT reconstruction results of four testing samples in Case 1 (2 inclusions).
From left to right: ground truth, GN, PDIPM-TV, LPGD-RMA, LPGDSW-RMA, and
LPD-RMA.

of the RMA module, (ii) behaviors in low-data regimes, (iii) robustness against the number
of inclusions in the conductivity area, and (iv) performance against the number of unrolling
iterations.

4.3.3.1. Benefit of RMA scheme. First we note that five of the ten runs of the baseline LPGD
(with no momentum acceleration) fail to converge within 20 epochs in both cases, and as such,
we omit the results of the method in all the tables and figures. All the other algorithms can reas-
onably capture the inclusions’ shape and position in all the ten runs. We highlight that, accord-
ing to tables 3 and 4 the methods with the RMAmodule achieve the best performance in all but
one test (LPGDSW method with 50 samples for Case 1) where the standard MA has the best
results. In contrast, the effect of the standard MA module is not consistent: for example it res-
ults in worse performance than the baseline approach (without momentum acceleration) in the
LPD method for case 1. The learning-based RMA module provides a more effective implicit
regularizer than standard DuNets by utilizing previous gradient information. As such, we can
see that DuNets-RMA achieves improved and more stable performance relative to standard
DuNets. Moreover, we want to compare the proposed methods with the conventional optimiz-
ation based approach. To do so we provide the reconstruction results of four testing samples in
figure 4 (for Case 1) and figure 5 (for Case 2). For simplicity we only provide the results of the
DuNets with RMA, which is compared with those obtained by GN and PDIPM-TV methods.
It can be seen from both figures that all DuNets approaches with the RMA module can yield
rather accurate reconstruction for all the inclusions, and the quality of the images is clearly
better than those of GN and PDIPM-TV (note that the parameters in GN and PDIPM-TV
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Figure 5. EIT reconstruction results of four testing samples in Case 2 (4 inclusions).
From left to right: ground truth, GN, PDIPM-TV, LPGD-RMA, LPGDSW-RMA, and
LPD-RMA.

are manually tuned for the best MSE results). Furthermore, the inclusions near the bound-
ary are better recovered than those near the center, which confirms that inclusions far away
from the boundary are more difficult to reconstruct since the boundary data are not sensitive to
them [14, 35].

4.3.3.2. Data size. Next we examine the performance of the DuNets methods with respect
to the data size. For this purpose we visualize the results in tables 3 and 4 with figures 6 and 7.
One observes that MSE is decreasing with more training data used in all the methods with
RMA, which is not the case for the baseline methods and those with MA. For example, in
Case 1, the MSE results of LPGDSW become evidently higher when the data size changes
from 200 to 400. These results demonstrate that the RMA module can increase the stability of
the DuNet methods with respect the data size.

4.3.3.3. Number of inclusions. We now study how the methods perform with different num-
bers of inclusions by comparing the results in Case 1 (2 inclusions) and Case 2 (4 inclusions).
We can see that the MSE results in Case 2 are generally higher than those in Case 1, indicat-
ing that more inclusions make the problems more challenging for all methods. Nevertheless,
the RMA module considerably improves the performance of DuNets in both cases, an evid-
ence that RMA is rather robust against the number of inclusions. In Case 1, the PDIPM-TV
method yields a notably lower average MSE than that of LPGM-MAwith 50 training datasets.
Case 2 results show PDIPM-TV outperforming LPGM-MA, LPGDSW with 50 datasets, and
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Figure 6. The MSE results plotted against the number of training data for Case 1. The
solid line represents the average of 10 tests, and the shade around the solid line depicts
the one standard deviation.

Figure 7. The MSE results plotted against the number of training data for Case 2. The
solid line represents the average of 10 tests, and the shade around the solid line depicts
the one standard deviation.

LPGD-RMAwith 200 datasets, thus affirming the benefits of sparsity regularization on model
performance.

4.3.3.4. Number of unrolled iterations. Finally, we evaluate the impact of the unrolled iter-
ation number T on the performance of the LPD-RMA model. We train a set of LPD-RMA
models with varying T values (T= 6,8, . . . ,16) using 200 training datasets in Case 1. Then
we compute the average MSE value from ten independent runs over the 20 test datasets and
present the results in figure 8. We can see from the figure that, when T is less than 10, an
increase in T significantly enhances model performance in terms of the MSE value; however,
when T is greater than 10, this enhancement diminishes and the MSE value slightly rises. One
possible reason for this phenomenon is that an increase in T leads to a higher number of train-
ing parameters, making the model more prone to overfitting. Therefore, we should select an
appropriate T that represents a good balance between model performance and complexity.
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Figure 8. The MSE results plotted against the number of unrolled iterations.

5. Conclusion

In this work, we propose a method for improving the performance of DuNets in nonlinear
inverse problems. In particular, we apply RMA to two popular DuNets: LPGD and LPD
respectively. We provide numerical experiments that can demonstrate the performance of the
proposed method. We expect that the proposed method can be extended to other unrolling
algorithms and applied to a wide range of nonlinear inverse problems.
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Appendix. The LSTM network

Here we will provide a detailed description of the LSTM network used in RMA. Recall that
in RMA, at each time t, a network model (vt,ht,ct) = Ξϑ (gt−1,ht−1,ct−1) is used, and the
structure of this network is specified as follows:

• The model Ξϑ(·) is a L-layer network with a LSTM-cell (denoted as LSTMl(·) for l=
1, . . .,L) at each layer.

• Both the cell state ct and the hidden state ht have L components: ct = (c1t , . . ., c
L
t ) and ht =

(h1t , . . ., h
L
t ) with each component being a vector of a prescribed dimension, and the initial

states h0 and c0 are set to be zero.
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Figure A1. (a) RMA structure uses a deep LSTM-RNN consisting of L hidden layers.
(b) LSTM structure: cell gates are the input gate it, forget gate f t, output gate ot, and a
candidate cell state c̃t. In practice, the current output zt is considered equal to the current
hidden state ht.

• For the lth layer, the inputs of the LSTM cell are gt, c1t−1 and h
1
t−1, and the output of it are

h1t and an intermediate state z1t that will be inputted into the next layer:(
zlt,h

l
t,c

l
t

)
= LSTMl (zl−1

t ,hlt−1,c
l
t−1

)
,

where z0t is initialized as gt for the first layer l= 1. In the final layer l=L, the output hLt is
set as the velocity vt.

The structure of the LSTM network is summarized in figure A1(a).
We now discuss the details of the LSTM cell that combines the input features gt at each time

step and the inherited information from previous time steps. In what follows we often omit the
layer index l when not causing ambiguity. At each layer, the LSTM cell proceeds as follows.
First LSTM computes a candidate cell state c̃t by combining hlt−1 and z

l−1
t (with z1t = gt−1),

as:

c̃t = tanh
(
Whch

l
t−1 +Wgcz

l−1
t + bc

)
,

and it then generates a forget gate xt, an input gate it, and an output gate ot via the sigmoid
function σ(·):

ft = σ
(
Whxh

l
t−1 +Wgxz

l−1
t + bx

)
,

it = σ
(
Whih

l
t−1 +Wgiz

l−1
t + bi

)
,

ot = σ
(
Whoh

l
t−1 +Wgoz

l−1
t + bo

)
.

The forget gate is used to filter the information inherited from ct−1, and the input gate is used
to filter the candidate cell state at t. Then we compute the cell state ct via,

ct = ft⊗ ct−1 + it⊗ c̃t,

which serves as a memory reserving information from the previous iterations, and the hidden
representation hlt as,

ht = ot⊗ tanh(ct) ,
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where ⊗ denotes the element-wise product. Finally the output of the LSTM model vt at time
t is calculated as:

vt =Whght+ bg,

which is used to replace the gradient in the standard DuNets methods. This is a brief introduc-
tion to LSTM tailored for our own purposes, and readers who are interested in more details of
the method may consult [12, 16].
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